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Abstract. Comprehensive, end-to-end, data and workflow management 
solutions are needed to handle the increasing complexity of processes and data 
volumes associated with modern distributed scientific problem solving, such 
as ultra-scale simulations and high-throughput experiments. The key to the 
solution is an integrated network-based framework that is functional, 
dependable, fault-tolerant, and supports data and process provenance. Such a 
framework needs to make development and use of application workflows 
dramatically easier so that scientists’ efforts can shift away from data 
management and utility software development to scientific research and 
discovery. An integrated view of these activities is provided by the notion of 
scientific workflows - a series of structured activities and computations that 
arise in scientific problem-solving. An information technology framework that 
supports scientific workflows is the Ptolemy II based environment called 
Kepler. This paper discusses the issues associated with practical automation of 
scientific processes and workflows and illustrates this with workflows 
developed using the Kepler framework and tools. 
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1 Introduction 

Scientific research is exploratory in nature. Scientists carry out experiments, often in 
a trial and error manner, and they modify the steps of the tasks performed as 
exploration proceeds. As technology advances, more and more scientists are relying 
on computing systems to aide them in this process. In fact, some of the heaviest users 
of computing are in the sciences, and often it is no longer possible for scientists to 
carry out their day-to-day activities without heavy use of computing. This holds in 
the fields and problem areas as diverse as computational medicine, biology, 
chemistry, genetics, environment, fusion and combustion.  

 
Fig. 1. Illustration of an astrophysics simulation workflow. Computations are done at a remote 
supercomputer, and the resulting data sets are transferred to NC State University via a high-
speed internet link. This is followed by local “slicing and dicing” of the data, and their 
analysis and visualization.  

We use the term scientific workflow to describe a series of structured activities 
and computations (we call them workflow components or actors1) that arise in 
scientific research and problem-solving process [11]. A scientist may divide the 
overall task into smaller sub-tasks, each of which can be considered to be an 
individual step in an experiment or a simulation. At each step, the results can be 

 
1 The term “actor” is the one used in the Kepler [2] workflow support system based on 

Ptolemy II framework [12] to describe process components interconnected by data flows 
and orchestrated by a “director” or a workflow control process. In general, a process 
oriented network can be described using generalized activity networks [13]. Activity 
oriented networks have nodes interconnected by data flows and their graph-based 
depictions are sometimes called actigrams, while data-oriented networks have data nodes 
interconnected by data transforming activity links and their graph-based depictions are 
sometimes called datagrams (not to be confused with internet protocol datagrams). 
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generated, managed, analyzed, stored, or otherwise processed, and then used as an 
input to the next step in the process. Such reuse of data can be done repeatedly until 
the overall task is completed to scientist’s satisfaction. We use the term “workflow” 
to describe the chaining of smaller tasks to achieve the desired results using data 
from different source in combination with different transformation, analysis and 
visualization services, [1, 11]. Today, many – often all – of the steps involve support 
from or interaction with information technology. Scientific workflow includes 
actions performed (by actors), decisions made (control-flow), information transferred 
(data-flow), exception and interrupt handling (e.g., event-flows) and the underlying 
coordination and scheduling required to execute a workflow (orchestration). In its 
simplest case, a workflow is a linear sequence of tasks, each one implemented by an 
actor.  

An example of a workflow is: a) transfer of executable simulation application 
code and computational and storage configuration information to a cluster or a high-
performance computer, b) running of  this application, and c) transferring of the 
results to a remote machines for further analysis and visualization. Figure 1 
illustrates such a workflow.  

Comprehensive end-to-end data and workflow management solutions are needed 
to handle the increasing complexity of processes and data volumes associated with 
modern distributed scientific problem solving, such as ultra-scale simulations and 
high-throughput experiments. The key to the solution is an integrated network-based 
framework that is functional, dependable, fault-tolerant, and supports data and 
process provenance. Such a framework needs to make application workflows 
dramatically easier to develop and use [36] so that scientists’ efforts can shift away 
from data management and application development to scientific research and 
discovery. A Ptolemy II based environment called Kepler [2] is one such framework.  

This paper discusses the issues associated with practical automation of scientific 
processes and workflows and illustrates this through workflows developed using the 
Kepler framework and tools. 

2 Workflows 

Workflow technologies have a long history in the databases and information systems 
communities [1]. Scientific community has developed a number of problem-solving 
environments, most of them as integrated solutions [24 and references there in]. 
However, more recently component-based solution support systems have become 
more popular [e.g., 14, 25, 26, 29, 30]. Scientific workflows merge advances in all 
these areas to automate support for sophisticated scientific information technology 
assisted exploration and problem-solving [e.g., 2 – 11, 46, 55, 61].   
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Fig. 2. From a “napkin drawing” to an executable Kepler-based workflow. 

Scientific workflows, as we understand them, are crucial to the success of major 
initiatives in high-performance computing. As parallel computing expands, their 
standards encourage scientists to construct complex distributed solutions that span 
the networks, and through web-based interfaces and virtualization invite 
incorporation into still more complex systems that may include interactions with 
economic and business flows. Workflows provide the necessary abstractions that 
enable effective usage of computational resources, and development of robust 
problem-solving environments that marshal high-performance computing resources. 

Workflows have many synergies with web and network-based services. In fact, 
(web) service based workflows are quickly becoming a requirement of a wide range 
of new service-oriented applications. Many domain experts, particularly in life 
sciences, do not wish to construct workflows by coding them beyond what is 
necessary to do research in their domain, e.g., to develop appropriate algorithms. 
They would like to considerably reduce the overhead currently required by some 
information technology solutions. That overhead can be as much a 50% of the 
activity. Therefore, workflow automation and higher-level specification fits naturally 
into the trends towards increased domain specialization as application developers 
move to become (web) services providers, and computer scientists seek reusable 
libraries and tools, rather than custom made applications. 

Of course, workflows such as the one shown in Figure 1 have much more depth 
and structure than shown in the Figure 1 diagram. Often they can be naturally 
mapped onto graph representations, e.g., [13, 30]. Typically, a scientist would like to 
go from a conceptual “napkin drawing” of a workflow to an executable version of it 
with as little overhead from the information technology tools and solutions as 
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possible (Figure 2). Sometimes the best way to manage complexity of such structures 
is to nest the graphs (e.g., Figure 3). A graph can then be translated into executable 
form either manually or automatically. However, the process can be a reverse one – 
the code and some process scripts for an, in part, manually assisted workflow already 
exists, and the workflow technology is used to integrate these elements. In either 
case, it is beneficial to keep a high level graph representation of a workflow so that 
end-users can better understand and modify application logic.  

 
Fig. 3. Nesting can help manage complexity of  workflows. 

Scientific workflows can exhibit and exploit data-, task-, and pipeline-
parallelism. In science and engineering workflow processes, tasks and computations 
are often large-scale, complex, and structured with intricate dependencies [7, 13, 14]. 
Information technology assisted scientific workflows have several common 
characteristics:   

 
• Composition. Scientific workflows require invocation, interconnection and 

integration of multiple data collection, simulation, application or analysis 
elements, i.e., methods, approaches, tools and processes. While these 
elements are often invoked in a routine manner, there may also be changes 
in the workflow as scientists interactively explore new options. Developing 
an executable workflow requires resolving mismatches between what an 
element expects and what the previous step in the process generated. 

• Diversity. Scientific workflows require significant heterogeneous, 
computational, storage and networking resources. Many large-scale 

An Astrophysics Workflow (using Kepler framework) 
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scientific workflows will execute for hours, often days, perhaps weeks and 
months, and may require user intervention at multiple times. If the 
workflow, or one of the associated computations or activities runs into 
trouble, fault-tolerant behavior, e.g., via human intervention or perhaps 
automated failover or recovery techniques must be attempted because 
returning to the initial starting point is usually not acceptable.   

• Verification and validation of processes as well as intermediate and final 
results is essential in the domain of scientific problem solving. This ensures 
integrity of the data, processes and results, that the activity as a whole 
remains on track, and that resources are not wasted. Often real-time or near-
real-time status tracking and preservation of state capabilities are required. 
One of the most difficult (and currently not yet fully solved) issues is 
semantic validity of workflows. Semantic mismatches between workflow 
components, tools and data must be handled in order to maintain confidence 
in the results. For example, some of the tools may be designed for 
performing simulations under different circumstances or assumptions, and 
this must be accommodated to prevent spurious results.  

• Evolution. Because of their evolutionary and exploratory nature, frequent 
changes are often an integral part of a scientific workflow lifecycle. 
Therefore, is critical to record provenance information (e.g., the lineage of 
data and processes) in a way that is consistent, persistent, and easily 
retrievable and auditable. Related to this is the ability to steer the 
workflows and the associated computational tasks through use of run-time 
dashboards, analytics and process feedback loops. 

3 Overhead 

In the 21st century, a key differentiating characteristic of a successful information 
technology (IT) is its ability to become true and valuable contributor to 
cyberinfrastructure. Cyberinfrastructure [36] makes IT systems, applications and 
services dramatically easier to develop, deploy and use. This expands the scope of 
applications and services possible within budget and organizational constraints. It 
also increases efficiency, quality, and reliability by capturing commonalities and by 
facilitating efficient sharing of resources and services. Ultimately, 
cyberinfrastructure shifts the effort away from IT (overhead) concentrating it on the 
basic end-user mission and business. 

Appropriate cyberinfrastructure is especially important for any business that in 
large part relies on IT to conduct its daily operations. Today, this is true of many 
financial, educational, research, government and retail organizations. From the 
perspective of an end-user IT must be enabling and appliance-like. End-users should 
be able to use the technology to improve their productivity and reduce technology-
driven overhead, e.g., software installation or management. For example, unless IT is 
the primary business of an organization or an individual, less than 20% of its effort 
not directly connected to its primary business should have to do with IT issues, even 
though 80% of its business may be conducted using electronic means. In general, 
infrastructure installation and maintenance overhead must have the property of the 
economy-of-scale at all levels – hardware, software, provisioning, maintenance, etc. 
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A powerful cyberinfrastructure enabling concept is utility-computing through 
service-oriented architectures (SOA) [e.g., 50]. An SOA is an environment where 
end-users can request an IT service at the desired functional, quality and capacity 
level, and receive it either at the time requested or at a specified later time. A key 
enabler of SOA is component-based construction of services. Another key 
supporting technology is virtualization of IT resources and services.  It is expected 
that in the next 10 years, service-based solutions will be a major vehicle for delivery 
of information and other IT assisted functions at both individual and organizational 
levels, e.g., software applications, web-based services, even personal and business 
“desktop” computing. 

 
Fig. 4. A typical scientist is primarily interested in preparation of inputs and codes (green 
areas) related to his/her specific research domain and in doing “science,” i.e., discovery. There 
is much less interest in tending computers, moving data or developing peripheral IT 
applications (orange areas). 

Scientific computing is no different in this respect. Today a scientist involved 
with a large-scale scientific workflow, e.g., of the peta-scale class of problems, may 
spend a lot of time dealing with IT related activities they need, but often wish they 
did not have to do [37]. For example, a typical class of heavy-duty scientific 
simulation workflows may have abstraction steps shown in Figure 4. A typical 
scientist’s primary interest is in preparation of inputs and codes related to her or his 
specific research domain and in doing domain specific scientific discovery. Unless 
IT is the research or development passion of the scientist, there is much less interest 
in tending computers, moving data or developing peripheral IT applications and 
support tools (e.g., visualization frameworks). Yet, as much as 50%, sometimes even 
more, of a scientist’s time may be taken up by IT tasks that can be, but are not, 
automated and/or easy to use. Obviously, there is a need to improve on this. In fact, 
this has prompted a number of entities (including the US Department of Energy) to 
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sponsor research and development projects2 aimed at making scientists more 
productive. 

4 Component-based Construction 
 
Component-based construction of solutions, of course, is not a new concept. It has 
been one of the “holy grails” of software engineering since its earliest days. Results 
have been mixed so far. However, the advent of reliable and readily available 
networked resources, and especially of service-oriented architecting, makes truly 
component-based construction of large scale distributed software-based solutions 
viable reality.  

 
Fig. 5. Workflow abstraction. 

Consider the Figure 4 abstraction in a somewhat different light (Figure 5). The 
flow starts with preparation of the domain-specific codes and inputs. In 
computationally very intense workflows, these preparatory activities may happen in 
environments that are different from the one where the code will actually execute. 
This is followed by moving of the data and codes to host (or grid) that will execute 
the simulation (e.g., a high-end supercomputer). Once the execution is scheduled (a 
request may wait in a queue for resources), the scientist may wish to monitor its run-
time progress, handle run-time diagnostics, perhaps steer the computations, and 
certainly collect outputs and results. Outputs of large-scale computations may not 
remain where they are generated, but may move to a post-run data manipulation and 

 
2 For example, SciDAC (http://www.scidac.gov/) 
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analysis environment for slicing, dicing, analytics, visualization, and so on A lot of 
information, perhaps all, is archived in a permanent way. Furthermore, all through 
the process there is generation of meta-data (data about data and processes) that is 
either used directly (perhaps in “dashboards”) or is part of the data and process 
lineage (provenance) information [57].  

Implementation of workflow abstractions requires availability of a relevant set of 
IT-based operations in the form of either software applications or perhaps as 
commands built into operating systems used. In this context, it is very important to 
distinguish between a custom-made workflow solution (or a problem-solving 
environment), and a more canonical set of operations, methods, and solutions that 
can be composed into a scientific workflow. Former have been around for a long 
time [e.g., 24 and references therein], latter are emerging. For instance, sort, uniq, 
grep, ftp, ssh and so on, are typical unix operating system commands that scientists 
can rely on to be available for workflow construction. It is less certain that a complex 
tool like SAS (which can also sort data, but also does many other things) is available 
on all platforms of interest, or that some non-standard data moving utility application 
such as bbcp is readily available on all platforms of interest. Some, operations such 
as “slice and dice” or “visualize” data are usually available only in the form of 
specialized software packages or applications. 

On the other hand, expectations are rising. Scientific community now expects 
utility-like (appliance-like) on-demand access to needed IT resources where use of 
IT-based solutions is not bound to a fixed location (such as a specific lab) and fixed 
resources (e.g., a particular operating system), but has moved to a (mobile) personal 
access device of a scientist (e.g., laptop or a PDA or a cell phone) and service-based 
delivery.  Scientists would like to move away from the situation where they have to 
spend more time on IT development, support and workflow management (art) to a 
situation where IT support is a commodity and they can focus primarily on their 
basic scientific mission (Figure 6). They are looking for environment where 
application workflows are dramatically easier to develop and use. Yet, today a 
practical bottleneck is often still in the IT domain, i.e., in the scientific workflow 

environment of the end-
user scientists. 

The key to the 
solution, is an integrated 
scientific process support  
framework that is 
dependable, supports 
networked or distributed 
workflows, supports a 
range of couplings among 
its building blocks, 
provides fault-tolerant 
and data- and process-

aware service-based delivery, and provides the capability to audit processes, data and 
results.  Key characteristic of such a framework and its elements are [25, 26]: 
reusability (e.g., elements can be re-used in other workflows), substitutability 
(alternative implementations are easy to insert, very precisely specified interfaces are 
available, run-time component replacement mechanisms exist, there is ability to 
verify and validate substitutions, etc), extensibility (ability to readily extend system 

Fig. 6. From art to commodity.
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component pool, increase capabilities of individual components, have an extensible 
architecture that can automatically discover new functionalities and resources, etc), 
and composability (easy construction of more complex functional solutions using 
basic components, reasoning about such compositions, etc.).  

Components are assembled according to the rules specified by a component 
model. Their coupling can range from tight to loose, from synchronous and 
blocking to asynchronous. Components are assembled using their interfaces. 
Component composition assembles components to form a larger component, an 
application, or a workflow.  All parts must conform to the component model or they 
do not fit together. A component technology is a concrete implementation of a 
component model. 

Interoperability among components, or workflows built from components, is a 
major practical issue. Unless component technologies allow for interoperation 
among different technologies and component models (perhaps through standardized 
inter-workflow interfaces), there is a danger that workflows from different groups 
and communities (who invariably use different component technologies) will create 
“stove-pipes” that will hamper disciplinary and multidisciplinary project, data 
exchange and scientific discovery. Steps in that direction are standardization efforts 
related to workflow description languages, web-services and similar [e.g., 51, 52, 
53]. 

5 Complexity and Usability 
 
A major issue of concern with new technologies, and general purpose scientific 
workflow support environments are no exception in this context, is complexity and 
usability. End-to-end workflows involve three types of interactions human-to-
human, human-to-machine and vice versa, and machine-to-machine. Human-to-
human communications have a relatively slow information exchange rate and are 
tolerant of both semantic and syntactic errors. Machine-to-machine communications 
are at the other end of the spectrum. They can take place at very high rates but must 
use very exact and unambiguous protocols.  

Human-to-machine interactions are the most critical from the complexity and 
usability point of view. Humans need to construct the workflow at some point, and 
humans are the recipients of the information that emerges from those workflows. As 
already mentioned, scientific community expects utility-like (appliance-like) on-
demand access to needed IT resources and workflow technology and tools must meet 
cost, complexity, skill level to implement, usability, maintainability, reliability, 
availability, and other expectations of its users. If it fails to do so, i.e., the overhead 
brought on by the technology does not exceed the potential value added by its use, 
technology is typically not be used.  

This is illustrated in Figure 7. Some technologies never make the break-even point, 
some “arrive” at or past the break-even point. A good example of a technology that 
was widely accepted, because it made access to networked information much more 
acceptable for a general user, is the Web. Scientific workflow technologies are now 
approaching the break-even point through reduction in the complexity of workflow 
construction, increased operational reliability, and provision of a suite of support 
functionalities and packages scientists expect. One such environment is Kepler. 
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Fig. 7. The relationship between the value added by use of a technology and the overhead 
inflicted by complexity, reliability, usability and cost of the technology. 

6 Kepler 
 
Kepler [2] is an open source component-based scientific workflow support system 
based on the Ptolemy II framework [12]. Kepler is being developed through a large 
cross-project collaboration3. Basic components of the Kepler framework include: the 
Ptolemy II core, Kepler core extensions, Kepler object and repository manager, 
extensions for smart re-run and failure recovery, provenance support modules, a 
graphical user interface (GUI) layer based on the Ptolemy II Vergil GUI, an 
authentication layer, a library of generic, application and domain specific actors, and 
a repository for provenance information. While Kepler can operate without the GUI, 
it is a useful workflow construction and execution monitoring tool.  

Figure 8 illustrates a GUI-level view of a simple workflow. In this case the 
director is called “PN Director” where PN stands for Process Networks, and as it 
name implies it implements the process network model. Actor icons can be dragged 
and dropped from the actor repository (shown on the left in the Figure 8) and 
connected together with dataflow arcs. Inputs can be parameterized (and their values 
automatically displayed on the desktop) or can come from files, or be hidden within 
icons. For example, one would change or input parameters by double clicking on an 

 
3 SEEK: Science Environment for Ecological Knowledge, SDM Center/SPA: SDM 
Center/Scientific Process Automation, Ptolemy II: Heterogeneous Modeling and 
Design, GEON: Cyberinfrastructure for the Geosciences, ROADNet: Real-time 
Observatories, Applications, and Data Management Network, EOL: Encyclopedia of 
Life, Resurgence, CIPRes: CyberInfrastructure for Phylogenetic Research, and 
others. 
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icon. Once workflow execution has started it can be paused, resumed or stopped, and 
the flow of information through the workflow can be monitored in real-time. 
Documentation is an integral part of the system.  

Ptolemy II was originally developed to support modeling, simulation, and design 
of concurrent, real-time, embedded systems. Kepler project has extended this 
framework to provide access to and use of synchronous and asynchronous loosely 
and tightly coupled and networked resources and functionalities that are typically 
used in scientific workflows. From the end-user perspective, there are two principal 
groups of elements. One set are the computational models - represented by 
“directors”, and the other set are the data-flow connected processing nodes called 
“actors”.  

 
Fig. 8. Kepler GUI. 

A director is an engine that controls the behavior and execution of the workflow 
components. In doing that, it implements different computational models, and thus it 
defines the semantics of the execution and of the interactions among the actors.  
While there are a number of open source and closed source scientific workflow 
support environments [e.g., 2, 3, 4, 42, 43, 55], a very unique and distinguishing 
feature of the Kepler framework is that  (through Ptolemy II) it enables a very rich 
mixture of models of computation. Examples of realized computational domains 
range from continuous-time modeling, to dynamic data flow, to discrete-event 
modeling, to finite state machines, to process networks, to synchronous dataflow 
modeling, to discrete time and distributed discrete events, and so on. 

Actors encapsulate parameterized actions and have interfaces define by ports and 
parameters. Ports are used to communicate input and output data and streams, but 
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without call-return semantics. Communication semantics among ports is handled by 
the directors – one per workflow level – which provide flow control. Workflows can 
be nested (e.g., Figure 2), and different computational models can be used at 
different hierarchical levels so long the communication channels and actions that 
may cross level boundaries are compatible. 

 
Fig. 9. Part of the XML-based description of the workflow shown in Figure 8. 

Actors are typically collected in libraries, many of which are domain and data 
polymorphic.  A number of supporting packages and actors are provided either as 
part of Ptolemy or as part of Kepler additions. This includes graph-theoretic 
manipulations, matrix and vector math, signal processing, data typing, handling of 
generic web services, customizable relational data-based management, command 
line wrappers for ssh, scp, ftp and similar, a level of Grid support (e.g., GridFTP, 
certificate generator), native R and Matlab support, SRB – the SDSC storage 
resource broker, communication with object resource brokers, image processing, 
visualization, textual and graphical outputs, etc. A number of functionalities are 
being added or improved, including large-scale robust data movers, more extensive 
provenance support, semantic-intensive actors, management for data-intensive and 
compute-intensive workflows, authentication and authorization, distributed 
execution, execution monitoring, fault tolerance, and scientific data management 
application-driven extensions such as access to or integration with parallel NetCDF, 
PVFS, MPI-IO, parallel-R, FastBit, and CCA. 
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Kepler workflows are recorded and can be exchanged as XML-based Modeling 
Markup Language (MoML) files [38]. Figure 9 shows part of the MoML description 
of the workflow shown in Figure 8. Kepler has many other desirable features. For 
example, if running in a distributed environment, it operates as a relatively loosely 
coupled system, while operating on a single platform it can operate as a very tightly 
coupled system. In addition, Kepler allows, using additional middleware that 
manipulates MoML files, dynamic construction of workflows. Kepler environment is 
very external-application friendly. It can invoke and communicate with existing 
tightly coupled external problem solving, analysis or visualization environments 
(e.g., R, SciRUN [62], Ensight [63]), as well as Grid-based resources..  

Kepler is also very flexible in how far it extends into a workflow. It can contain 
the whole workflow and orchestrate it in a synchronous or asynchronous manner, or 
it can act only as a control layer, with separate provenance and “heavy lifting” 
computational, data movement and storage layers. The current implementation is 
primarily a single instance environment that virtualizes quite well. For example, NC 
State University Virtual Computing Laboratory [64] offers Kepler to its users as one 
of its images, and allows users to spawn multiple instances of Kepler workflows for 
simultaneous use by one or more end-users. 

7 Run-Time Monitoring and Provenance 
 
The need to provide run-time monitoring of scientific processes and collect 
provenance information has been recognized for some time now [e.g., 9, 10, 14, 39, 
40 – 45, 57]. Provenance is the history of data, execution and conditions applied to a 
workflow run. Run-time monitoring may be part of the provenance meta-data, but it 
also may require collection of additional information and display of that information 
in a user-friendly format, for example on a “dashboard,” so that run-time tracking, 
problem determination, computational steering, and other workflow-related feedback 
may take place. Such information may also be used to provide fault-tolerance related 
information (including check-point and recovery data and information), recreate of 
results and rebuilding of workflows, associate workflows with results it produced, 
create links between generated data in different runs, compare different runs, 
checkpoint a workflow and recover, debug and explain results.  In general this 
information can attest to the lineage of the data (data provenance, such as 
intermediate and end results, file names and paths, data-base references, URLs, etc.), 
processes (process provenance, such as software version numbers, the actual 
workflow graphs or descriptions, events that occurred during a run, input data and 
parameters used, etc.), error and exception management (error and execution logs), 
and given the right tools, workflow design provenance. 

Kepler currently implements an internal actor-based provenance mechanism [e.g., 
2, 41, 54], and several optional portal-based and domain-oriented external process 
tracking and monitoring mechanisms and dashboards. Under consideration is 
incorporation of the VisTrails [55] provenance infrastructure into the Kepler 
framework. VisTrails has extensive support for process and data provenance [57, 
58], including visual querying capabilities and multi-user support, which aids 
collaborative work. 
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8 Security 
 

Authentication, authorization, access control and security are a major issue with 
almost any network-based solution available today. The issues take many shapes and 
forms. Practically all workflow support environments, including Kepler, face these 
problems. For example, actors need to manage data, programs, and computing 
resources in distributed and heterogeneous environments, and that has to happen 
under a variety of security conditions – from very stringent ones (possibly military 
grade) to relatively relaxed ones (e.g., academic institutions).  While some of the 
components may be operating under “grid” authentication rules (e.g., via certificates, 
such as using the GAMA framework [59]), some may use LDAP [60] based 
authentication, while others may be using yet another approach. How does one 
reconcile these mechanisms to allow trusted exchange of information among the 
workflow components?  

When accessing higher-security resources (e.g., in the National Laboratories) 
users are required to use encrypted connections (e.g., ssh-based, ssl-based, secure 
HTTP aided solutions, etc.) and often one-time passwords and other security devices. 
While secure connections are typically not an issue in workflow environments (e.g., 
Kepler has ssh and other appropriate actors), one time passwords can be an 
impediments since they may require use of special keys or security devices that 
prevent one-stop authentication paths, and in practice invariably require human 
intervention, thus slowing workflow related operations and communications that  
span authentication domains.  

While workflow related security, authentication, authorization and associated 
access control have been studied extensively over the last 10 or more years, the 
problem is still here. A more encompassing solution remains work in progress when 
it comes to scientific workflow environments. Usable environments support different 
authentication mechanisms but until identity management and security are treated in 
a more uniform way, they may represent a major obstacle to interoperability among 
different workflow frameworks and solutions. 

9 Fault-Tolerance 
 
Application of the workflow technology to a specific domain or project, requires 
information about the domain, project content, participants (both developers and 
end-users), schedules, resources, other relevant technology, and development of the 
corresponding operational profiles for the scientific workflow system. Operational 
profile is the set of relative frequencies which tells us how often a particular 
scenario, function or capability occurs in practice [34]. Specifically, one would first 
identify and categorize workflow system users, functionalities and resources and 
frequency of use of each. This would allow mapping amongst them. This finally 
yields an operational profile that needs to be supported during the workflow system 
use. The mappings and the operational profile allow us to recognize functional 
alternatives and introduce adaptive or fault-tolerant behavior into the model. 

There are two basic forms of run-time fault-tolerance: forward-recovery (which 
includes failure masking and redundancy based failover), and backward-recovery 
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(which includes check-pointing) e.g. [15, 16, 31]. Exception handling is a very 
traditional way of managing run-time problems [e.g., 16, 31]. It is also used in the 
workflow-oriented environments [e.g., 48, 49]. Exception handling can involve 
forward-recovery, backward-recovery, or graceful termination. More recently web-
services community has recognized the need for some form of standardized fault-
tolerance in the service provisioning through replication [56]. 

A run-time failure of a system is often the result of a series of events – sometimes 
that of a set of very complex and unexpected interactions. Typically, a failure is a 
result of  either a system fault − a design-time developer or researcher error that 
materializes at run-time, or it is a user error at execution time, or there is an issue 
with the underlying infrastructure (including invoked services). An initial design 
error can become a fault in the initial product. This fault can propagate (as a series of 
defects) to the final executable version of the workflow. When the workflow 
encounters that defect during execution, the workflow enters an error-state. If that 
error-state, or its result, becomes visible to the end-user, it becomes a failure that 
may have anywhere from no consequences to catastrophic consequences.  Similarly, 
a call to a workflow component that fails at run-time may again force the workflow 
into an error-state, and manifest as a failure. So, run-time workflow failures can be 
caused by one or more of the following non-comprehensive set of events: 

• Use errors caused by end user, for example entering incorrect data.  
• Error-state caused by network difficulties, such as congestion. 
• Error-state initiated by workflow component faults due to a programming 

issue. 
• Hardware faults and failures 
• Error-states caused by failures of services, such as the unavailability of a 

certain service (e.g., actual web service, or a remote computational or 
storage service) 

• Failures in any underlying software components (e.g., operating system 
kernel bugs, device misconfigurations, etc.) 

9.1 Illustration 

In illustrating fault-tolerant solutions in the context of network-based workflows we 
do not plan to discuss the cost of the services, and we make some assumptions: 

• Failures of redundant services are not correlated, or at least the probability 
of correlated failures is very low. This basically means that the failure of 
one service doesn’t affect another functionally equivalent (or perhaps 
replicated) service. For example, we assume that redundant services are 
hosted on separate perhaps geographically distributed servers, so that in the 
case one server fails, only one service will be affected. However, 
assumption also implies that failures are not caused by a basic algorithmic 
flaw that may be present in both services and may result in identical but 
wrong responses from all redundant services [16]. 

• In discussing system reliability, we will make the assumption that all 
workflow services have the same failure and recovery probability. This, of 
course may not be a realistic assumptions, but it provides a vehicle for the 
model discussion. An enormous amount of work has been already done by 
others in modeling and simulation of redundant components under a variety 
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of conditions, e.g., see [31, 33] and references therein, and the reader should 
consult that literature before deciding on a particular solution. 

 
The first assumption does not apply to the case when there are no redundant or 
replicated services, i.e., if we assume that different services used by the workflow are 
deployed in a serial fashion4. This is the worst-case scenario where failure of one 
service means the failure of the entire workflow since no alternative services are 
being provided. Of course, one could actually have different functions performed in 
parallel and at different locations, if the (data) flow model allows that (and this is 
sometimes done). But, in practical terms a failure of either of those services again 
fails the workflow. Therefore, serialization assumption can still be used. We also 
assume that services are atomic, i.e., we do not discuss the option of seamless fail-
over once a service has been engaged, we assume that that issue is handled through 
re-start of that part of the workflow. 

Today’s web services appear to have a varying and broad range of failure 
probabilities depending on their implementation and quality, how they are being 
hosted, who is hosting them, where they are being reached from, etc. One value for 
average failure probability found in the literature is 0.045, this translates into more 
than one failure a month. [17, 18, 19]. During peak-time operation, that failure 
probability may become as high as 0.2, or more than two failures to deliver a service 
on request as day, depending on the request type and duration. Of course, there are 
services that do much better and much worse than this range indicates. The level to 
which improvements need to be made may be domain specific. For example, 
educational workflows need to have availability of at least 0.95 [35]. We use these 
two numbers to provide an illustration of a possible range of service failure 
probabilities upon which one would have to improve, and to illustrate the power of a 
simple redundancy-based fault-tolerance strategy.  

Consider a scientific workflow that invokes serially 3 different network-based 
services before it is done. Let one of those services fail. Then, the workflow will not 
finish successfully unless mitigation is put in place. For example, at the point of 
failure we could recover back to the point where the workflow was check-pointed, 
and then we could re-run the remaining part. Alternatively, we could try to mask the 
failure of the component service. We focus on the latter. Given the assumptions 
above, the probability that the workflow fails is the probability that at least one of the 
services fails [16,31]. In other words: 

PF = 1 – ∏
=

−
n

i
ip

1

)1(                                                               (1) 

Where pF is the probability that the workflow will fail, pi is the probability that 
service i fails, and n is the number of serial services in the workflow. Using the 
example numbers and Eq. 1, on the “average” PF = 1 - (1-0.045)3 = 0.129, and in the 
“heavy load” case PF = 1 - (0.8)3 = 0.488. Obviously, reliability R (which is one 
minus failure probability) is not too good. Figure 10 shows a graph of the failure 
probability for this example. System failure probability grows considerably with the 

 
4 However, physical co-location of serial or replicated services runs another risk – that of the 

whole site power or other type of outage.  
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number of serial services (Equation 1). In the ”heavy load” situation, the failure 
probability is very close to one once the number of services in the workflow exceeds 
15. 
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Fig. 10. Failure probability of a serial system without fault-tolerance 

While the numbers in the graph may seem excessively pessimistic, it is clear that 
as the number of services in a complex workflow grows, service failures can have a 
dramatic effect on the whole system operation.  A well known solution is to use 
multiple backup servers (service replication) in parallel to counter physical 
infrastructure and networking failures, and/or to use alternative but functionally 
equivalent services if other types of failures may be suspected. Then, if one of the 
services fails, the workflow can automatically switch to an alternative one. 

Let’s assume that the probability that a service, or any of its alternative fails, is p. 
Then, the probability that such redundant service fails is that of a group of parallel 
components, i.e., all of them need to fail before an end-user visible failure occurs. 
For example, the reliability of a service with 3 alternatives is the probability that at 
least one of the alternatives is operational, i.e., R = (1-p) + p(1-p) + p2(1-p) = 1 – p3 
Generalizing: 

 
R = 1 – pm                                              (2) 

 
where m is the number of alternatives5. Applying (1) and (2) to the entire workflow, 
the failure probability of the workflow would be: 
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5 Note:  (1-p) + p(1-p) + p2(1-p) + … + pm-1(1-p) = 1 – p + p – p2 + p2 – p3 + … + pm-2 - pm-1 + 
pm-1 - pm =  (1 - pm)  
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where PF is the probability that the workflow fails, n is the number of service in 
the workflow, m is the number of replicas of each service in the workflow (in this 
example, we assume that the number of replicas is the same for all services), and pi is 
the probability that service i fails. 
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Fig. 11. Failure probability of a series – parallel model  (p = 0.045) 
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Fig. 12. Failure probability of a serial system with and without fault-tolerance. 

Consider again our example with three “serial” services. Let each service have 2 
backup services (m=3). Then the probability that at least one of the services fails 
(thus the workflow fails), and given our two illustration failures rates, PF = 1 – (1 – 
0.0453)3 = 0.00027 and PF = 1- (1- 0.23) 3 = 0.0238. Figure 11 illustrates different 
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failure probabilities based on this fault-tolerance model given the assumption that 
p=0.045 for all services. Different lines represent the number of alternatives 
available for each service. We notice that, even when there is only one alternative for 
each service (m=2), failure probability is significantly lower than that of a workflow 
without any fault-tolerance support. For example for a workflow with 25 services to 
invoke, the failure probability goes down from almost 0.7 to 0.05 for m=2, down to 
0.002 for m=3, and down to 0.0001 for m=4. Notice that in this case and with our 
assumptions, every time we add an alternative service, the failure probability can go 
down by a factor of 20 or more. 

In comparing the two models, we find the potential for considerable improvement 
using redundancy. Of course, the caveat is that the redundant services must not 
exhibit significantly correlated failures, either due to their (co-)location, or for 
algorithmic or other reasons. For example, with p=0.045, n=3 and m=3, workflow 
failure probability is reduced from 0.129 to less than 10-3. Figure 12 compares failure 
probability of a workflow with no fault-tolerant support, and a workflow with 
redundancy-based service-level fault-tolerance, where each service has only one 
backup service. Notice again that, even with only one backup service, the reliability 
increases dramatically. 

9.2 Implementations 

To achieve some measure of fault-tolerance, there should be at least one backup 
server running identical copies of the services or there should be another 
implementation of the services. Also, the workflow should be able to switch to that 
server/service in the case the primary server/service fails.  The most obvious method 
to implement that is to simply encode the extra service location (e.g., URL, IP 
number, or DNS name) within the code of the actors, i.e. hard code the location of 
the alternatives. This way, by using a simple control structure, the actor then tries to 
invoke the backup services when the primary service fails to respond.  We should 
note that the mechanism of this method is transparent to the user. The only impact 
that it might have on the performance is a small delay, because the flow may have to 
wait to confirm timeout of  the primary service before it tries the alternative, and the 
timeout may take a few seconds. The advantage of using hard-coded alternatives is 
that this provides very simple basic fault-tolerance. It makes the workflow more 
resilient with respect to simple failures of known services. But there are also several 
disadvantages. The most significant one is that when the location of the services 
changes, or when we want to add more backup services, then we need to change the 
code and recompile the actors and redistribute them. This complicates matters. One 
options it to provide an interface for the end user to input the location of the primary 
and alternative services. That also is not very efficient because it requires that the 
end user know the location of different servers. Thus, the need for a more versatile 
solution emerges. The next two solutions address that issue. 

Instead of simply hard coding the location of different services, one could use a 
less intrusive and more dynamic approach. This approach stores all relevant 
information about the services in a file (the choice nowadays is an XML file). That 
XML file is then kept on a separate server to be accessed by the actors at run-time. 
An actor parses file, and stores the results in an internal data structure. An alternative 
is to provide the alternate service locations as actor parameters – this is what some 
Kepler actors do today. When the time comes to invoke a service, system retrieves 
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the relevant information and invokes the service at the primary location. When this 
succeeds, system continues executing the rest of the workflow. If the invocation 
fails, system can try an alternative service from the list.  This approach presents a 
more versatile solution than the previous one since it does not require that the 
location of services be hard coded. Thus it allows adding and modifying the location 
of the services without modifying the source code. The user would still need to know 
the location of the XML file, and which alternative service is to be invoked. Both can 
be passed as actor parameters.  

A third approach is to use UDDI [20] based registry of services. Using this 
method, the end user needs only to supply the name of the service the user is trying 
to invoke, and the actor then searches the repository to find matching services. Note 
that there is an underlying assumption that a proper set of compatible keywords (and 
ontologies) exists for all registered services. That service is then invoked.  If this is 
successful, the actor continues its execution.  If invocation fails, another search can 
occur to find yet another alternative service. The advantage of using this method 
over the previous ones is that the repository can regularly check whether a service is 
still online by using the heartbeat approach. This feature isn’t supported in the 
previous method, i.e. in the case one of the services isn’t available, the XML file or 
parameter entry has to be manually corrected, or it would keep on returning the 
location of the unavailable service. Another advantage is the flexibility in adding or 
modifying existing services. In order to add an additional service, all that needs to be 
done is to add the service to the repository through an easy-to-use web interface. 
Thus no configuration files or parameters need to be modified. 

Figure 13 shows a screenshot of the parameters required for a fault tolerant web 
service actor. Only a keyword, method name, username and password (if username 
and password are used) are required. The actor automatically extracts the namespace 
and location URL from the retrieved services lists. 

 
Fig. 13. A fail-over Kepler web-service actor. 

It is possible that one of the services returned in the search isn’t what we’re 
looking for. This can be avoided by providing a more complex search phrase, for 
example in the case of the Genbank service illustration in Figure 13, the user could 
enter “SDM SPA Genbank” instead of just “Genbank”. Another approach is to have 
a sample input and output, then invoke the service with that sample input and 
compare the outputs, to make sure that the service in question is indeed what we’re 
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looking for. This approach involves more computation and a comparison step, and 
thus might cause a slight delay. But it can also be looked at as a way to provide 
validation, since in the case the outputs didn’t match; we can consider that the 
service in question is either an incorrect one, or is not behaving properly. 

9.3 Further Improvements 

A natural alternative worth emphasizing in this context is to simply just re-try one or 
more times services that appear to have failed. Sometimes services do not respond 
due to oversubscription or network glitches, and re-trying solves the problem. Re-
trying a service is a general (and very common) approach that can be used in 
conjunction with all methods discussed above. An example of that (at the workflow 
execution level) is the fault-tolerant shell [32]. However, all discussed solutions have 
some inherent limitations. The most important one is that they do not deal with the 
case when the web service is operational but is not behaving properly, for example 
not returning correct results, or where the workflow is in the middle of a 
conversation with the service when the service fails and the state of the service 
matters. Solutions discussed above can only handle problems caused by initial 
unavailability of the services.  

A more complex, perhaps voting based scheme may be needed to deal with 
comparison of results, with semantic differences among alternatives, and with state-
recovery. Further improvements need to include validation of the results before 
proceeding with the rest of the workflow. That can be done, for example, by 
submitting an appropriately selected sample request and comparing the result with a 
saved result before submitting the rest of the results. That approach may require 
sophisticated comparison algorithms since services interfaces may be quire complex, 
but this may be able to mitigate a correctness failure. Yet, another approach could 
involve invoking several identical services and comparing their results, then 
choosing the consensus response. Both methods present a possible solution to the 
validation issue, but might result in additional processing time, thus delaying 
workflow execution. They are also not comprehensive.  In this context an issue that 
will need further work is handling of correlated failures. This requires a much more 
complex model. Interested readers may wish to consult [31, 33], and references 
therein, for more information on different fault-tolerance and reliability models. 
Software rejuvenation [27, 28] may be another solution that can be used to provide 
increased availability and failure-avoidance, but its discussion is beyond the scope of 
this paper. 

10 Summary 
 
As scientific discovery and problem solving becomes more complex and more 
dependent on high-end information technology, comprehensive end-to-end data and 
process management solutions are needed to reduce the IT burden on the scientist. A 
group of technologies, called scientific workflow support frameworks, that do that is 
maturing and we expect to see an increased use of these solutions. One such 
technology is the Ptolemy II based environment called Kepler. This paper has 
discussed some of the issues associated with practical automation of scientific 
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processes and workflows and has illustrated this with workflows developed using the 
Kepler framework and tools. The topics covered include general workflow 
development concepts, the impact of information technology overhead and 
complexity in this context, the structure of Kepler, and issues related to provenance 
and fault-tolerance. Open issues for high-end scientific workflow technologies 
include autonomic behavior (auto-recovery and fault-tolerance), authentication and 
security management, data and provenance management, run-time data and process 
monitoring and steering (e.g., via “dashboards”), semantic level verification and 
validation of workflows during construction and at run-time, and development of 
appropriate end-user visual and other interfaces (e.g., workflow construction 
“wizards” and persistent portals).  

We expect that scientific workflow support technologies will play a critical role 
in the world of peta- and exa-scale computing supported research and discovery, and 
in the next 10 years will become a standard feature of the cyberinfrastructure. A key 
issue that will need to be resolved in this context will be interoperability. While 
many workflow related standardization efforts are under way, it is currently not 
trivial to exchange more complex information and service, not to mention workflows 
themselves, among for example Kepler, Taverna [61] and Windows Workflow 
Foundation [4] environments.  In the future, there will be many scientific workflow 
support environments in operation – some open source, some not.  But, unless there 
is a relatively widely accepted way of exchanging information and services among 
the workflows constructed in different environments, different scientific 
communities may be have difficulties collaborating. To avoid “stove-piping” and 
impediments to progress that that brings, it is very important that open interfaces be 
defined now and that the existing and new workflow environments be architected 
and implemented in the spirit of SOA [50]. 
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