

Automation of Network-Based
Scientific Workflows

M. A. Vouk1, I. Altintas2, R. Barreto3, J. Blondin4, Z.Cheng1, T. Critchlow5,
A. Khan6, S. Klasky3, J. Ligon1, B. Ludaescher7, P. A. Mouallem1, S.

Parker6, N. Podhorszki7, A. Shoshani8, C. Silva6

1Department of Computer Science, North Carolina State University, Box
8206, Raleigh, NC 27695, USA, {vouk, zcheng, jtligon,

pmouall}@ncsu.edu
2San Diego Supercomputing Center, University of California, La Jolla, CA

92093, USA, altintas@sdsc.edu
3Oak Ridge National Laboratory, PO BOX 2008, MS6008, Oak Ridge, TN

37831, USA, {barreto, klasky }@ornl.gov
4Department of Physics, North Carolina State University, Box 8202,

Raleigh, NC 27695, USA, John_Blondin@ncsu.edu
5Center for Applied Scientific Computing, Lawrence Livermore National

Laboratory, Livermore, CA 94550, USA, critchlow1@llnl.gov
6Department of Computer Science, University of Utah, Salt Lake City, UT

84112, USA, {ayla, sparker,csilva }@cs.utah.edu
7Department of Computer Science, University of California Davis, Davis,

CA 95616, USA {ludaesch, pnorbert}@ucdavis.edu
8Computing Research Division, Lawrence Berkeley National Laboratory,

Berkeley, CA 94720, USA, shoshani@lbl.gov

Abstract. Comprehensive, end-to-end, data and workflow management
solutions are needed to handle the increasing complexity of processes and data
volumes associated with modern distributed scientific problem solving, such
as ultra-scale simulations and high-throughput experiments. The key to the
solution is an integrated network-based framework that is functional,
dependable, fault-tolerant, and supports data and process provenance. Such a
framework needs to make development and use of application workflows
dramatically easier so that scientists’ efforts can shift away from data
management and utility software development to scientific research and
discovery. An integrated view of these activities is provided by the notion of
scientific workflows - a series of structured activities and computations that
arise in scientific problem-solving. An information technology framework that
supports scientific workflows is the Ptolemy II based environment called
Kepler. This paper discusses the issues associated with practical automation of
scientific processes and workflows and illustrates this with workflows
developed using the Kepler framework and tools.

2 Vouk et al.

1 Introduction

Scientific research is exploratory in nature. Scientists carry out experiments, often in
a trial and error manner, and they modify the steps of the tasks performed as
exploration proceeds. As technology advances, more and more scientists are relying
on computing systems to aide them in this process. In fact, some of the heaviest users
of computing are in the sciences, and often it is no longer possible for scientists to
carry out their day-to-day activities without heavy use of computing. This holds in
the fields and problem areas as diverse as computational medicine, biology,
chemistry, genetics, environment, fusion and combustion.

Fig. 1. Illustration of an astrophysics simulation workflow. Computations are done at a remote
supercomputer, and the resulting data sets are transferred to NC State University via a high-
speed internet link. This is followed by local “slicing and dicing” of the data, and their
analysis and visualization.

We use the term scientific workflow to describe a series of structured activities
and computations (we call them workflow components or actors1) that arise in
scientific research and problem-solving process [11]. A scientist may divide the
overall task into smaller sub-tasks, each of which can be considered to be an
individual step in an experiment or a simulation. At each step, the results can be

1 The term “actor” is the one used in the Kepler [2] workflow support system based on

Ptolemy II framework [12] to describe process components interconnected by data flows
and orchestrated by a “director” or a workflow control process. In general, a process
oriented network can be described using generalized activity networks [13]. Activity
oriented networks have nodes interconnected by data flows and their graph-based
depictions are sometimes called actigrams, while data-oriented networks have data nodes
interconnected by data transforming activity links and their graph-based depictions are
sometimes called datagrams (not to be confused with internet protocol datagrams).

Input
Data

Highly
Parallel
Computing

Output
~500x500 files

Aggregate to
~500 files
(~ 10+GB each)

HPSS
archive

Data Depot

Network Local Mass
(Storage 20+TB)

Aggregate
to one file
(~1+ TB)

h)

Viz.
Wall

Viz Client

Local 44 Proc.
Data Cluster

Visualization S/W

Scientific Workflows 3

generated, managed, analyzed, stored, or otherwise processed, and then used as an
input to the next step in the process. Such reuse of data can be done repeatedly until
the overall task is completed to scientist’s satisfaction. We use the term “workflow”
to describe the chaining of smaller tasks to achieve the desired results using data
from different source in combination with different transformation, analysis and
visualization services, [1, 11]. Today, many – often all – of the steps involve support
from or interaction with information technology. Scientific workflow includes
actions performed (by actors), decisions made (control-flow), information transferred
(data-flow), exception and interrupt handling (e.g., event-flows) and the underlying
coordination and scheduling required to execute a workflow (orchestration). In its
simplest case, a workflow is a linear sequence of tasks, each one implemented by an
actor.

An example of a workflow is: a) transfer of executable simulation application
code and computational and storage configuration information to a cluster or a high-
performance computer, b) running of this application, and c) transferring of the
results to a remote machines for further analysis and visualization. Figure 1
illustrates such a workflow.

Comprehensive end-to-end data and workflow management solutions are needed
to handle the increasing complexity of processes and data volumes associated with
modern distributed scientific problem solving, such as ultra-scale simulations and
high-throughput experiments. The key to the solution is an integrated network-based
framework that is functional, dependable, fault-tolerant, and supports data and
process provenance. Such a framework needs to make application workflows
dramatically easier to develop and use [36] so that scientists’ efforts can shift away
from data management and application development to scientific research and
discovery. A Ptolemy II based environment called Kepler [2] is one such framework.

This paper discusses the issues associated with practical automation of scientific
processes and workflows and illustrates this through workflows developed using the
Kepler framework and tools.

2 Workflows

Workflow technologies have a long history in the databases and information systems
communities [1]. Scientific community has developed a number of problem-solving
environments, most of them as integrated solutions [24 and references there in].
However, more recently component-based solution support systems have become
more popular [e.g., 14, 25, 26, 29, 30]. Scientific workflows merge advances in all
these areas to automate support for sophisticated scientific information technology
assisted exploration and problem-solving [e.g., 2 – 11, 46, 55, 61].

4 Vouk et al.

Fig. 2. From a “napkin drawing” to an executable Kepler-based workflow.

Scientific workflows, as we understand them, are crucial to the success of major
initiatives in high-performance computing. As parallel computing expands, their
standards encourage scientists to construct complex distributed solutions that span
the networks, and through web-based interfaces and virtualization invite
incorporation into still more complex systems that may include interactions with
economic and business flows. Workflows provide the necessary abstractions that
enable effective usage of computational resources, and development of robust
problem-solving environments that marshal high-performance computing resources.

Workflows have many synergies with web and network-based services. In fact,
(web) service based workflows are quickly becoming a requirement of a wide range
of new service-oriented applications. Many domain experts, particularly in life
sciences, do not wish to construct workflows by coding them beyond what is
necessary to do research in their domain, e.g., to develop appropriate algorithms.
They would like to considerably reduce the overhead currently required by some
information technology solutions. That overhead can be as much a 50% of the
activity. Therefore, workflow automation and higher-level specification fits naturally
into the trends towards increased domain specialization as application developers
move to become (web) services providers, and computer scientists seek reusable
libraries and tools, rather than custom made applications.

Of course, workflows such as the one shown in Figure 1 have much more depth
and structure than shown in the Figure 1 diagram. Often they can be naturally
mapped onto graph representations, e.g., [13, 30]. Typically, a scientist would like to
go from a conceptual “napkin drawing” of a workflow to an executable version of it
with as little overhead from the information technology tools and solutions as

The Big Picture: Supporting the Scientist

A Terascale Supernova Initiative
(SciDAC, DOE) workflow

Conceptual Workflow
Kepler

Executable
Workflow

 From “Napkin Drawings” …

 … to Executable Workflows

Scientific Workflows 5

possible (Figure 2). Sometimes the best way to manage complexity of such structures
is to nest the graphs (e.g., Figure 3). A graph can then be translated into executable
form either manually or automatically. However, the process can be a reverse one –
the code and some process scripts for an, in part, manually assisted workflow already
exists, and the workflow technology is used to integrate these elements. In either
case, it is beneficial to keep a high level graph representation of a workflow so that
end-users can better understand and modify application logic.

Fig. 3. Nesting can help manage complexity of workflows.

Scientific workflows can exhibit and exploit data-, task-, and pipeline-
parallelism. In science and engineering workflow processes, tasks and computations
are often large-scale, complex, and structured with intricate dependencies [7, 13, 14].
Information technology assisted scientific workflows have several common
characteristics:

• Composition. Scientific workflows require invocation, interconnection and

integration of multiple data collection, simulation, application or analysis
elements, i.e., methods, approaches, tools and processes. While these
elements are often invoked in a routine manner, there may also be changes
in the workflow as scientists interactively explore new options. Developing
an executable workflow requires resolving mismatches between what an
element expects and what the previous step in the process generated.

• Diversity. Scientific workflows require significant heterogeneous,
computational, storage and networking resources. Many large-scale

An Astrophysics Workflow (using Kepler framework)

6 Vouk et al.

scientific workflows will execute for hours, often days, perhaps weeks and
months, and may require user intervention at multiple times. If the
workflow, or one of the associated computations or activities runs into
trouble, fault-tolerant behavior, e.g., via human intervention or perhaps
automated failover or recovery techniques must be attempted because
returning to the initial starting point is usually not acceptable.

• Verification and validation of processes as well as intermediate and final
results is essential in the domain of scientific problem solving. This ensures
integrity of the data, processes and results, that the activity as a whole
remains on track, and that resources are not wasted. Often real-time or near-
real-time status tracking and preservation of state capabilities are required.
One of the most difficult (and currently not yet fully solved) issues is
semantic validity of workflows. Semantic mismatches between workflow
components, tools and data must be handled in order to maintain confidence
in the results. For example, some of the tools may be designed for
performing simulations under different circumstances or assumptions, and
this must be accommodated to prevent spurious results.

• Evolution. Because of their evolutionary and exploratory nature, frequent
changes are often an integral part of a scientific workflow lifecycle.
Therefore, is critical to record provenance information (e.g., the lineage of
data and processes) in a way that is consistent, persistent, and easily
retrievable and auditable. Related to this is the ability to steer the
workflows and the associated computational tasks through use of run-time
dashboards, analytics and process feedback loops.

3 Overhead

In the 21st century, a key differentiating characteristic of a successful information
technology (IT) is its ability to become true and valuable contributor to
cyberinfrastructure. Cyberinfrastructure [36] makes IT systems, applications and
services dramatically easier to develop, deploy and use. This expands the scope of
applications and services possible within budget and organizational constraints. It
also increases efficiency, quality, and reliability by capturing commonalities and by
facilitating efficient sharing of resources and services. Ultimately,
cyberinfrastructure shifts the effort away from IT (overhead) concentrating it on the
basic end-user mission and business.

Appropriate cyberinfrastructure is especially important for any business that in
large part relies on IT to conduct its daily operations. Today, this is true of many
financial, educational, research, government and retail organizations. From the
perspective of an end-user IT must be enabling and appliance-like. End-users should
be able to use the technology to improve their productivity and reduce technology-
driven overhead, e.g., software installation or management. For example, unless IT is
the primary business of an organization or an individual, less than 20% of its effort
not directly connected to its primary business should have to do with IT issues, even
though 80% of its business may be conducted using electronic means. In general,
infrastructure installation and maintenance overhead must have the property of the
economy-of-scale at all levels – hardware, software, provisioning, maintenance, etc.

Scientific Workflows 7

A powerful cyberinfrastructure enabling concept is utility-computing through
service-oriented architectures (SOA) [e.g., 50]. An SOA is an environment where
end-users can request an IT service at the desired functional, quality and capacity
level, and receive it either at the time requested or at a specified later time. A key
enabler of SOA is component-based construction of services. Another key
supporting technology is virtualization of IT resources and services. It is expected
that in the next 10 years, service-based solutions will be a major vehicle for delivery
of information and other IT assisted functions at both individual and organizational
levels, e.g., software applications, web-based services, even personal and business
“desktop” computing.

Fig. 4. A typical scientist is primarily interested in preparation of inputs and codes (green
areas) related to his/her specific research domain and in doing “science,” i.e., discovery. There
is much less interest in tending computers, moving data or developing peripheral IT
applications (orange areas).

Scientific computing is no different in this respect. Today a scientist involved
with a large-scale scientific workflow, e.g., of the peta-scale class of problems, may
spend a lot of time dealing with IT related activities they need, but often wish they
did not have to do [37]. For example, a typical class of heavy-duty scientific
simulation workflows may have abstraction steps shown in Figure 4. A typical
scientist’s primary interest is in preparation of inputs and codes related to her or his
specific research domain and in doing domain specific scientific discovery. Unless
IT is the research or development passion of the scientist, there is much less interest
in tending computers, moving data or developing peripheral IT applications and
support tools (e.g., visualization frameworks). Yet, as much as 50%, sometimes even
more, of a scientist’s time may be taken up by IT tasks that can be, but are not,
automated and/or easy to use. Obviously, there is a need to improve on this. In fact,
this has prompted a number of entities (including the US Department of Energy) to

Science
preps & input

Computer set-
up, scheduling

etc.

Output
related
tasks

Network
related
tasks

Storage
tasks

Post-processing
and tools

Analytics
apps and tools

Personnel
Costs

Shift scientist’s efforts away from unnecessary data
and resource management, workflow orchestration,
and application development to scientific research
and discovery.

Science

8 Vouk et al.

sponsor research and development projects2 aimed at making scientists more
productive.

4 Component-based Construction

Component-based construction of solutions, of course, is not a new concept. It has
been one of the “holy grails” of software engineering since its earliest days. Results
have been mixed so far. However, the advent of reliable and readily available
networked resources, and especially of service-oriented architecting, makes truly
component-based construction of large scale distributed software-based solutions
viable reality.

Fig. 5. Workflow abstraction.

Consider the Figure 4 abstraction in a somewhat different light (Figure 5). The
flow starts with preparation of the domain-specific codes and inputs. In
computationally very intense workflows, these preparatory activities may happen in
environments that are different from the one where the code will actually execute.
This is followed by moving of the data and codes to host (or grid) that will execute
the simulation (e.g., a high-end supercomputer). Once the execution is scheduled (a
request may wait in a queue for resources), the scientist may wish to monitor its run-
time progress, handle run-time diagnostics, perhaps steer the computations, and
certainly collect outputs and results. Outputs of large-scale computations may not
remain where they are generated, but may move to a post-run data manipulation and

2 For example, SciDAC (http://www.scidac.gov/)

Data
Meta Data

Provenance Data, etc.

Scientific Workflow Automation (Abstract Operations)

Needed: A comprehensive, on-demand, end-to-end,
data and workflow management. An integrated
network-based framework that is functional,
dependable, fault-tolerant, and supports data and
process provenance.

Data/Science/Code

Model

Archive/Backup

Slice & Dice

Analyze (e.g. Visualize)

Merge

Move, etc.
Workflow
Construct
Orchestrate
Monitor/Steer
Provenance
Change, etc.

Prep Exec O/P Move
Post-Run
Analysis

Arch

Run-Time

Monitoring &

Diagnostics

Move

Scientific Workflows 9

analysis environment for slicing, dicing, analytics, visualization, and so on A lot of
information, perhaps all, is archived in a permanent way. Furthermore, all through
the process there is generation of meta-data (data about data and processes) that is
either used directly (perhaps in “dashboards”) or is part of the data and process
lineage (provenance) information [57].

Implementation of workflow abstractions requires availability of a relevant set of
IT-based operations in the form of either software applications or perhaps as
commands built into operating systems used. In this context, it is very important to
distinguish between a custom-made workflow solution (or a problem-solving
environment), and a more canonical set of operations, methods, and solutions that
can be composed into a scientific workflow. Former have been around for a long
time [e.g., 24 and references therein], latter are emerging. For instance, sort, uniq,
grep, ftp, ssh and so on, are typical unix operating system commands that scientists
can rely on to be available for workflow construction. It is less certain that a complex
tool like SAS (which can also sort data, but also does many other things) is available
on all platforms of interest, or that some non-standard data moving utility application
such as bbcp is readily available on all platforms of interest. Some, operations such
as “slice and dice” or “visualize” data are usually available only in the form of
specialized software packages or applications.

On the other hand, expectations are rising. Scientific community now expects
utility-like (appliance-like) on-demand access to needed IT resources where use of
IT-based solutions is not bound to a fixed location (such as a specific lab) and fixed
resources (e.g., a particular operating system), but has moved to a (mobile) personal
access device of a scientist (e.g., laptop or a PDA or a cell phone) and service-based
delivery. Scientists would like to move away from the situation where they have to
spend more time on IT development, support and workflow management (art) to a
situation where IT support is a commodity and they can focus primarily on their
basic scientific mission (Figure 6). They are looking for environment where
application workflows are dramatically easier to develop and use. Yet, today a
practical bottleneck is often still in the IT domain, i.e., in the scientific workflow

environment of the end-
user scientists.

The key to the
solution, is an integrated
scientific process support
framework that is
dependable, supports
networked or distributed
workflows, supports a
range of couplings among
its building blocks,
provides fault-tolerant
and data- and process-

aware service-based delivery, and provides the capability to audit processes, data and
results. Key characteristic of such a framework and its elements are [25, 26]:
reusability (e.g., elements can be re-used in other workflows), substitutability
(alternative implementations are easy to insert, very precisely specified interfaces are
available, run-time component replacement mechanisms exist, there is ability to
verify and validate substitutions, etc), extensibility (ability to readily extend system

Fig. 6. From art to commodity.

10 Vouk et al.

component pool, increase capabilities of individual components, have an extensible
architecture that can automatically discover new functionalities and resources, etc),
and composability (easy construction of more complex functional solutions using
basic components, reasoning about such compositions, etc.).

Components are assembled according to the rules specified by a component
model. Their coupling can range from tight to loose, from synchronous and
blocking to asynchronous. Components are assembled using their interfaces.
Component composition assembles components to form a larger component, an
application, or a workflow. All parts must conform to the component model or they
do not fit together. A component technology is a concrete implementation of a
component model.

Interoperability among components, or workflows built from components, is a
major practical issue. Unless component technologies allow for interoperation
among different technologies and component models (perhaps through standardized
inter-workflow interfaces), there is a danger that workflows from different groups
and communities (who invariably use different component technologies) will create
“stove-pipes” that will hamper disciplinary and multidisciplinary project, data
exchange and scientific discovery. Steps in that direction are standardization efforts
related to workflow description languages, web-services and similar [e.g., 51, 52,
53].

5 Complexity and Usability

A major issue of concern with new technologies, and general purpose scientific
workflow support environments are no exception in this context, is complexity and
usability. End-to-end workflows involve three types of interactions human-to-
human, human-to-machine and vice versa, and machine-to-machine. Human-to-
human communications have a relatively slow information exchange rate and are
tolerant of both semantic and syntactic errors. Machine-to-machine communications
are at the other end of the spectrum. They can take place at very high rates but must
use very exact and unambiguous protocols.

Human-to-machine interactions are the most critical from the complexity and
usability point of view. Humans need to construct the workflow at some point, and
humans are the recipients of the information that emerges from those workflows. As
already mentioned, scientific community expects utility-like (appliance-like) on-
demand access to needed IT resources and workflow technology and tools must meet
cost, complexity, skill level to implement, usability, maintainability, reliability,
availability, and other expectations of its users. If it fails to do so, i.e., the overhead
brought on by the technology does not exceed the potential value added by its use,
technology is typically not be used.

This is illustrated in Figure 7. Some technologies never make the break-even point,
some “arrive” at or past the break-even point. A good example of a technology that
was widely accepted, because it made access to networked information much more
acceptable for a general user, is the Web. Scientific workflow technologies are now
approaching the break-even point through reduction in the complexity of workflow
construction, increased operational reliability, and provision of a suite of support
functionalities and packages scientists expect. One such environment is Kepler.

Scientific Workflows 11

Fig. 7. The relationship between the value added by use of a technology and the overhead
inflicted by complexity, reliability, usability and cost of the technology.

6 Kepler

Kepler [2] is an open source component-based scientific workflow support system
based on the Ptolemy II framework [12]. Kepler is being developed through a large
cross-project collaboration3. Basic components of the Kepler framework include: the
Ptolemy II core, Kepler core extensions, Kepler object and repository manager,
extensions for smart re-run and failure recovery, provenance support modules, a
graphical user interface (GUI) layer based on the Ptolemy II Vergil GUI, an
authentication layer, a library of generic, application and domain specific actors, and
a repository for provenance information. While Kepler can operate without the GUI,
it is a useful workflow construction and execution monitoring tool.

Figure 8 illustrates a GUI-level view of a simple workflow. In this case the
director is called “PN Director” where PN stands for Process Networks, and as it
name implies it implements the process network model. Actor icons can be dragged
and dropped from the actor repository (shown on the left in the Figure 8) and
connected together with dataflow arcs. Inputs can be parameterized (and their values
automatically displayed on the desktop) or can come from files, or be hidden within
icons. For example, one would change or input parameters by double clicking on an

3 SEEK: Science Environment for Ecological Knowledge, SDM Center/SPA: SDM
Center/Scientific Process Automation, Ptolemy II: Heterogeneous Modeling and
Design, GEON: Cyberinfrastructure for the Geosciences, ROADNet: Real-time
Observatories, Applications, and Data Management Network, EOL: Encyclopedia of
Life, Resurgence, CIPRes: CyberInfrastructure for Phylogenetic Research, and
others.

Cost inflicted by
complexity/unreliability/usability
overhead

Value added by use

Potential wide-scale use

12 Vouk et al.

icon. Once workflow execution has started it can be paused, resumed or stopped, and
the flow of information through the workflow can be monitored in real-time.
Documentation is an integral part of the system.

Ptolemy II was originally developed to support modeling, simulation, and design
of concurrent, real-time, embedded systems. Kepler project has extended this
framework to provide access to and use of synchronous and asynchronous loosely
and tightly coupled and networked resources and functionalities that are typically
used in scientific workflows. From the end-user perspective, there are two principal
groups of elements. One set are the computational models - represented by
“directors”, and the other set are the data-flow connected processing nodes called
“actors”.

Fig. 8. Kepler GUI.

A director is an engine that controls the behavior and execution of the workflow
components. In doing that, it implements different computational models, and thus it
defines the semantics of the execution and of the interactions among the actors.
While there are a number of open source and closed source scientific workflow
support environments [e.g., 2, 3, 4, 42, 43, 55], a very unique and distinguishing
feature of the Kepler framework is that (through Ptolemy II) it enables a very rich
mixture of models of computation. Examples of realized computational domains
range from continuous-time modeling, to dynamic data flow, to discrete-event
modeling, to finite state machines, to process networks, to synchronous dataflow
modeling, to discrete time and distributed discrete events, and so on.

Actors encapsulate parameterized actions and have interfaces define by ports and
parameters. Ports are used to communicate input and output data and streams, but

Scientific Workflows 13

without call-return semantics. Communication semantics among ports is handled by
the directors – one per workflow level – which provide flow control. Workflows can
be nested (e.g., Figure 2), and different computational models can be used at
different hierarchical levels so long the communication channels and actions that
may cross level boundaries are compatible.

Fig. 9. Part of the XML-based description of the workflow shown in Figure 8.

Actors are typically collected in libraries, many of which are domain and data
polymorphic. A number of supporting packages and actors are provided either as
part of Ptolemy or as part of Kepler additions. This includes graph-theoretic
manipulations, matrix and vector math, signal processing, data typing, handling of
generic web services, customizable relational data-based management, command
line wrappers for ssh, scp, ftp and similar, a level of Grid support (e.g., GridFTP,
certificate generator), native R and Matlab support, SRB – the SDSC storage
resource broker, communication with object resource brokers, image processing,
visualization, textual and graphical outputs, etc. A number of functionalities are
being added or improved, including large-scale robust data movers, more extensive
provenance support, semantic-intensive actors, management for data-intensive and
compute-intensive workflows, authentication and authorization, distributed
execution, execution monitoring, fault tolerance, and scientific data management
application-driven extensions such as access to or integration with parallel NetCDF,
PVFS, MPI-IO, parallel-R, FastBit, and CCA.

14 Vouk et al.

Kepler workflows are recorded and can be exchanged as XML-based Modeling
Markup Language (MoML) files [38]. Figure 9 shows part of the MoML description
of the workflow shown in Figure 8. Kepler has many other desirable features. For
example, if running in a distributed environment, it operates as a relatively loosely
coupled system, while operating on a single platform it can operate as a very tightly
coupled system. In addition, Kepler allows, using additional middleware that
manipulates MoML files, dynamic construction of workflows. Kepler environment is
very external-application friendly. It can invoke and communicate with existing
tightly coupled external problem solving, analysis or visualization environments
(e.g., R, SciRUN [62], Ensight [63]), as well as Grid-based resources..

Kepler is also very flexible in how far it extends into a workflow. It can contain
the whole workflow and orchestrate it in a synchronous or asynchronous manner, or
it can act only as a control layer, with separate provenance and “heavy lifting”
computational, data movement and storage layers. The current implementation is
primarily a single instance environment that virtualizes quite well. For example, NC
State University Virtual Computing Laboratory [64] offers Kepler to its users as one
of its images, and allows users to spawn multiple instances of Kepler workflows for
simultaneous use by one or more end-users.

7 Run-Time Monitoring and Provenance

The need to provide run-time monitoring of scientific processes and collect
provenance information has been recognized for some time now [e.g., 9, 10, 14, 39,
40 – 45, 57]. Provenance is the history of data, execution and conditions applied to a
workflow run. Run-time monitoring may be part of the provenance meta-data, but it
also may require collection of additional information and display of that information
in a user-friendly format, for example on a “dashboard,” so that run-time tracking,
problem determination, computational steering, and other workflow-related feedback
may take place. Such information may also be used to provide fault-tolerance related
information (including check-point and recovery data and information), recreate of
results and rebuilding of workflows, associate workflows with results it produced,
create links between generated data in different runs, compare different runs,
checkpoint a workflow and recover, debug and explain results. In general this
information can attest to the lineage of the data (data provenance, such as
intermediate and end results, file names and paths, data-base references, URLs, etc.),
processes (process provenance, such as software version numbers, the actual
workflow graphs or descriptions, events that occurred during a run, input data and
parameters used, etc.), error and exception management (error and execution logs),
and given the right tools, workflow design provenance.

Kepler currently implements an internal actor-based provenance mechanism [e.g.,
2, 41, 54], and several optional portal-based and domain-oriented external process
tracking and monitoring mechanisms and dashboards. Under consideration is
incorporation of the VisTrails [55] provenance infrastructure into the Kepler
framework. VisTrails has extensive support for process and data provenance [57,
58], including visual querying capabilities and multi-user support, which aids
collaborative work.

Scientific Workflows 15

8 Security

Authentication, authorization, access control and security are a major issue with
almost any network-based solution available today. The issues take many shapes and
forms. Practically all workflow support environments, including Kepler, face these
problems. For example, actors need to manage data, programs, and computing
resources in distributed and heterogeneous environments, and that has to happen
under a variety of security conditions – from very stringent ones (possibly military
grade) to relatively relaxed ones (e.g., academic institutions). While some of the
components may be operating under “grid” authentication rules (e.g., via certificates,
such as using the GAMA framework [59]), some may use LDAP [60] based
authentication, while others may be using yet another approach. How does one
reconcile these mechanisms to allow trusted exchange of information among the
workflow components?

When accessing higher-security resources (e.g., in the National Laboratories)
users are required to use encrypted connections (e.g., ssh-based, ssl-based, secure
HTTP aided solutions, etc.) and often one-time passwords and other security devices.
While secure connections are typically not an issue in workflow environments (e.g.,
Kepler has ssh and other appropriate actors), one time passwords can be an
impediments since they may require use of special keys or security devices that
prevent one-stop authentication paths, and in practice invariably require human
intervention, thus slowing workflow related operations and communications that
span authentication domains.

While workflow related security, authentication, authorization and associated
access control have been studied extensively over the last 10 or more years, the
problem is still here. A more encompassing solution remains work in progress when
it comes to scientific workflow environments. Usable environments support different
authentication mechanisms but until identity management and security are treated in
a more uniform way, they may represent a major obstacle to interoperability among
different workflow frameworks and solutions.

9 Fault-Tolerance

Application of the workflow technology to a specific domain or project, requires
information about the domain, project content, participants (both developers and
end-users), schedules, resources, other relevant technology, and development of the
corresponding operational profiles for the scientific workflow system. Operational
profile is the set of relative frequencies which tells us how often a particular
scenario, function or capability occurs in practice [34]. Specifically, one would first
identify and categorize workflow system users, functionalities and resources and
frequency of use of each. This would allow mapping amongst them. This finally
yields an operational profile that needs to be supported during the workflow system
use. The mappings and the operational profile allow us to recognize functional
alternatives and introduce adaptive or fault-tolerant behavior into the model.

There are two basic forms of run-time fault-tolerance: forward-recovery (which
includes failure masking and redundancy based failover), and backward-recovery

16 Vouk et al.

(which includes check-pointing) e.g. [15, 16, 31]. Exception handling is a very
traditional way of managing run-time problems [e.g., 16, 31]. It is also used in the
workflow-oriented environments [e.g., 48, 49]. Exception handling can involve
forward-recovery, backward-recovery, or graceful termination. More recently web-
services community has recognized the need for some form of standardized fault-
tolerance in the service provisioning through replication [56].

A run-time failure of a system is often the result of a series of events – sometimes
that of a set of very complex and unexpected interactions. Typically, a failure is a
result of either a system fault − a design-time developer or researcher error that
materializes at run-time, or it is a user error at execution time, or there is an issue
with the underlying infrastructure (including invoked services). An initial design
error can become a fault in the initial product. This fault can propagate (as a series of
defects) to the final executable version of the workflow. When the workflow
encounters that defect during execution, the workflow enters an error-state. If that
error-state, or its result, becomes visible to the end-user, it becomes a failure that
may have anywhere from no consequences to catastrophic consequences. Similarly,
a call to a workflow component that fails at run-time may again force the workflow
into an error-state, and manifest as a failure. So, run-time workflow failures can be
caused by one or more of the following non-comprehensive set of events:

• Use errors caused by end user, for example entering incorrect data.
• Error-state caused by network difficulties, such as congestion.
• Error-state initiated by workflow component faults due to a programming

issue.
• Hardware faults and failures
• Error-states caused by failures of services, such as the unavailability of a

certain service (e.g., actual web service, or a remote computational or
storage service)

• Failures in any underlying software components (e.g., operating system
kernel bugs, device misconfigurations, etc.)

9.1 Illustration

In illustrating fault-tolerant solutions in the context of network-based workflows we
do not plan to discuss the cost of the services, and we make some assumptions:

• Failures of redundant services are not correlated, or at least the probability
of correlated failures is very low. This basically means that the failure of
one service doesn’t affect another functionally equivalent (or perhaps
replicated) service. For example, we assume that redundant services are
hosted on separate perhaps geographically distributed servers, so that in the
case one server fails, only one service will be affected. However,
assumption also implies that failures are not caused by a basic algorithmic
flaw that may be present in both services and may result in identical but
wrong responses from all redundant services [16].

• In discussing system reliability, we will make the assumption that all
workflow services have the same failure and recovery probability. This, of
course may not be a realistic assumptions, but it provides a vehicle for the
model discussion. An enormous amount of work has been already done by
others in modeling and simulation of redundant components under a variety

Scientific Workflows 17

of conditions, e.g., see [31, 33] and references therein, and the reader should
consult that literature before deciding on a particular solution.

The first assumption does not apply to the case when there are no redundant or
replicated services, i.e., if we assume that different services used by the workflow are
deployed in a serial fashion4. This is the worst-case scenario where failure of one
service means the failure of the entire workflow since no alternative services are
being provided. Of course, one could actually have different functions performed in
parallel and at different locations, if the (data) flow model allows that (and this is
sometimes done). But, in practical terms a failure of either of those services again
fails the workflow. Therefore, serialization assumption can still be used. We also
assume that services are atomic, i.e., we do not discuss the option of seamless fail-
over once a service has been engaged, we assume that that issue is handled through
re-start of that part of the workflow.

Today’s web services appear to have a varying and broad range of failure
probabilities depending on their implementation and quality, how they are being
hosted, who is hosting them, where they are being reached from, etc. One value for
average failure probability found in the literature is 0.045, this translates into more
than one failure a month. [17, 18, 19]. During peak-time operation, that failure
probability may become as high as 0.2, or more than two failures to deliver a service
on request as day, depending on the request type and duration. Of course, there are
services that do much better and much worse than this range indicates. The level to
which improvements need to be made may be domain specific. For example,
educational workflows need to have availability of at least 0.95 [35]. We use these
two numbers to provide an illustration of a possible range of service failure
probabilities upon which one would have to improve, and to illustrate the power of a
simple redundancy-based fault-tolerance strategy.

Consider a scientific workflow that invokes serially 3 different network-based
services before it is done. Let one of those services fail. Then, the workflow will not
finish successfully unless mitigation is put in place. For example, at the point of
failure we could recover back to the point where the workflow was check-pointed,
and then we could re-run the remaining part. Alternatively, we could try to mask the
failure of the component service. We focus on the latter. Given the assumptions
above, the probability that the workflow fails is the probability that at least one of the
services fails [16,31]. In other words:

PF = 1 – ∏
=

−
n

i
ip

1

)1((1)

Where pF is the probability that the workflow will fail, pi is the probability that
service i fails, and n is the number of serial services in the workflow. Using the
example numbers and Eq. 1, on the “average” PF = 1 - (1-0.045)3 = 0.129, and in the
“heavy load” case PF = 1 - (0.8)3 = 0.488. Obviously, reliability R (which is one
minus failure probability) is not too good. Figure 10 shows a graph of the failure
probability for this example. System failure probability grows considerably with the

4 However, physical co-location of serial or replicated services runs another risk – that of the

whole site power or other type of outage.

18 Vouk et al.

number of serial services (Equation 1). In the ”heavy load” situation, the failure
probability is very close to one once the number of services in the workflow exceeds
15.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 5 10 15 20 25

Number of Services in Series

Fa
ilu

re
 P

ro
ba

bi
lit

y
p =0.2

p =0.045

Serial Workflow

Fig. 10. Failure probability of a serial system without fault-tolerance

While the numbers in the graph may seem excessively pessimistic, it is clear that
as the number of services in a complex workflow grows, service failures can have a
dramatic effect on the whole system operation. A well known solution is to use
multiple backup servers (service replication) in parallel to counter physical
infrastructure and networking failures, and/or to use alternative but functionally
equivalent services if other types of failures may be suspected. Then, if one of the
services fails, the workflow can automatically switch to an alternative one.

Let’s assume that the probability that a service, or any of its alternative fails, is p.
Then, the probability that such redundant service fails is that of a group of parallel
components, i.e., all of them need to fail before an end-user visible failure occurs.
For example, the reliability of a service with 3 alternatives is the probability that at
least one of the alternatives is operational, i.e., R = (1-p) + p(1-p) + p2(1-p) = 1 – p3
Generalizing:

R = 1 – pm (2)

where m is the number of alternatives5. Applying (1) and (2) to the entire workflow,
the failure probability of the workflow would be:

PF = 1 – (∏∑
=

−

=

−
n

i

m

j
i

j
i pp

1

1

0
)1() = 1 –)1(

1
∏
=

−
n

i

m
ip (3)

5 Note: (1-p) + p(1-p) + p2(1-p) + … + pm-1(1-p) = 1 – p + p – p2 + p2 – p3 + … + pm-2 - pm-1 +
pm-1 - pm = (1 - pm)

Scientific Workflows 19

where PF is the probability that the workflow fails, n is the number of service in
the workflow, m is the number of replicas of each service in the workflow (in this
example, we assume that the number of replicas is the same for all services), and pi is
the probability that service i fails.

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25

Number of Services in Series

Fa
ilu

re
 P

ro
ba

bi
lit

y

m=2

m=3

m=4

m is the number of alternatives for each
service in the workflow

Fig. 11. Failure probability of a series – parallel model (p = 0.045)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0 5 10 15 20 25

Number of Serial Services

Fa
ilu

re
 P

ro
ba

bi
lit

y

Without Fault-Tolerance Support, m=1

With Fault-Tolerance Support, m=2

Fig. 12. Failure probability of a serial system with and without fault-tolerance.

Consider again our example with three “serial” services. Let each service have 2
backup services (m=3). Then the probability that at least one of the services fails
(thus the workflow fails), and given our two illustration failures rates, PF = 1 – (1 –
0.0453)3 = 0.00027 and PF = 1- (1- 0.23) 3 = 0.0238. Figure 11 illustrates different

20 Vouk et al.

failure probabilities based on this fault-tolerance model given the assumption that
p=0.045 for all services. Different lines represent the number of alternatives
available for each service. We notice that, even when there is only one alternative for
each service (m=2), failure probability is significantly lower than that of a workflow
without any fault-tolerance support. For example for a workflow with 25 services to
invoke, the failure probability goes down from almost 0.7 to 0.05 for m=2, down to
0.002 for m=3, and down to 0.0001 for m=4. Notice that in this case and with our
assumptions, every time we add an alternative service, the failure probability can go
down by a factor of 20 or more.

In comparing the two models, we find the potential for considerable improvement
using redundancy. Of course, the caveat is that the redundant services must not
exhibit significantly correlated failures, either due to their (co-)location, or for
algorithmic or other reasons. For example, with p=0.045, n=3 and m=3, workflow
failure probability is reduced from 0.129 to less than 10-3. Figure 12 compares failure
probability of a workflow with no fault-tolerant support, and a workflow with
redundancy-based service-level fault-tolerance, where each service has only one
backup service. Notice again that, even with only one backup service, the reliability
increases dramatically.

9.2 Implementations

To achieve some measure of fault-tolerance, there should be at least one backup
server running identical copies of the services or there should be another
implementation of the services. Also, the workflow should be able to switch to that
server/service in the case the primary server/service fails. The most obvious method
to implement that is to simply encode the extra service location (e.g., URL, IP
number, or DNS name) within the code of the actors, i.e. hard code the location of
the alternatives. This way, by using a simple control structure, the actor then tries to
invoke the backup services when the primary service fails to respond. We should
note that the mechanism of this method is transparent to the user. The only impact
that it might have on the performance is a small delay, because the flow may have to
wait to confirm timeout of the primary service before it tries the alternative, and the
timeout may take a few seconds. The advantage of using hard-coded alternatives is
that this provides very simple basic fault-tolerance. It makes the workflow more
resilient with respect to simple failures of known services. But there are also several
disadvantages. The most significant one is that when the location of the services
changes, or when we want to add more backup services, then we need to change the
code and recompile the actors and redistribute them. This complicates matters. One
options it to provide an interface for the end user to input the location of the primary
and alternative services. That also is not very efficient because it requires that the
end user know the location of different servers. Thus, the need for a more versatile
solution emerges. The next two solutions address that issue.

Instead of simply hard coding the location of different services, one could use a
less intrusive and more dynamic approach. This approach stores all relevant
information about the services in a file (the choice nowadays is an XML file). That
XML file is then kept on a separate server to be accessed by the actors at run-time.
An actor parses file, and stores the results in an internal data structure. An alternative
is to provide the alternate service locations as actor parameters – this is what some
Kepler actors do today. When the time comes to invoke a service, system retrieves

Scientific Workflows 21

the relevant information and invokes the service at the primary location. When this
succeeds, system continues executing the rest of the workflow. If the invocation
fails, system can try an alternative service from the list. This approach presents a
more versatile solution than the previous one since it does not require that the
location of services be hard coded. Thus it allows adding and modifying the location
of the services without modifying the source code. The user would still need to know
the location of the XML file, and which alternative service is to be invoked. Both can
be passed as actor parameters.

A third approach is to use UDDI [20] based registry of services. Using this
method, the end user needs only to supply the name of the service the user is trying
to invoke, and the actor then searches the repository to find matching services. Note
that there is an underlying assumption that a proper set of compatible keywords (and
ontologies) exists for all registered services. That service is then invoked. If this is
successful, the actor continues its execution. If invocation fails, another search can
occur to find yet another alternative service. The advantage of using this method
over the previous ones is that the repository can regularly check whether a service is
still online by using the heartbeat approach. This feature isn’t supported in the
previous method, i.e. in the case one of the services isn’t available, the XML file or
parameter entry has to be manually corrected, or it would keep on returning the
location of the unavailable service. Another advantage is the flexibility in adding or
modifying existing services. In order to add an additional service, all that needs to be
done is to add the service to the repository through an easy-to-use web interface.
Thus no configuration files or parameters need to be modified.

Figure 13 shows a screenshot of the parameters required for a fault tolerant web
service actor. Only a keyword, method name, username and password (if username
and password are used) are required. The actor automatically extracts the namespace
and location URL from the retrieved services lists.

Fig. 13. A fail-over Kepler web-service actor.

It is possible that one of the services returned in the search isn’t what we’re
looking for. This can be avoided by providing a more complex search phrase, for
example in the case of the Genbank service illustration in Figure 13, the user could
enter “SDM SPA Genbank” instead of just “Genbank”. Another approach is to have
a sample input and output, then invoke the service with that sample input and
compare the outputs, to make sure that the service in question is indeed what we’re

22 Vouk et al.

looking for. This approach involves more computation and a comparison step, and
thus might cause a slight delay. But it can also be looked at as a way to provide
validation, since in the case the outputs didn’t match; we can consider that the
service in question is either an incorrect one, or is not behaving properly.

9.3 Further Improvements

A natural alternative worth emphasizing in this context is to simply just re-try one or
more times services that appear to have failed. Sometimes services do not respond
due to oversubscription or network glitches, and re-trying solves the problem. Re-
trying a service is a general (and very common) approach that can be used in
conjunction with all methods discussed above. An example of that (at the workflow
execution level) is the fault-tolerant shell [32]. However, all discussed solutions have
some inherent limitations. The most important one is that they do not deal with the
case when the web service is operational but is not behaving properly, for example
not returning correct results, or where the workflow is in the middle of a
conversation with the service when the service fails and the state of the service
matters. Solutions discussed above can only handle problems caused by initial
unavailability of the services.

A more complex, perhaps voting based scheme may be needed to deal with
comparison of results, with semantic differences among alternatives, and with state-
recovery. Further improvements need to include validation of the results before
proceeding with the rest of the workflow. That can be done, for example, by
submitting an appropriately selected sample request and comparing the result with a
saved result before submitting the rest of the results. That approach may require
sophisticated comparison algorithms since services interfaces may be quire complex,
but this may be able to mitigate a correctness failure. Yet, another approach could
involve invoking several identical services and comparing their results, then
choosing the consensus response. Both methods present a possible solution to the
validation issue, but might result in additional processing time, thus delaying
workflow execution. They are also not comprehensive. In this context an issue that
will need further work is handling of correlated failures. This requires a much more
complex model. Interested readers may wish to consult [31, 33], and references
therein, for more information on different fault-tolerance and reliability models.
Software rejuvenation [27, 28] may be another solution that can be used to provide
increased availability and failure-avoidance, but its discussion is beyond the scope of
this paper.

10 Summary

As scientific discovery and problem solving becomes more complex and more
dependent on high-end information technology, comprehensive end-to-end data and
process management solutions are needed to reduce the IT burden on the scientist. A
group of technologies, called scientific workflow support frameworks, that do that is
maturing and we expect to see an increased use of these solutions. One such
technology is the Ptolemy II based environment called Kepler. This paper has
discussed some of the issues associated with practical automation of scientific

Scientific Workflows 23

processes and workflows and has illustrated this with workflows developed using the
Kepler framework and tools. The topics covered include general workflow
development concepts, the impact of information technology overhead and
complexity in this context, the structure of Kepler, and issues related to provenance
and fault-tolerance. Open issues for high-end scientific workflow technologies
include autonomic behavior (auto-recovery and fault-tolerance), authentication and
security management, data and provenance management, run-time data and process
monitoring and steering (e.g., via “dashboards”), semantic level verification and
validation of workflows during construction and at run-time, and development of
appropriate end-user visual and other interfaces (e.g., workflow construction
“wizards” and persistent portals).

We expect that scientific workflow support technologies will play a critical role
in the world of peta- and exa-scale computing supported research and discovery, and
in the next 10 years will become a standard feature of the cyberinfrastructure. A key
issue that will need to be resolved in this context will be interoperability. While
many workflow related standardization efforts are under way, it is currently not
trivial to exchange more complex information and service, not to mention workflows
themselves, among for example Kepler, Taverna [61] and Windows Workflow
Foundation [4] environments. In the future, there will be many scientific workflow
support environments in operation – some open source, some not. But, unless there
is a relatively widely accepted way of exchanging information and services among
the workflows constructed in different environments, different scientific
communities may be have difficulties collaborating. To avoid “stove-piping” and
impediments to progress that that brings, it is very important that open interfaces be
defined now and that the existing and new workflow environments be architected
and implemented in the spirit of SOA [50].

11 Acknowledgments

We would like thank our colleagues working on the U.S. Department of Energy
(DOE) Scientific Data Management Center project for their support and interest.
This work has been supported in part by the DOE SciDAC grants DE-FC02-
01ER25484 and DE-FC02-07ER25809, IBM Shared University Program, and
StrikeIron Inc. The Kepler and Vistrails projects are also funded by grants from the
National Science Foundation.

12 References

1. D. Georgakopoulos, M. Hornick, and A. Sheth, "An Overview of Workflow
Management: From Process Modeling to Workflow Automation Infrastructure,"
Distributed and Parallel Databases, Vol. 3(2), April 1995.

2. “Kepler Project” Website, 2006. http://kepler-project.org
3. TRIANA Project, October 2006, http://www.trianacode.org/
4. Windows Workflow Foundation (http://msdn2.microsoft.com/en-

us/netframework/aa663328.aspx)
http://www.microsoft.com/windowsserversystem/virtualserver/default.mspx

24 Vouk et al.

5. B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A.
Lee, J. Tao, and Y. Zhao. Scientific Workflow Management and the Kepler
System. Concurrency and Computation: Practice & Experience, 18(10):1039-
1065, 2006.

6. B. Ludäscher and C. A. Goble. “Guest Editors: Introduction to the Special
Section on Scientific Workflows.” SIGMOD Record, 34(3), 2005.

7. R. Mount et al., Department of Energy, Office of Science report, “Data
Management Challenge”. Nov 2004, http://www.er.doe.gov/ascr/Final-report-
v26.pdf

8. Altintas, S. Bhagwanani, D. Buttler, S. Chandra, Z. Cheng, M. Coleman, T.
Critchlow, A. Gupta, W. Han, L. Liu, B. Ludäscher, C. Pu, R. Moore, A.
Shoshani, and M. Vouk, “A Modeling and Execution Environment for
Distributed Scientific Workflows”, demonstration track, 15th Intl. Conference
on Scientific and Statistical Database Management (SSDBM), Boston,
Massachussets, 2003.

9. R.I. Balay, Vouk M.A., Perros H., “Performance of Network-Based Problem-
Solving Environments,” Chapter 18, in Enabling Technologies for
Computational Science Frameworks, Middleware and Environments, editors
Elias N. Houstis, John R. Rice, Efstratios Gallopoulos, Randall Bramley,
Hardbound, ISBN 0-7923-7809-1, 2000

10. M.A Vouk., and M.P. Singh, "Quality of Service and Scientific Workflows," in
The Quality of Numerical Software: Assessment and Enhancements, editor: R.
Boisvert, Chapman & Hall, pp.77-89 , 1997.

11. M.P. Singh, Vouk M.A., “Scientific workflows: scientific computing meets
transactional workflows,” Proceedings of the NSF Workshop on Workflow and
Process Automation in Information Systems: State-of-the-Art and Future
Directions, Univ. Georgia, Athens, GA, USA; 1996, pp.SUPL 28-34.

12. “The Ptolemy II Project” website, 2005.
http://ptolemy.eecs.berkeley.edu/ptolemyII/

13. S.E. Elmaghraby, "On generalized activity networks," J. Ind. Eng., Vol. 17, 621-
631, 1966.

14. R.L. Dennis, D.W. Byun, J.H. Novak, K.J. Galluppi, C.C. Coats, and M.A.
Vouk, "The Next Generation of Integrated Air Quality Modeling: EPA's
Models-3," Atmospheric Environment, Vol 30 (12), pp 1925-1938, 1996.

15. J.C. Laprie, and C. Beounes, “Definition and Analysis of Hardware- and
Software-Fault-Tolerant Architectures”, IEEE Computer Society Press, Volume
23, Issue 7, Pages: 39 – 51, July 1990.

16. D.F. McAllister, and M.A. Vouk, "Software Fault-Tolerance Engineering,"
Chapter 14 in Handbook of Software Reliability Engineering, McGraw Hill, pp.
567-614, January 1996.

17. ACME Laboratories, “Web Servers Comparison”,,
http://www.acme.com/software/thttpd/benchmarks.html, 1998.

18. Iyengar, A.; MacNair, E.; Nguyen, T. , “An analysis of Web server
performance”. Global Telecommunications Conference, 1997. GLOBECOM
'97., IEEE Volume 3, 3-8 Nov. 1997 Page(s):1943 - 1947 vol.3

19. Lloyd Ian, “Government website failure – Is it so shocking?” March 06,
http://www.webstandards.org/2006/03/31/government-web-site-failure-is-it-so-
shocking-2/

20. “OASIS UDDI “, OASIS Open website 2005 http://www.uddi.org

Scientific Workflows 25

21. “StrikeIron Web Services Business Directory”, StrikeIron Inc. 2005.
http://www.strikeiron.com

22. “Apache Web Services Project: jUDDI” website. 2005
http://ws.apache.org/juddi/

23. “Soap UDDI Project” website, 2005. http://soapuddi.sourceforge.net/
24. Elias N. Houstis, John R. Rice, Efstratios Gallopoulos, Randall Bramley,

“Enabling Technologies for Computational Science Frameworks, Middleware
and Environments”, Hardbound, ISBN 0-7923-7809-1, 2000

25. Crnkovic and M. Larsson (editors), Building Reliable Component-Based
Software Systems, Artech House Publishers, ISBN 1-58053-327-2, 2002,
http://www.idt.mdh.se/cbse-book/

26. Common Component Architecture Forum, http://www.cca-forum.org/, accessed
February 2006

27. Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software Rejuvenation:
Analysis, Module and Applications”, in Proc. of 25th Symposium on Fault
Tolerant Computing, FTCS-25, pages 381–390, Pasadena, California, June
1995.

28. K. Vaidyanathan; Trivedi, K.S. “A comprehensive model for software
rejuvenation”. IEEE Transactions on Dependable and Secure Computing,
Volume 2, Issue 2, April-June 2005 Page(s):124 - 137

29. S.E. Elmaghraby, Baxter E.I., and Vouk M.A., "An Approach to the Modeling
and Analysis of Software Production Processes," Intl. Trans. Operational Res.,
Vol. 2(1), pp. 117-135, 1995.

30. G. Chin. Jr., Leung, L.R., Schuchardt, K.L., and Gracio, D.K. (2002). New
Paradigms in Collaborative Problem Solving Environments for Scientific
Computing. In Proceeding of the 2002 International Conference of Intelligent
User Interfaces (IUI 2002), (Jan. 13-16, San Francisco, CA). ACM Press, New
York.

31. M.A Vouk, "Software Reliability Engineering of Numerical Systems," Chapter
13, in Accuracy and Reliability in Scientific Computing, Editor: Bo Einarsson,
ISBN 0-89871-584-9, SIAM, 2005, pp. 205-231 [PDF - Draft]

32. Cooperative Computing Lab at the University of Notre Dame
(http://www.cse.nd.edu/~ccl/software/ftsh/)

33. M.R. Lyu (ed.), Software Fault Tolerance, Trends-in-Software Book Series,
Wiley, 1994

34. J.D. Musa, ªOperational Profiles in Software-Reliability Engineering, IEEE
Software, vol. 10, no. 2, pp. 14-32, Mar. 1993.

35. M. Vouk, R.L. Klevans, and D.L. Bitzer, "Workflow and End-User Quality of
Service Issues in Web-Based Education," IEEE Trans. On Knowledge
Engineering, to Vol 11(4), July/August 1999, pp. 673-687.

36. Report of the National Science Foundation Blue-Ribbon Advisory Panel on
Cyberinfrastructure, January 2003, http://www.nsf.gov/od/oci/reports/atkins.pdf

37. Department of Energy, Office of Science, “Data Management Report”. May
2004, http://ultralight.caltech.edu/gaeweb/portal/misc/2005/05DMW/Final-
report.pdf

38. Edward A. Lee and Steve Neuendorffer. MoML — A Modeling Markup
Language in XML — Version 0.4. Technical report, University of California at
Berkeley, March, 2000.

26 Vouk et al.

39. International Provenance and Annotation Workshop (IPAW’06), Chicago,
Illinois, May 3-5, 2006, http://www.ipaw.info/ipaw06/

40. Simmhan, Y. L., Plale, B., Gannon, D., A survey of data provenance in e-
science. In SIGMOD Rec. 34(3): 31-36, 2005

41. Altinats, I., Barney O., Jaeger-Frank, E. ”Provenance Collection Support in
Kepler Scientific Workflow System,” Proc. of the IPAW’06,
www.ipaw.info/ipaw06/proceedings/CameraReady_s5_2.pdf

42. Foster, I., Voeckler, J., Wilde, M., Zhao, Y., “Chimera, A Virtual Data System
for Representing, Querying, and Automating Data Derivation,” In Proceedings
of the 14th Conference on Scientific and Statistical Database Management, 2002

43. Greenwood, M., Goble, C., Stevens, R., Zhao, J., Addis, M., Marvin, D.,
Moreau, L., Oinn, T., “Provenance of e-Science Experiments - experience from
Bioinformatics,” In Proceedings of The UK OST e-Science second All Hands
Meeting 2003 (AHM'03)

44. Groth, P., Luck, M., Moreau, L. “A protocol for recording provenance in
service-oriented grids,” In Proceedings of the 8th International Conference on
Principles of Distributed Systems (OPODIS'04), 2004

45. Bavoil, L., Callahan, S., Crossno, P., Freire, J., Scheidegger, C., Silva, C., and
Vo, H., “Vistrails: Enabling interactive multipleview visualizations.” In IEEE
Visualization 2005, pages 135–142, 2005

46. Some examples of open source scientific workflow solutions: BioPipe, BizTalk,
BPWS4J, DAGMan, GridAnt, Grid Job Handler, GRMS (GridLab Resource
Management System), GWFE (Gridbus Workflow Engine), GWES (Grid
Workflow Execution Service), IT Innovation Enactment Engine, JIGSA, Kepler,
Karajan, OSWorkflow, Pegasus (uses DAGMan), ScyFLOW, SDSC Matrix,
SHOP2, Taverna, Triana, wftk, YAWL Engine, WebAndFlo, WFEE, etc. see
http://www.gridworkflow.org/snips/gridworkflow/space/Workflow+Engines,
http://www.extreme.indiana.edu/swf-survey/

47. Win Bausch, Cesare Pautasso, Reto Schaeppi, Gustavo Alonso, “BioOpera:
Cluster-Aware Computing,” CLUSTER 2002, pp. 99-106

48. Claus Hagen, Gustavo Alonso, “Flexible Exception Handling in the OPERA
Process Support System,” ICDCS 1998, pp. 526-533

49. Fabio Casati, Stefano Ceri, Stefano Paraboschi, and Giuseppe Pozzi,
“Specification and Implementation of Exceptions in Workflow Management
Systems,” ACM Transactions on Database Systems 24(3), Sept. 1999

50. Service Oriented Architecture (SOA), Wikipedia, 2006
(http://en.wikipedia.org/wiki/Service-oriented_architecture), also http://www-
306.ibm.com/software/solutions/soa/, and references therein.

51. OASIS, http://www.oasis-open.org/ (e.g., BPEL)
52. OWL, http://www.w3.org/TR/owl-features/
53. Web Services standards at http://www.w3.org/TR (e.g., WSDL and similar).
54. KEPLER provenance framework at http://kepler-

project.org/Wiki.jsp?page=KeplerProvenanceFramework
55. VisTrails (http://www.vistrails.org)
56. J. Salas, F. Perez, M. Patia-Martinez, R. Jiminez-Peris, “WS-Replication: A

Framework for Highly Available Web Services,” WWW Conf., Edinburgh,
Scotland, May 2006.

Scientific Workflows 27

57. J. Freire, C. Silva, S. Callahan, E. Santos, C. Scheidegger and H. T. Vo,
“Managing Rapidly-Evolving Scientific Workflows,” International Provenance
and Annotation Workshop (IPAW), LNCS 4145, pages 10-18, 2006. Springer.

58. C. Scheidegger, D. Koop, E. Santos, H. Vo, S. Callahan, J. Freire, and C.Silva.
“Tackling the Provenance Challenge One Layer at a Time,” submitted to
Concurrency And Computation: Practice And Experience. (Special issue on the
first Provenance Challenge.)

59. Grid Account Management Architecture (http://grid-
devel.sdsc.edu/gridsphere/gridsphere?cid=gama), SDSC, 2005, and Mueller,
GEON, 2006
(http://www.geongrid.org/presentations/webcasts/Mueller_GAMA_GEON_May
06.ppt)

60. LDAP, SEEK
(http://seek.ecoinformatics.org/Wiki.jsp?page=CertificateAuthorityDesign)

61. Taverna Project Website (http://taverna.sourceforge.net/)
62. SciRUN (http://software.sci.utah.edu/scirun.html/)
63. Ensight (http://www.ensight.com/home/index.php)
64. Virtual Computing Laboratory (VCL) - http://vcl.ncsu.edu

