
Defects, Scientific Computation
and the Scientific Method

Les Hatton

Computing and Information Systems, Kingston University
London, United Kingdom
lesh@oakcomp.co.uk

Abstract. Computation has rapidly grown in the last 50 years so that
in many scientific areas it is the dominant partner in the practice of
science. Unfortunately, unlike the experimental sciences, it does not ad-
here well to the principles of the scientific method as espoused by for
example, the philosopher Karl Popper. Such principles are built around
the notions of deniability and reproducibility. Although much research
effort has been spent on measuring the density of software defects, much
less has been spent on the more difficult problem of measuring their ef-
fect on the output of a program. This paper explores these issues with
numerous examples suggesting how this situation might be improved to
match the demands of modern science. Finally it develops a theoretical
model based on Shannon information which suggests that software sys-
tems have strong implementation independent behaviour and presents
supporting evidence.

Keywords: Scientific method, reproducibility, unquantifiable computa-
tion

1 Introduction

The thesis of this paper is that many scientific computations are tainted by the
presence of unquantifiable software defects. To understand how this has come to
pass, it is important to realise two things:-

– Computer science is historically not a particularly critical discipline. In ex-
perimental terms, it appears to be considerably less mature than the natural
sciences as for example was demonstrated by [35], [36] when assessing the
degree to which experiment played a part in typical computer science pub-
lications.

– The majority of the empirical research carried out into software defects has
concerned itself with quantifying the density of such defects rather than the
much more difficult problem of quantifying the effects those defects have on
the output of scientific computations. For a thorough review, see [3]. The
end product of this research suggests that typical residual defect densities in
released software seem to be between 1 and 10 per thousand lines of code.

126 Les Hatton

Some very good systems may be as good as 0.1 per thousand lines of code,
[18], although it is not always clear if like is being compared with like, (for
example, there are numerous ways of measuring lines of code - source with
or without comment, or executable lines - and it is rarely clear which one is
in use).

1.1 A small diversion on lines of code

I mentioned above that the use of the phrase “line of code” is problematic. It
occurs in a number of guises. The simplest way of counting them is to use the
number of newlines giving a value known as SLOC (Source Line of Code). This
is normally shown in text editors and can be counted very simply indeed.

The presence of comments and language pre-processors complicates this lead-
ing to alternative measures such as PPSLOC, (Pre-Processed Source Line of
Code) and XLOC, (Executable Lines of Code), neither of which are readily
available when code is compiled and require either special tools or hand-coded
tools to measure. As a result, most lines of code measured are SLOC. It is possi-
ble to understand the relationships between them by correlating them for a given
population of code. As a simple example, Fig. 1 illustrates SLOC v. XLOC and
also bytes for a typical C application. Repeating on larger populations reveals
similar relationships allowing us to move between SLOC, PPSLOC, XLOC and
bytes with relative ease normalising defect densities as appropriate.

However, as I will show later in a token-based development using Hartley-
Shannon Information Theory as eloquently described in [4], lines of code is too
crude a measure.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

X
L
O

C

SLOC

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

B
Y

T
E

S

SLOC

Fig. 1. The left hand diagram is a plot of SLOC count against XLOC count for a
typical C application of around 140,000 SLOC in total. The right hand diagram shows
the SLOC count against the object code size in bytes generated by compilation with
the GNU C compiler. For this application, 1 XLOC = 0.8 SLOC very accurately and
1 SLOC = 25 +/- 3 bytes.

Scientific Computation and the Scientific Method 127

1.2 Software testing and deniability

Finally, it is also worth stating the central tenets of Popperian deniability here
cast into a software context.

– Truth cannot be verified by software testing, it can only be falsified.
– Falsification requires quantification of computational modelling error.
– Deniability is at the heart of progress in scientific modelling. We are always

seeking to deny the truth of a result and a continued failure to deny such
truth simply adds weight to a result but not verification.

It will become clear that scientific source code plays a key part in this process.

2 Quantification of defect

I have distinguished above between the relative success of quantifying defect
density, and the much more difficult problem of quantifying their effects. I will
now expand on this.

2.1 Defect density and Static Program properties

Even though calculating defect density has been more successful, teasing out any
relationships with statically measurable software properties such as the numerous
software metrics which have been described in the literature, [8], [33], [24] has
been rather less successful.

Complexity For a long time, a considerable amount of hope has been pinned
on using statically measured structural properties of a program to predict the
occurrence of defect after release, with probably the earliest and most well known
being cyclomatic complexity, [22]. Whilst it has value because of its relationship
with the number of test cases, [8], there remain difficulties and its originally
suggested relationship as a predictor of defect seems illusory at best as can
be seen in a study carried out by [13] on the NAG Fortran library. Figure 2
illustrates the lack of predictive power for these two metrics.

Programming Language Programming language definitions historically re-
flect the continuing tension between performance and verifiability. Simultane-
ously, they embody elements of fashion in the form of a need to present the
latest features and paradigms to the end-user, even when those features are per-
haps not well understood in terms of their capability for injecting defects. A
perfect example is the inclusion of object-orientated features into virtually all
programming languages in the last twenty years.

The effect of these, coupled with long-term difficulties in removing features of
dubious benefit from internationally-standardised languages because of the need
to preserve backwards compatibility, has resulted in programming languages

128 Les Hatton

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

#
 d

e
fe

c
ts

Cyclomatic complexity

NAG Fortran Mark 19

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200

#
 d

e
fe

c
ts

goto statements

NAG Fortran Mark 19

Fig. 2. The left hand diagram is a plot of historical defect against cyclomatic complex-
ity for approximately 20 years history of the NAG Fortran library leading up to Mark
19 shown here. The right hand plot shows the same defects plotted against occurrences
of the eponymous goto statement. Neither plot presents any significant statistical cor-
relation of any dependability.

which have grown dramatically in size. Furthermore, they are often punctuated
with significant numbers of features which have no defined behaviour and for
which there is no requirement for compiler writers to diagnose. Examples in-
clude the 191 undefined features of ISO/IEC 9899:1999 (C99), (one of the few
languages which actually bothers to list them as an appendix). In addition to
these, languages contain features which often lead to erroneous behaviour as
exemplified in C by [20] for example.

Although to my knowledge, there has been no published modern attempt to
quantify the occurrence of these in released code, [9] demonstrated occurrence
rates of around 8 per KSLOC in a study of several MSLOC several years ago,
with a number of these packages still in use, whilst [29] demonstrated that these
failed with some frequency by measuring an air-traffic control system over several
years.

On top of these static fault modes, there are enduring problems with im-
plementations of floating point arithmetic, [17], [16]. These are of fundamental
importance to scientists as floating point arithmetic is at the very heart of sci-
entific computation due to the enormous scale over which physical phenomena
manifest themselves.

2.2 Quantification of the effect of defect

Whilst we have been fairly successful at understanding the density of such fault
modes, (if not preventing them), little progress has been made in quantifying
their effect on the computational results themselves, because the problem ap-
pears difficult. Several factors contribute to this.

Delayed defect discovery A surprisingly large number of defects take an ex-
traordinarily long time to appear for the first time. In a definitive study,

Scientific Computation and the Scientific Method 129

Adams [1] demonstrated in an analysis of faults and failures in a number
of IBM products, that around a third of all faults took longer than 5,000
executable years to fail for the first time. This immediately compromises the
possible effectiveness of dynamic testing. Based on the kinds of product he
analysed, Adams states:

“It may well be that as software engineering techniques improve,
the population of DEs (Design Errors) will balance at a lower level;
but absent development methods that generate truly error-free code,
the same sort of error rate distribution may well persist in future
large products”

This was written almost thirty years ago and we are certainly still “absent
methods that generate truly error-free code”.

Unknown answers In many if not most areas of scientific computation, we
don’t know what the answer is except perhaps in the broadest terms. This
is particularly a problem in remote sensing where corroborating physical
experiments on the target phenomena cannot actually be carried out at
all because they are simply inaccessible, either temporally (for example in
back-casting numerical climate models) or spatially, (seismological data).
This latter will be the topic of an experiment I will describe shortly. In such
cases, rough order of magnitude estimates may be all that is available and as
will be seen, this is insufficient to diagnose significant long-present defects.

Access to source code It is only relatively recently, since the real advent of
open source, that source code has been widely available in any area. However,
in spite of the fact that there is very significant evidence of its pivotal part in
defect discovery, it is still not a requirement to parcel up the source code with
the algorithmic research, the data and the means to reproduce the results,
the very essence of the scientific method. Some research groups, for example,
[5] have led the way but progress is slow and even prestigious journals such
as Nature remain ambivalent, [6] stating:-

“Nature does not require authors to make code available, but we
do expect a description detailed enough to allow others to write their
own code to do similar analysis”

Software testing Software testing remains the Cinderella profession in Com-
puting. It is not usually a significant part of the CS curriculum in universities,
[15] and it is unclear whether this deficiency is ever addressed successfully
in organisations.

N-Version One methodology which at least casts some light on the magnitude
of errors in computation is known as N-version or back-to-back testing. In this
approach, the same program specifications are given to N different groups who
develop one version each independently, sometimes in different programming lan-
guages. These N versions are then given the same input data and any differences
in the outputs must be explained. There are two significant disadvantages.

130 Les Hatton

– Cost. Since they must be independently developed, there are no economies
of scale so the cost of development is effectively N times the cost of a single
version.

– Independence. Important experiments such as those of [19] and [23] have
demonstrated that there are dependent failures even in packages developed
completely independently.

In spite of these deficiencies, N-version experiments have demonstrated their
value in flushing out very long-lived defects which had evaded any other tech-
nique. In [12], nine different seismic data processing packages which had evolved
independently in a commercial environment to very well-specified standard al-
gorithms were tested by giving them an identical set of 32 bit floating point
input data. After an identical processing sequence, the individual results dif-
fered in the 2nd and sometimes 1st significant figure. The results can be seen in
Fig. 3. In the figure, the y-axis is depth of burial in the earth and the x-axis is
distance along the surface of the earth. The grayscale shows relative echo inten-
sities derived from acoustic sounding experiments after significant processing of
raw data. The outputs vary in the second and sometimes first significant digit
whereas three significant digits of accuracy are deemed necessary to resolve the
geological features (in this case an unconformity trap for a gas field in the North
Sea) sufficiently accurately for reliable positioning of a well.

Amongst other things, the paper concluded

– The differences were due to previously undiscovered software faults, in some
cases remaining hidden for many execution years.

– The initial 6 significant figures of agreement had shrunk to 1-2 by the time
the data was passed to the scientist end-user for interpretation.

– The differences in the final datasets were non-random and therefore more
likely to mislead.

– Each software fault which was identified and corrected caused the differences
to reduce, so there was convergence although of course it is not possible to
say what it was converging to as this is a remote sensing environment with
the end product effectively inaccessible. (Drilling a gas well does not validate
data as the act of drilling itself interferes with the lithology.)

Although conducted almost twenty years ago, the language used by all par-
ticipants is still widely used in one form or another (Fortran), the software and
test processes used by the participants are also still used and software engi-
neers haven’t changed. In other words, it seems likely that the lessons of this
experiment are just as valid today.

Open Source It is believed that open source has a beneficial ameliorating
effect on defect, [26], [31], [27] and numerous other authors. This is simply an
extension of the quoted effectiveness of code inspections, [7] and [14] amongst
many. Although in some senses obvious, the mechanisms are not clear although
it may be a simple analogue of N-version experiments where there is one version

Scientific Computation and the Scientific Method 131

Fig. 3. A comparison of nine independently developed packages in the same program-
ming language on the same input seismological data shown by [12]. The y-axis is depth
of burial in the earth and the x-axis is distance along the surface of the earth. The
grayscale shows relative echo intensities derived from acoustic sounding experiments
after significant processing of raw data. The outputs vary in the second and sometimes
first significant digit whereas three digits are desired to position a well reliably.

but N independent sets of eyes rather than N independent versions. This is
coupled in the open source world with a form of Darwinian overturn whereby
the same feature set may appear many times but the best ones are adopted by
the community and further strengthened. As in nature, the unsuccessful ones
simply disappear.

Whatever model we ascribe to this process, there seems little doubt of its
effectiveness. I have included it under the topic of quantifying the effects of
defect as it is also commonly associated with a very close relationship between
development and testing as occurs in the Linux kernel1.

1 http://www.ibm.com/developerworks/linux/library/l-stress/index.html, accessed
18-Oct-2011

132 Les Hatton

3 A theory of defect

One of the things engineers often note about software systems is that the same
things occur again and again, [2]. To take one particular example, it is very
often observed that defects appear to cluster, [34], [2], independently of either
programming language or application area. Following on from [11], I will in-
vestigate this using an information theoretic model to avoid the straitjacket of
dependence on line of code measures. This does require the development of tools
to extract the tokens so is rather more effort than extracting SLOC but that
effort proves to be important.

All languages are specified by such tokens, which are extracted at the lexical
analysis stage of a language compiler or interpreter. In this sense a token of a
programming language takes one of two forms:-

Fixed token Fixed tokens of programming languages are those tokens specified
by the language designer whose form cannot be altered - the programmer
either uses them or not. Examples include language keywords such as if,
then, while; structural tokens such as [,] and operators such as +, -, * and
so on.

Variable token These are the user-specified tokens invented by the program-
mer in order to implement an algorithm. Examples include identifier names,
constants such as 3.14159265 and strings. Apart from some mild lexical con-
straints such as limiting the length of an identifier to 31 characters and its
starting character to be alphabetic, the programmer has complete freedom
to invent what he or she chooses.

From this token model, all algorithms in all programming languages are con-
structed.

3.1 An information theoretic model

Suppose a software system is split up into M components, with the ith component
containing ti tokens altogether from an alphabet consisting of ai tokens. In
simple procedural languages such as Fortran, components would correspond to
a function or a subroutine. In an object-oriented language, they would be the
outer classes. No finer granularity will be used as the mathematical development
considers only one level.

Following the discussion above, the alphabet can be decomposed as

ai = af + av(i) (1)

where af is the alphabet of fixed tokens and av(i) is the alphabet of variable
tokens and is clearly dependent on i, since programmers are free to create them
as and when desired.

The number of ways of arranging the tokens of this alphabet in the ith com-
ponent is therefore atii . Following Hartley, the quantity of information in the ith

component Ii will therefore be defined as

Ii = log(atii) = ti log ai (2)

Scientific Computation and the Scientific Method 133

We can then see that the total amount of information in a system I, can be
written as

I =

M∑
i=1

Ii =

M∑
i=1

ti

(
Ii
ti

)
≡

M∑
i=1

tiI
′
i (3)

where I ′i is the information density in the ith component. We will see the reason
for this transformation shortly. We can also see that the total system size T is
given by

T =

M∑
i=1

ti (4)

Equations 3 and 4 will provide constraints in the analysis below.

We can envisage a software system as a fixed level of functionality within
some fixed size. Now functionality is intimately related to choice which as Cherry
points out [4], is itself intimately related to Hartley-Shannon information. It
therefore makes sense to find the most likely way in which tokens can be arranged
in components subject to the twin constraints that total size and total amount of
information are fixed. This can be solved using basic principles from statistical
mechanics as follows.

The total number of different ways of distributing tokens amongst the com-
ponents is given by:

W =
T !

t1!t2!..tM !
(5)

We will now suppose that the information density of the ith component is
externally imposed by the nature of the algorithm and therefore in common with
variational principles is kept constant during variation.

The most likely distribution of the ti’s is defined as the one maximizing 5
subject to the constraints in equations (4) and (3). Using the method of Lagrange
multipliers this is equivalent to maximising the following

F ≡ T log T −
M∑
i=1

ti log(ti) + λ

(
T −

M∑
i=1

ti

)
+ β

(
I −

M∑
i=1

tiI
′
i

)
(6)

where λ and β are the Lagrange multipliers, and the first term of Sterling’s
Formula is used to simplify the factorials under the assumption that ti � 1.
Setting δF = 0 leads to

0 = −
M∑
i=1

δti (log(ti) + α+ βI ′i) (7)

where α = 1 + λ. This must be true for all variations δti and so

log(ti) = −α− βI ′i (8)

134 Les Hatton

Defining pi = ti
T using (3), pi can be interpreted as the probability that a

component is found with a share of I equal to I ′i. Cancelling the common factor
of e−α in numerator and denominator pi is given by

pi ≡
ti
T

=
e−βI

′
i∑M

i=1 e
−βI′i

(9)

In other words, the probability of finding a component with a large amount of
I ′i is correspondingly small. Given the assumed externally imposed nature of I ′i,
pi can then be taken to be the probability that a component of ti tokens actually
occurs.

Using (3) and (9), we define

Q(β) =

M∑
i=1

e
−β Ii

ti (10)

and can finally write

pi =
(ai)

−β

Q(β)
(11)

Thus this information theoretic argument predicts a power-law distribution for
the probability of token number as a function of alphabet length.

So far this is a similar development to that followed in [30] and [10] for
example, although it generalises the argument by using tokens of programming
languages, which are the natural currency of information theory.

Note that this overall process does not care about the tokens themselves -
all individual microstates are equally likely. It simply says that if total size and
choice in the Hartley-Shannon sense is conserved during the process of distribut-
ing the tokens, (and programming is all about choices), then power-law distri-
bution of component size in tokens is overwhelmingly likely to emerge since it
occupies the vast majority of the microstates. As will be seen in the data analysis,
the specific contribution made by the fact that choice is being made from pro-
gramming language tokens is represented by the behaviour implicit in (1). This
contrasts nicely with monkeys pounding on keyboards as eloquently described
by [25]. The ergodic nature of (11) simply accumulates all possible programmers
pounding on keyboards. Although not shown here, it also works well with much
smaller numbers, i.e. individual systems, a characteristic of classical statistical
mechanics.

Finally, I will observe that every language has a fixed token overhead in
order to implement even the simplest of algorithms. In other words, smaller
components must use a higher proportion of fixed tokens than variable tokens.
In contrast, larger components use a higher proportion of user-specified tokens
because the finite fixed token alphabet quickly stabilises. This can easily be
measured. In the very large amount of data reported shortly, the av(i)/af ratio is
typically around 0.2 for smaller components and at least 5 for large components.

It turns out that computing pi is fundamentally noisy in the tail of power-
law distributions and [28] recommends using the equivalent cumulative density
function ci instead. We can then anticipate the final shape of (11) as follows.

Scientific Computation and the Scientific Method 135

Combining (1) and (11) gives

ci ∼ (af + av(i))
−β+1 (12)

For small components, as has been seen, it is reasonable to assume that the
number of fixed tokens will tend to dominate the total number of tokens. In
other words, af � av(i). (12) can then be written

ci ∼ (af)−β+1(1 +
av(i)

af
)−β+1 (13)

In other words,
ci ∼ (af)−β+1 (14)

which implies that ci will be tend to a constant for small components on a log-log
plot. For large components, using the same arguments,

ci ∼ (av(i))
−β+1 (15)

The generic shape of the predicted curve on a log-log plot is shown in Figure 4.

log a

c i

i

Fig. 4. The predicted cdf using the model described in this paper. The cdf is predicted
to be approximately constant for small components and power-law for large ones with
a merging zone between.

3.2 Results

To give a sufficiently broad analysis, many software systems comprising multi-
ple languages, (Java, C, C++, Ada, Fortran, Tcl-Tk) were analysed. A generic

136 Les Hatton

token extractor was developed for each and calibrated against existing parsing
engines in Fortran and C which I had developed in previous projects and which
had been tested against the appropriate validation suites, (FCVS and FIPS160
respectively). 75 systems totalling 34 million lines of code (around half a billion
tokens) were analysed and the results are shown in Figure 5.

 100

 1000

 10000

 100000

 1 10 100 1000

S
a

m
p

le
s
 w

it
h

 v
a

lu
e

 >
 x

size x (tokens)

34 million lines of Ada,C,C++,Fortran,Java,Tcl

Fig. 5. The measured cdf for 75 systems combining 34 MSLOC into one super-system.
This comprises around 15% Java, 15% C++, 15% Fortran, Ada and Tcl combined and
around 55% C. This very roughly reflects the amount of each language freely available
under open source.

Although the tail of the distribution shown in Figure 5 looks decidely linear,
this was confirmed using the linear modelling function (lm()) in the widely-used
R statistical package, (http://www.r-project.org/) which reported a very high
degree of linearity with a linear-fit correlation of 0.998 between token counts of
30 and 1500, a span of almost two decades. The same analysis reports a slope
of -2.404 +/ 0.004, which is squarely in the range -2 → -3 reported for most
natural phenomena by [28].

If we now use the simplest model of defect, that we make a mistake every N
tokens on average, di ∼ ti ∼ ai (using Zipf’s law [32]), then

ci ∼ (ai)
−β+1 ∼ (ti)

−β+1 ∼ (di)
−β+1 (16)

So defects will also statistically be distributed as a power-law and should
exhibit clustering. As discussed above, this has been widely observed, and also
exploited, [21].

Scientific Computation and the Scientific Method 137

4 Conclusions

This paper gives a guide to some of the problems of quantifying defect in sci-
entific computation. It also demonstrates that software systems appear to have
implementation independent properties in which power-laws strongly figure and
suggests that defects might be fundamentally statistical in nature rather than
predictive. The development gives theoretical support to the observation that
defects cluster and this phenomenon can be exploited.

N-version experiments to measure difference are formidably expensive al-
though can emphasise that we have a problem but perhaps the only real way
forward is through open source and open data so that reproducibility can be
consistently achieved as in other parts of science.

Perhaps I can best sum up this paper by the following aphorism:-

We make progress in science by peer review. To make progress in
scientific computation we must extend this to code review.

References

1. Adams, E.: Optimising preventive service of software products. IBM Journal of
Research and Development 1(28), 2–14 (1984)

2. Boehm, B., Basili, V.: Software defect reduction top 10 list. IEEE Computer 34(1),
135–137 (2001)

3. Boehm, B., Romback, H., Zelkowitz, M.: Foundations of empirical software en-
gineering: the legacy of Victor R. Basili. Springer, 1st edn. (2005), iSBN 3-540-
24547-2

4. Cherry, C.: On Human Communication. John Wiley Science Editions (1963), li-
brary of Congress 56-9820

5. Donoho, D., Maleki, A., Rahman, I., Shahram, M., Stodden, V.: Reproducible re-
search in computational harmonic analysis. Computing in Science and Engineering
8(18) (2009)

6. Editorial: Devil in the details. Nature 470, 305–306 (2011)
7. Fagan, M.: Design and code inspections to reduce errors in program development.

IBM Systems Journal 2, 182–211 (1976)
8. Fenton, N., Pfleeger, S.: Software Metrics: A Rigorous and Practical Approach.

PWS, 2nd edn. (1997)
9. Hatton, L.: The T experiments: Errors in scientific software. IEEE Computational

Science and Engineering 4(2), 27–38 (April 1997)
10. Hatton, L.: Power-law distributions of component sizes in general software systems.

IEEE Transactions on Software Engineering (July/August 2009)
11. Hatton, L.: Power-laws, persistence and the distribution of information in soft-

ware systems. preprint available at http://www.leshatton.org/variations 2010.html
(January 2010)

12. Hatton, L., Roberts, A.: How accurate is scientific software ? IEEE Transactions
on Software Engineering 20(10) (1994)

13. Hopkins, T., Hatton, L.: Defect correlations in a major numeri-
cal library. Submitted for publication (2008), preprint available at
http://www.leshatton.org/NAG01 01-08.html

138 Les Hatton

14. Humphrey, W.: A discipline of software engineering. Addison-Wesley (1995), iSBN
0-201-54610-8

15. Jones, E.: Software testing in the computer science curriculum – a holistic ap-
proach. In: Proceeding ACSE ’00 Proceedings of the Australasian conference on
Computing education. ACM, New York, NY, USA (2000)

16. Kahan, W.: Desperately needed remedies for the Undebuggability of Large
Floating-Point Computations in Science and Engineering. In: IFIP / SIAM / NIST
Working Conference on Uncertainty Quantification in Scientific Computing (2011)

17. Kahan, W., Darcy, J.: How java’s floating point hurts everyone everywhere. Orig-
inally presented at ACM 1998 Workshop on Java for HighPerformance Network
Computing (July 2004)

18. Keller, T.: Achieving error-free man-rated software. Second International Software
Testing, Analysis and Review Conference (1993), monterey, USA

19. Knight, J., Leveson, N.: An experimental evaluation of the assumption of indepen-
dence in multi-version programming. IEEE Transactions on Software Engineering
12(1), 96–109 (1986)

20. Koenig, A.: C Traps and Pitfalls. Addison-Wesley (1989), iSBN 0-201-17928-8

21. Koru, A.G., Emam, K.E., Zhang, D., Liu, H., Mathew, D.: Theory of relative defect
proneness. Empirical Softw. Engg. 13(5), 473–498 (2008)

22. McCabe, T.: A software complexity measure. IEEE Transactions on Software En-
gineering 2(4), 308–320 (1976)

23. van der Meulen, M., Revilla, M.A.: The effectiveness of software diversity in a large
population of programs. IEEE Trans. Software Eng. 34(6), 753–764 (2008)

24. van der Meulen, M.J., Revilla, M.A.: Correlations between internal software met-
rics and software dependability in a large population of small c/c++ programs.
Software Reliability Engineering, International Symposium on 0, 203–208 (2007)

25. Mitzenmacher, M.: A brief history of generative models for power-law and lognor-
mal distributions. Internet Mathematics 1(2), 226–251 (2003)

26. Mockus, A., Fielding, R.T., Herbsleb, J.: A case study of open source software
development: the apache server. In: ICSE ’00: Proceedings of the 22nd international
conference on Software engineering. pp. 263–272. ACM, New York, NY, USA (2000)

27. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source soft-
ware development: Apache and mozilla. ACM Trans. Softw. Eng. Methodol. 11(3),
309–346 (July 2002), http://dx.doi.org/10.1145/567793.567795

28. Newman, M.E.J.: Power laws, pareto distributions and zipf’s law. Contemporary
Physics 46, 323–351 (2006)

29. Pfleeger, S., Hatton, L.: Do formal methods really work ? IEEE Computer 30(2),
p.33–43 (1997)

30. Rawlings, P., Reguera, D., Reiss, H.: Entropic basis of the pareto law. Physica A
343, 643–652 (July 2004)

31. Raymond, E.S.: The cathedral and the bazaar. O’Reilly (February 2001)

32. Shooman, M.: Software Engineering. McGraw-Hill, 2nd edn. (1985)

33. Subramanyam, R., Krishnan, M.: Empirical analysis of CK metrics for object-
oriented design complexity: Implications for software defects. IEEE Transactions
on Software Engineering 29(4), 297–310 (April 2003)

34. Tian, J., Troster, J.: A comparison of measurement and defect characteristics of
new and legacy software systems. Journal of Systems and Software 44(2), 135 – 146
(1998), http://www.sciencedirect.com/science/article/B6V0N-3VHWGDW-6/2/
408ff89b3fca0948041d218f40ee0509

http://dx.doi.org/10.1145/567793.567795
http://www.sciencedirect.com/science/article/B6V0N-3VHWGDW-6/2/408ff89b3fca0948041d218f40ee0509
http://www.sciencedirect.com/science/article/B6V0N-3VHWGDW-6/2/408ff89b3fca0948041d218f40ee0509

Scientific Computation and the Scientific Method 139

35. Tichy, W.F., Lukowicz, P., Prechelt, L., Heinz, E.A.: Experimental evaluation in
computer science: a quantitative study. J. Syst. Softw. 28, 9–18 (January 1995),
http://portal.acm.org/citation.cfm?id=209090.209093

36. Tichy, W.: Should computer scientists experiment more ? IEEE Computer 31(5),
32–40 (May 1998)

http://portal.acm.org/citation.cfm?id=209090.209093

140 Les Hatton

DISCUSSION

Speaker: Les Hatton

William Oberkampf : Experience with the ineffectiveness of unit and regres-
sion testing in the ASC program at Sandia National Labs is similar to your
documented experience in software quality. We have found that the method of
manufactured solutions has been extremely effective at detecting software bugs
and numerical algorithm deficiencies in scientific software. Have you used this
method to detect software bugs and numerical algorithm deficiencies?

Les Hatton : Not in recent times. I actually didn’t know it under this name
although I used something similar to this in studying the flow regime in the core
of a tornado in my Ph.D thesis many years ago, (and it was successful in flushing
out some numerical problems in the non-linear matched boundary value systems
I was trying to solve !). I would imagine that it is not a well-known technique
amongst scientists though.

Philip Starhill : Do you think that testing can have a positive impact on defect
counts or other measures of software quality?

Les Hatton : It depends really on the quality of the testing. It is very variable
in my experience, (from casual and ineffective all the way up to a determined and
highly skilled assault on a program). However, I think there is little doubt that
experienced testers can have an extraordinarily positive impact, particularly if
they are involved as early as the design stage where such experience can be highly
beneficial to the eventual testability. Too often, testing is an afterthought and
I usually picture it as a crumple zone between developer creep and intransigent
delivery deadlines.

William Kahan : Of the 19 languages you have used, you mentioned that 18
were not your own choice. Which was the one you would choose? And was its
capture cross-section for error lower than the others’?

Les Hatton : An interesting question. I finished up with C but its capture cross-
section for error is not one of its most advertised features - a stated philosophy
of “trust the programmer” is in itself a little unnerving. However, I had built by
then a considerable arsenal of tools to control some of its worst excesses and it
remains at heart a simple, elegant and astonishingly versatile language of great
longevity. With this tool support, I can write portably and with a gratifyingly
low defect density but its taken a long time to get there. C is a great tribute to the
skill and insight of its inventor, the late Dennis Ritchie, although like a number
of languages, it has suffered somewhat in the hands of standards committees.
Last but not least it is well-implemented with the redoubtable GNU C compiler.

William Kahan : Have you noticed that effective testing requires rather more
cleverness than writing the program to be tested?

Scientific Computation and the Scientific Method 141

Les Hatton : Absolutely. For most of my career, I have been struck by this.
For some reason however, it remains the Cinderella of Computing technologies
and is still not considered a good career direction. We don’t really teach it in
universities and we rarely seem to carry it out well in spite of its importance. In
my personal experience, good testers are much rarer than good programmers.

Mladen Vouk : How is the work you describe related to Halstead Theory and
metrics: token counting, fault generation, . . . etc?

Les Hatton : Token extraction and counting is identical in Halstead’s work
and is fundamental in programming languages where it forms the initial lexical
analysis stage of all language translation. Where I take a different slant from Hal-
stead (and later, Shooman), is using variational methods to find the most likely
distribution of tokens under the twin constraints of size and Hartley-Shannon
information. I make no effort to fit defect curves. This approach leads very nat-
urally to the observed implementation independent power-law behaviour and
suggests under a simple model of defect that they are also distributed amongst
components according to a power-law. This adds some theoretical support to
the widely-observed and exploitable phenomenon of defect clustering.

Mladen Vouk : N-version has been extensively studied both as run-time fault
tolerance tool and as a testing tool (called back-to-back testing, BBT). One of
the “blindness” issues with BBT are common-cause and/or correlated faults and
failures. Please comment on this in the context of your work.

Les Hatton : Indeed. There are a number of well-known studies (Knight and
Leveson, 1986, van der Meulen and Revilla 2008), which demonstrate non-
independent behaviour in BBT. However, in spite of this, there appears to
be sufficient independent behaviour that such experiments are very effective at
quantifying and flushing out defects which have evaded other techniques. Having
said that, by far the biggest barrier to BBT is its cost which is basically N times
the cost of a single version. For this reason, as I state in the paper, such methods
only serve to highlight the problem. Open source, which is related to N-version
in subtle ways, is a much more likely general purpose tool although BBT is used
successfully today in some safety-critical systems such as railway signalling and
communication systems.

	Defects, Scientific Computationand the Scientific Method

