Corporate-, Agile- and Open Source Software
Development: A Witch’s Brew or An Elixir of
Life?

Morkel Theunissen, Derrick Kourie, and Andrew Boake

Espresso Research Group
Department of Computer Science
University of Pretoria
mtheunis@cs.up.ac.za; dkourie@cs.up.ac.za; Andrew.Boake@absa.co.za

Abstract The observation that the Open Source Software development
style is becoming part of corporate software development, raises ques-
tions about its compatibility with traditional development processes.
Particular compatibility questions arise where the existing corporate de-
velopment style is in the agile tradition. These questions are identified
and discussed. Measures that can be taken to avoid clashes are suggested.
An example illustrates how Corporate-, Agile- and Open Source Software
could intersect, and SPEM modelling is employed to show how corporate
processes would need to adapt to accommodate the new scenario.

Key words: Open source software development, Agile software development,
Corporate software development, Compatibility.

1 Introduction

“Double, double, toile and trouble; Fire burne, and Cauldron bubble.”

—Macbeth (Act IV, Scene 1)

A dispassionate consideration of the cauldron of forces at play in corporate’
software development, may well raise the question of whether two contempo-
rary (and apparently orthogonal) approaches belong in the brew: Agile Software
Development (ASD) and Open Source Software Development (OSSD). Over the
past decade, the impact that each of these paradigms has had on the software
development industry has grown, and there are signs that this trend will con-
tinue. It therefore seems relevant to consider the extent to which these paradigms
are mutually exclusive, and, conversely, whether synergies between them can be
found. Could blending them into corporate software development processes pro-
duce an elixir of life? or will they combine into a poisonous witches’ brew?

! The term corporate is used to reference a medium to large enterprise that has its
own in-house software developers.

2 Using this metaphor does not imply that we believe that a silver bullet might be at
hand—to reach for another well-used metaphor in software development contexts.

64 Morkel Theunissen, Derrick Kourie, Andrew Boake

Although not universally practiced, ASD is already widely represented in
many industries and, to this extent, is already in the cauldron. Open Source
Software (OSS), too, plays a significant role in many corporate contexts. How-
ever, this role varies widely: from simple usage of OSS (as in the provision of
internet infrastructure components and development tools); to attempts by cor-
porates to leverage the energy inherent in OSSD by managing such projects
(the Eclipse project of IBM being a prominent example). There are many vari-
ants between these extremes, such as making casual contributions to OSS as
a byproduct of using it. An example of just such a scenario will be presented
below. Some corporates have even adopted an in-house OSS development style
(HP’s POS approach being a case in point [?]).

The present discussion excludes scenarios such as the latter, namely where
the corporate fully controls the development style. It also excludes simple, un-
involved OSS usage. The corporate OSSD activity that remains and that is the
subject of the present discussion (i.e. development which is only partially con-
trolled by corporates), though fairly limited, nevertheless has been growing quite
significantly, and could become a disruptive force in the development processes
into which it is supposed to blend.

For the purpose of this discussion the extent of corporate participation and
the OSS project’s scope and size will not be considered. Instead a more generic
view of the forces at work is taken. Scope and size influences are therefore a
matter for further study.

It should be noted at the outset that OSSD is not a formally defined de-
velopment methodology. Although every OSS community uses its own process,
there is nevertheless a common overall philosophy. For the purposes of this paper
OSSD is taken to refer to development that is more or less in line with common
principles that have emerged from prominent OSS projects.

Section 2 briefly surveys the nature of corporates, difficulties they are likely
to encounter when attempting to engage in OSSD, and managerial adjustments
that will be needed. This discussion does not specifically refer to ASD. Instead,
the connection between ASD and OSSD is left to Section 3. Here it is pointed out
that the OSSD and ASD paradigms apparently embody contradictory attributes,
and that consequently, any attempt by a corporate to simultaneously engage in
both would appear to be particularly fraught with difficulties. The section also
points to ways in which the identified tensions could be managed. An example
to illustrate further the kinds of difficulties that might be anticipated is given
in Section 4 and SPEM is used as a medium for illustrating ways in which
processes might be adapted to alleviate difficulties. Section 5 proposes general
ways of ameliorating difficulties that have been identidifed, before concluding in
Section 6.

However, sobriety does not negate the validity of aspiring to an optimal approach in
software development endeavours.

Corporate-, Agile- and Open Source Software Development 65

2 OSSD and Corporate Culture

OSS refers to software developed by a movement that values a distributed, open,
collaborative development model, as well as the free distribution and modifica-
tion of its software. As mentioned before OSS already plays a significant role in
many corporate software development contexts and as such have been scrutinised
by many. Our aim is only to highlight the elements relevant to the discussion at
hand.

The corporate environment conventionally places certain requirements on the
software development process to enforce employee accountability. This imposes
a number of stresses on a development team in such an environment—stresses
that will inevitably be accentuated when attempting to engage in OSSD. The
following items illustrate some of the clashes that could occur between common
corporate culture and that of people typically engaged in OSSD:

— Monitoring of developers.
In an environment where remuneration for work is the norm, there is a need
to manage and monitor employees, and this is generally taken for granted
by regular corporate employees. However, participants in traditional OSS
projects are not subjected to such regulation, due to the voluntary nature of
the development. In the corporate paradigm, once a manager has assigned
a task to a subordinate, it is normally assumed that the manager will track
the subordinate’s progress and activities, and respond appropriately. This
scenario can become complicated when an OSSD style is used internally. It is
difficult to monitor what developers are contributing to different and disjoint
OSS efforts. Furthermore, it may be difficult for management to assess the
importance or relevance of an OSS contribution that is not directly used by
the organisation.

— Fized time schedules.
Traditional OSS projects live by the principle of “release often”, but these
releases are largely ad hoc, occurring whenever the core maintainers feel that
it is time to do a release. Within the corporate environment there is a need
to link different software development projects to fixed time frames so as to
support business-driven goals such as taking advantage of market windows
and managing financial aspects such as Return-On-Investment (ROI), and
IT-driven goals such as coordinated roll-out of related projects.

— Quality Assurance Processes.
OSSD, by its very nature, encourages extensive peer review. One of the
underlying notions in OSS is expressed in the aphorism known as Linus’
Law: “Given enough eyeballs, all bugs are shallow.” [?]. However, although
some OSS projects may apply certain rules prior to accepting contributions
(patches), there are generally no formal OSS code review processes (in par-
ticular between the core members). In contrast, in both the agile paradigm,
and in many other traditional software engineering approaches, code review
procedures are adhered to more diligently.

66 Morkel Theunissen, Derrick Kourie, Andrew Boake

It is incumbent on corporate management to take cognisance of the contradic-
tions between these styles of producing software, and to manage them as and
when needed. These difficulties notwithstanding, creative management solutions
should be sought where these conflicts arise most prominently. Sections 4 and 5
illustrate these matters in a specific example. In general, it remains the respon-
sibility of a manager has to ensure that a developer completes essential tasks in
due time and in compliance with the requisite quality. Work on random OSS-
associated tasks that might be regarded as interesting or fun should be relegated
to secondary status, if tolerated at all within the work hours.

There are other aspects to the OSS paradigm that corporate software developers
need to understand. One of these aspects is the legal standing of software de-
velopment, specifically in relation to open-source licenses. Corporate developers
generally know about proprietary licensing, but they might not be prepared for
the variety of OSS licenses and their inter-relationships. OSS developers need
to be able to distinguish between the different licenses and their compatibili-
ties. For example, consider the implications if one wanted to link in modules
from a library that was issued under the GNU General Public License version
2 (GPLv2), while one’s own code was distributed under the Berkeley Software
Distribution (BSD) license? An OSS developer would need to know that the BSD
and GPLv2 licenses are compatible, but only if the BSD code is distributed un-
der the revised® BSD version [?,7].

Furthermore, managers of software developers would need to realise that if
they have both closed-source and open-source projects in their portfolio, then
they should isolate the developers from one another to ensure that no ‘contam-
ination’ of code takes place.

3 OSSD and ASD

ASD values individuals and their interactions, working software, customer col-
laboration and responding to change. The primary drivers for ASD are speed
and flexibility. Born out of a desire to reduce the overhead caused by over cer-
emony of traditional software development, the principles of ASD have gained
increasing acceptance by corporate developers, under pressure to produce qual-
ity software at a rapid pace. As in the case of OSSD, ASD too is an overall
philosophy with many variants, each of which finds its application in different
development teams.

3.1 OSSD is not ASD

Superficially, ASD and OSSD have many aspects in common, including the early
delivery of useful software, the valuing of feedback, basing scope and design pri-
marily on utility, and an informed and productive developer community. Indeed,

3 Without the advertisement clause.

Corporate-, Agile- and Open Source Software Development 67

It has been alleged that OSS as a style is just another instance of ASD [?]. To
assess the validity of this allegation, we have investigated the extent to which the
generic development model of OSS as set out in literature (for example, [?,?])
complies with the principles set out in the Agile Manifesto [?]. Furthermore we
have compared the stereotypical OSS style and Extreme Programming (XP).
Both of these investigations are reported in [?]. Another study by Warsta and
Abrahamsson [?] further highlights the differences and similarities between OSS
and ASD. Our findings are summarised below.

ASD was born within the corporate world and consequently has a strong fo-
cus on certain elements that are not associated with traditional OSSD. These
include: co-located teams; assigned team membership; and remunerated employ-
ment which brings along a concomitant obligations and hierarchical relation-
ships. Furthermore the client role tends to be played by a non-programmer who
may be the business-user. In contrast, OSSD traditionally starts off with a single
developer who is simultaneously the ‘client’, in that the software to be devel-
oped is intended to address a personal need (which could be work related). As
the project grows other developers around the world may contribute or even
eventually take over the project.

In further assessing the two paradigms, we noted that “the discussion was
mainly (but not exclusively) in reference to the stereotypical traditional OSS
development style. In reality, the culture surrounding OSS development is neither
monolithic nor static”. The same viewpoint was taken in regard to ASD. The
compliance investigation showed that—at least to some extent—OSSD is indeed
compatible with the following list of principles taken verbatim from the Agile
Manifesto:

— Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software

— Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage

— Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale

— Working software is the primary measure of progress

— Continuous attention to technical excellence and good design enhances agility

— Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely

— Build projects around motivated individuals ... and trust them to get the
job done

However, the remaining Agile Manifesto principles are not at the core of the
stereotypical OSSD approach. These are:

— Business people and developers must work together daily throughout the
project
— ... Give them the environment and support they need ...

68 Morkel Theunissen, Derrick Kourie, Andrew Boake

— The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation

— At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behaviour accordingly

— Simplicity—the art of maximising the amount of work not done—is essential

— The best architectures, requirements, and designs emerge from self-organising
teams

The investigation in [?] therefore concluded that there are distinct differences
between the two approaches. As a result, the scope for synergy between them is
constrained, due to tensions that are likely to arise between teams who follow
these opposing principles.

3.2 Adapting ASD

Consider a typical scenario where individual co-located agile development teams
collaborate either with other such teams scattered around the world in an OSSD
style, or with external OSS projects. Figure 1 provides an example of two Agile
teams contributing to an OSS project. An alternative scenario would be where
one of the agile teams —as a entity— form part of the core team of the OSS
project. This subsection highlights some of the potential adjustments that might
be needed.

Figure 1. Agile Teams participating in an OSS project

— Adapting to remote communication.
[From the agile perspective, accommodating a different way of communicat-
ing between developers might perhaps be the most challenging. As stated
before, the stereotypical agile approach depends extensively on co-located
teams who rely on face-to-face verbal communication between members and
the availability of on-site customers. This is typically not the case within an
OSS development team. Furthermore, the daily routine of an agile team is
usually rigorously controlled. Typically, an agile team will start the day off
with a short stand-up meeting, followed by a three to four hour focussed ses-
sion of uninterrupted development. They may then break for lunch, followed
by yet another focussed session. During these focussed sessions the develop-
ers are typically prohibited from using telephones, e-mail, IRC or any form of
external communication, both inbound and outbound. In contrast the OSSD
style requires almost constant access to communication media such as e-mail,

Corporate-, Agile- and Open Source Software Development 69

IRC and the Web. These media, which facilitate 24/7 flow of information
will seem extremely ‘noisy’® to developers accustomed to the agile style.

An added problem is the need to translate and transmit the verbal commu-
nication between co-located developers to other distributed external devel-
opers. This need to continually document and electronically broadcast the
typically informal verbal communication between agile developers may prove
to be a severe obstacle in the quest for synergy between ASD and OSSD.

— Relinquishing of control.

Agile developers are accustomed to having a large say in the decision making
processes that control the direction of a project and the development style
and culture within the project. However, when the team is simply yet an-
other contributor in a larger community of developers, some of this control
(possibly over many aspects of the project) may be lost. This could be a
disturbing prospect for ASD developers and should be taken into account
when the team interacts with the larger OSS community.

The view on time-schedules is related to this control issue. Agile proponents
advocate fixed, (though short) time cycles to illustrate their progress to the
client and to verify the appropriateness of the evolving system. Although
the OSS culture is also to deliver frequently, the inclination is to only deliver
when the deliverables are useful and stable. This difference perhaps has its
roots in the different drivers present in the two approaches. The primary
driver in ASD can be seen to be frequent business deadline-driven releases.
On the other hand, the primary driver in OSS is delivery of quality software
to the community of developer /users.

— Good 0SS community citizenship.

Agile developers need to realise that they are no longer the centre point of
the development effort, but part of a larger community of developers with
a deeply rooted culture—largely based on the Unix culture [?]—that has
been around for a number of decades. Agile developers will therefore have
to gain an understanding of the OSS culture to ensure that they adhere
to the underlying, sometimes unwritten, rules of participating in the OSS
community.

These points indicate that agile subcultures within parts of the corporate struc-
ture would need to adapt if OSSD is introduced into that structure. Indeed, it
would seem necessary to compromise on some fundamental agile principles. Ac-
cepting these compromises may be a significant test of the very claim made by
agile community, namely of being pre-eminently open to change and adaptation.

Of course, the extent to which the above comes into play in a specific project
is dependent on the level of engagement between the agile team and the OSS

4 Although ASD sessions may often be 'noisy’ in sense of frequent discussion, the
discussions tend to be focussed on immediate tasks at hand. OSSD interruptions, on
the other hand, tend to be disparate and less focussed.

70 Morkel Theunissen, Derrick Kourie, Andrew Boake

project®. An example would be where the development team is responsible for
developing an intranet application that uses the Tomcat server and contributes
to the MyFaces library. In the aforementioned example one would expect that
the tension-points arising in regard to the Tomcat project will be somewhat
different to those experienced in regard to the MyFaces project.

The foregoing, largely a further elaboration of ideas first mooted in [?], does
not purported to be an exhaustive list of possible adaptations that need to be
addressed in order to gain synergy between agile on the one hand and OSS on
the other. It is merely the starting point for a deeper analysis of the contention
points and ways of reconciling them.

4 An Illustrative Example

The preceding sections have highlighted the need to take the tension-points
into consideration when defining a process for a project that intends to com-
bine OSSD and ASD. Clearly, many problems can be solved by amending the
development process(es). However, the ability to adjust the development pro-
cess depends on the control that one has over the project. Furthermore, the
adjustments to the process will be based on the perspective of the team under
consideration.

To illustrate the point, consider the following fictitious example: Team Bravo
is assigned to develop a conference-room booking system, to be deployed on the
intranet of the team’s organisation. For the development, team members have
decided to use Tomcat, MyFaces, Hibernate, MySQL and GNU Linuz. In addi-
tion, they use Eclipse and Subclipse as development tools. During the course of
the project the team extends MyFaces with additional components and submits
these to the MyFaces project. Additionally, a bug is discovered within Subclipse
and a bug report is filed with the Subclipse project, this report containing a JU-
nit test-case to illustrate the problem. Later on, the Subclipse-bug is classified
as impeding the project and a patch to correct the problem is developed and
submitted.

The Subclipse project has a predefined process for submitting bug reports.
In addition, good project management requires that Team Bravo, too, should
follow some internally defined sub-process in submitting a bug report. Clearly,
the latter sub-process needs to interface to the Subclipse one. A similar situation
would hold in the contribution of additional components to the MyFaces project.

Figure 2(a) depicts the process specified by the Subclipse project-page [?] for
submitting an issue into their issue tracker. The notation used is the Software
Process Engineering Metamodel (SPEM) version 1.1 [?]. The aforementioned

® These levels of engagement could be: simply using an OSS product; modifying with-
out sharing the OSS product; actively contributing to an OSS project; or managing
an OSS project.

Corporate-, Agile- and Open Source Software Development 71

figure represents an Activity diagram to describe the specific Work DefinitionS.
The Activities”: Read On-line Help, Read Subversion Book and Read FAQ re-
quire that a user should first refer to the existing documentation for possible
descriptions on how to resolve the problem that they are experiencing. If these
activities are deemed unsuccessful, then the user should search the existing is-
sues in the Issue Tracker database. If this, in turn, is also unsuccessful, then the
user should report the problem to the Users mailing-list.

The Subclipse project requires the aforementioned activities as a filtering
mechanism to reduce unnecessary entries in the issue-tracker. If need be, the user
mailing-list will direct the user to file an entry in the issue-tracker. Embedded
in the figure is another work definition: Register as an Observer Role to Project.
This refers to the additional activities that are required when the user is not yet
registered with the project. In the same way Report Problem to User Mailing-list
encompasses the process of interacting on the user mailing-list.

The internal process that Team Bravo has to follow to resolve the bug is il-
lustrated in Figure 2(b). The figure indicates that Team Bravo uses a test-driven
approach to write the bug-fix, as required by their ASD-compliant development
process. Submit Patch to Original Project represents an abstract sub-process
to follow when reporting the problem and providing a solution to a 3" party’s
project. In the above example the abstract sub-process should be superseded
by the Subclipse: Creating a New Issue Tracker Entry process specified in Fig-
ure 2(a) and described above. In this way, the general project process can be
customised to incorporate interfaces to other projects.

The foregoing endorses the notion of defining a process per project, as advo-
cated by a number of methodologists, including Cockburn [?]. In the case of the
conference-room booking system project, not only did the overall process depend
on the project’s internal sub-processes, but it also had to take account of the sub-
processes of other external projects. In practice, the set of external projects to be
incorporated may vary from one project to the next. This is evidently a typical
consequence of incorporating an OSSD approach into a corporate development
effort.

5 Proposals

The previous section gave a practical example of the kind of inter-project inter-
action scenario which a corporate development team incorporating OSSD could
face. Numerous additional illustrative examples and scenarios could no doubt
be cited. However, the present limited example already introduces a number of
ideas that lead to concrete proposals for dealing with these tensions.

5 “Work Definition: A Model Element of a process describing the execution, the op-
erations performed, and the transformations enacted on the Work Products by the
roles. Activity, Iteration, Phase, and Lifecycle are kinds of work definition”[?].

7 «A Work Definition describing what a Process Role performs. Activities are the main
element of work.”[?]

Morkel Theunissen, Derrick Kourie, Andrew Boake

72

SUOTHUYOPYIOA 9AIIRIISN[[] *Z 2InS1q

asdro
-qng

ut

A19
Areaqr]
Tosod],
Ayreshs
pa€S1
MEN
ange
St
-AJo9®
D
10503
uogr)
-THu

-t
TP
()

Corporate-, Agile- and Open Source Software Development 73

1. Note that, in general, there will be interaction points between sub-processes

6

of the internal project and sub-processes of the various external (OSS) projects.
The tensions previously mentioned, i.e. tensions between OSSD and ASD
and/or traditional corporate culture, are most likely to be encountered at
these interaction points. It would seem, therefore, that one can at least start
to deal with these tensions, by articulating—either formally or informally—a
sub-process at each such interaction point.

Taking this approach, one is able to specify the corporate development pro-
cess with minimal (but non-zero) concern for the external projects process.
The external projects processes are then only plug-ins that are realised in
one’s own process on an “as-needed” basis. This contains the tensions be-
tween the different, possibly opposing processes and encapsulates them at
the defined interface points.

. Another possible practice to consider, is the introduction of an additional

role to the development process: that of a liaison officer. This role should
be adopted whenever one either uses or contributes to an OSS project. In
essence, someone would be designated as responsible for acting as a commu-
nication conduit between the projects. The responsibility of this role would
be to gain and maintain an appropriate level of understanding of an external
project with regard to the respective processes and the evolution of the ar-
tifacts. This knowledge would then be disseminated to the rest of the team,
as required by the given project.

An example of this would be assigning developer Jane to liaise on project
Subclipse on the team’s behalf. Whenever a new release is available, she will
inform the rest of the team and aid with the adoption thereof by the team.
This role might be seen as a substitute for the product representative from
commercial companies from which software product are acquired.
Furthermore, when deemed necessary, the role may be assigned to multiple
persons, for example, on a per module basis for large external projects. The
need to assign this responsibility to multiple persons may be particularly
important in a context where an ASD approach such as Extreme Program-
ming is being used, since the latter places emphasis on maintaining a level
of human redundancy.

The role of liaison officer would vary for each given project and for each
external project, its importance being determined by factors such as those
listed in the previous section.

Conclusion and Future Work

The implications of introducing OSSD into a corporate environment have been
considered, and particular references has been made to the implications of ac-
commodating both OSSD and ASD. An example illustrated the kind of situation
facing corporate software developers who attempt to develop in an ASD style
while collaborating with distributed partners.

In the example, the focus of the development team was to use OSS products.

However, had the ASD team formed all or part of the core of an OSS project,

74 Morkel Theunissen, Derrick Kourie, Andrew Boake

then a number of other issues would need to be addressed. These have not
been considered here, and are left for future study. However, it is clear that the
process-per-project notion will feature strongly in any such consideration .
Clearly, when mixing in different ingredients from the software development
processes and/or practices on offer, it would be wise to be weary about the
resulting brew. It could turn out to poison or paralyse the project. On the other
hand, it might be a elixir—an enabler of a successful and enduring project.

References

