
Towards Use-Cases Benchmark?

Bartosz Alchimowicz, Jakub Jurkiewicz, Jerzy Nawrocki, Mirosław Ochodek

Poznan University of Technology, Institute of Computing Science,
ul. Piotrowo 3A, 60-965 Poznań, Poland

{Bartosz.Alchimowicz, Jakub.Jurkiewicz, Jerzy.Nawrocki,
Miroslaw.Ochodek}@cs.put.poznan.pl

Abstract. In the paper an approach to developing a use-cases bench-
mark is presented. The benchmark itself is a referential use-case-based
requirements specification, which has a typical profile observed in real
projects. To obtain this profile an extensive analysis of 432 use cases
coming from 11 projects was performed. Because the developed specifi-
cation represents those found in real projects, it might be used in order
to present, test, and verify methods and tools for use-case analysis. This
is especially important because industrial specifications are in most cases
confident, and they might not be used by researchers who would like to
replicate studies performed by their colleagues.

Keywords: Use cases, Requirements engineering, Metrics, Benchmark

1 Introduction

Functional requirements are very important in software development. They im-
pact not only the product but also test cases, cost estimates, delivery date, and
user manual. One of the forms of functional requirements are use cases intro-
duced by Ivar Jacobson about 20 years ago. They are getting more and more
popular in software industry and they are also a subject of intensive research
(see e.g. [2,3,8,9,20]). Ideas presented by researches must be empirically veri-
fied (in best case, using industrial data) and it should be possible to replicate
a given experiment by any other researcher [19]. In case of use cases research it
means that one should be able to publish not only his/her results but also the
functional requirements (use cases) that has been used during the experiment.
Unfortunately, that is very seldom done because it is very difficult. If a given re-
quirements specification has a real commercial value, it will be hard to convince
its owner (company) to publish it. Thus, to make experiments concerning use
cases replicable, one needs a benchmark that would represent use cases used in
real software projects.

In the paper an approach to construct use-cases benchmark is presented. The
benchmark itself is the use-cases-based requirements specification, which has a

? This research has been financially supported by the Polish Ministry of Science and
Higher Education grant N516 001 31/0269.

2 B. Alchimowicz, J. Jurkiewicz, J. Nawrocki, M. Ochodek

typical profile observed in requirements coming from the real projects. To derive
such a profile an extensive analysis of 432 use cases was performed.

The paper is organised as follows. In Section 2 a model of use-cases-based
requirements specification is presented. This model is further used in Section 3,
which presents an analysis of the use-cases, coming from eleven projects. Based
on the analysis a profile of the typical use-case-based specification is derived,
which is used to create a benchmark specification in Section 4. Finally, a case
study is described in Section 5, which presents a typical usage of the benchmark
specification in order to compare tools for use-case analysis.

2 Benchmark-oriented model of use-case-based
specification

Although use cases have been successfully used in many industrial projects (Neil
et al. [16] reported that 50% of projects have their functional requirements pre-
sented in that form), they have never been a subject of any recognisable stan-
dardisation. Moreover, since their introduction by Ivar Jacobson [13] many ap-
proaches for their development were proposed. Russell R. Hurlbut [11], gathered
fifty-seven contributions concerning use cases modeling. Although, all approaches
share the same idea of presenting actor’s interaction with the system in order to
obtain his goal, they vary in a level of formalism and presentation form. Thus
it is very important to state what is understood by the term use-cases-based
requirements specification.

To mitigate this problem a semi-formal model of use-cases-based require-
ments specification has been proposed (see figure 1). It incorporates most of the
best-practices presented in [1,5].

It still allows to create specification that contains only scenario (or non-
structured story) and actors, which is enough to compose small but valuable
use-case, as well as extend it with other elements, for example extensions (using
steps or stories), pre- and post-conditions, notes or triggers.

Unfortunately, understanding the structure of specification is still not enough
in order to construct a typical use-cases-based specification. What is missing, is
the quantifiable data concerning the number of model-elements and proportions
between them1. In other words, one meta-question has to be asked for each
element of the model - "how many?".

3 Analysis of use-cases-based specifications structure

In order to discover the profile of typical-specification, data from various projects
was collected and analysed. As a result a database called UCDB (Use Cases
Database) [6] has been created. At this stage it stores data from 11 projects
with the total number of 432 use cases (basic characteristics of requirements
specifications as well as projects descriptions are grouped in table 1).
1 A number/proportion of any element of the model will be further addressed as a

property of the specification

Towards Use-Cases Benchmark 3

Actor

+Name
+Descrip tion

Use Case

+Title

Scenario

Business Object

+Name
+Description

Requirements Specification

Condition

+Description

Trigger

+DescriptionS tep

+Text

Extension

+Event_Text

Story

+Text

Referenced
Element

Goal Level

Business Sub-functionUser

1
*

1
*1

*

+main-scenario

1

11

1..*

+sub-scenario

1
*

1
* 1

0..1

1

0..1

+post-conditions
+pre-conditions*

**

*

*

1
*

1

+secondary-actors
+main-actors

**

Fig. 1. Use-Cases-based functional requirements specification model

All of the specifications have been analysed in order to populate the model
with the information concerning average number of its elements occurrence and
some additional quantifiable data.

One of the interesting findings is that 79.9% of the main-scenarios in the use
cases consist of 3-9 steps, which means that they fulfil the guidelines proposed
by Cockburn [5]. What is more 72.9% of the analysed use cases are augmented
with the alternative scenarios (extensions). There are projects which contains
extensions for all steps in main scenario, however on the average use case contains
1.5 extension. Detailed information regarding number and distributions of steps
in both - main scenario and extensions, is presented in figure 2.

Another interesting observation, concerning the structure of use cases, is that
the sequences of steps performed by the same actor, frequently contains more
than one step. What is even more interesting this tendency is more visible in
case of main actor’s steps (37.3% of main actor’s steps sequences are longer
than one step, and only 19.4% in case of secondary actor - in most cases system
being built). This is probably because actions performed by main actor are more
important, from the business point of view. This is contradict to the concept of
transactions in use cases presented by Ivar Jacobson [12]. Jacobson enumerated
four types of actions which may form together use-case transaction. Only one

4 B. Alchimowicz, J. Jurkiewicz, J. Nawrocki, M. Ochodek

Table 1. Analysed projects requirements-specifications (origin: industry -
project developed by software development company, s2b - project developed by
students for external organisation, external - specification obtained from the ex-
ternal source which is freely accessible through the Internet - this refers to two
specifications: UKCDR [21], PIMS [18]; projects D and K come from the same
organisation)

ID

Bu
sin

ess

S2B 17 0% 76% 24%

S2B 37 19% 46% 35%

39 18% 44% 33%

77 0% 96% 4%

S2B 41 0% 100% 0%

10 0% 100% 0%

90 0% 81% 19%

16 19% 56% 25%

21 38% 57% 5%

9 0% 67% 33%

75 0% 97% 3%

Sp
eci

fic
ati
on

La
ng
ua
ge

Origin
Number of use cases

Description

Al
l

Us
er

Su
b-

fun
cti
on

Project A English Web & standalone application for
managing members of organization

Project B English Web-based Customer Relationship
Management (CRM) system

Project C English External UK Collaboration for a Digital Repository
(UKCDR)

Project D Polish Industry Web-based e-government Content
Management System (CMS)

Project E Polish Web-based Document Management
System (DMS)

Project F Polish Industry Web-based invoices repository for remote
accounting

Project G English External Protein Information Management System
(PIMS)

Project H Polish Industry Integration of two sub-system s in ERP
scale system

Project I Polish Industry Banking system

Project J Polish Industry Single functional module for the web-
based e-commerce solution

Project K Polish Industry Web-based workflow system with Content
Management System (CMS)

of them belongs to a main actor (user request action). The rest of them are
system actions: validation, internal state change, and response. It might look
that those actions should frequently form together longer sequences. However,
80.6% of steps sequences performed by system consisted of single step only. The
distributions and number of steps in main actor’s sequences are presented in
figure 3.

If we look deeper into the textual representation of the use cases, some inter-
esting observation concerning their semantic might be made. One of them regards
the way use-cases authors describe validations actions. Two different approaches
are observed. The most common is to use extensions to represent alternative sys-
tem behaviour in case of verification-process failure (46.6% of extensions have
this kind of nature). Second one, and less frequent, is to incorporate validation
actions into steps (e.g. System verifies data). This kind of actions are observed
only in 3.0% of steps. There is also yet another interesting semantic structure

Towards Use-Cases Benchmark 5

Number of steps in main scenario

D
en
si
ty

1 3 5 7 9 11 14

0.
00

0.
10

0.
20

a)

Number of steps in extension

D
en
si
ty

1 3 5 7 9 11 14

0.
0

0.
1

0.
2

0.
3

0.
4 c)

A B C D E F G H I J K

5
10

15

Project

N
um

be
r o

f s
te

ps
 in

 m
ai

n
sc

en
ar

io

b)

A B C D F G H I J K

2
4

6
8

Project

N
um

be
r o

f s
te

ps
 in

 e
xt

en
si

on d)

Fig. 2. Scenarios lengths in analysed use cases a) histogram presents the num-
ber of steps in main scenario (data aggregated from all of the projects), b) box
plot presents the number of steps in main scenario (in each project), c) his-
togram presents the number of steps in extension (data aggregated from all of
the projects), d) box plot presents the number of steps in extension (in each
project, note that project E was excluded because it has all alternative scenarios
written as stories)

used to represent alternative execution paths - conditional clauses (which in fact,
are rather deprecated). Fortunately this kind of statements are observed only in
3.2% of steps (and they occur intensively only in 2 projects).

Analysed properties can be classified into two separate classes. The first one
contains properties which are observed in nearly all of the projects, with com-
parable intensity. Those kind of properties are seem to be independent from
the specification they belong to (from its author’s writing style). The second
class is an opposite one, and includes properties wich are either characteristic
only for a certain set of use cases or their occurrence in different specifications
are in between of two extremes - full presence or marginal/none. Such proper-

6 B. Alchimowicz, J. Jurkiewicz, J. Nawrocki, M. Ochodek

3.5%3.9%9.8%

62.7%

20.1%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 >4

Main actor's steps sequence length

D
e

n
si

ty

0.9%1.9%

13.3%

3.3%

80.6%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 >4
Secondary actor's steps sequence

length

D
e

n
si

ty

a) b)

Fig. 3. Distributions of actors steps-sequences lengths in analysed use cases,
a) histogram presents the length of the steps sequences performed by main actor,
b) histogram presents length of the steps sequences performed by secondary actor
- e.g. System

ties are project-dependent. More detailed description of analysed requirements
specifications is presented in table 2.

4 Building referential specification

Combining use-cases model and average values coming from the analysis, a profile
of the typical use-cases-based requirements specification can be derived. In such
specification all properties would appear with the typical intensity. In other
words, analysis performed on such document could be perceived as an every-day
task for use-cases analysis tools.

There might be at least two approaches to acquire instance of such specifica-
tion. The first one would be to search for the industrial set of use cases, which
would fulfil given criteria. Unfortunately, most of industrial documents are con-
fidential, therefore they could not be used at large scale. The second, obvious
approach would be to develop such specification from scratch. If it is built ac-
cording to the obtained typical-specification profile, it might be used instead of
industrial specification. Since it would describe some abstract system it can be
freely distributed and used by anyone.

Therefore, we would like to propose approach to develop an instance of the
referential specification for the benchmarking purpose. The document is available
at the web site [6] and might be freely used for further research.

Towards Use-Cases Benchmark 7

Table 2. Use-Cases Database analysis according to the presented requirements
specification model (see section 2)

Ov
era

ll
A

B
C

D
E

F
G

H
I

J
K

43
2

17
37

39
77

41
10

90
16

21
9

75
4.8

7
4.7

6
4.9

2
2.9

5
4.3

4
5.7

8
3.9

0
5.1

0
3.3

8
4.3

3
3.6

7
6.3

6
SD

2.4
8

0.9
7

1.4
6

2.6
9

2.2
5

1.2
6

1.2
0

2.4
1

0.5
0

2.0
1

1.3
2

3.2
5

72
.9%

94
.1%

51
.4%

41
.0%

55
.8%

92
.7%

10
0%

68
.9%

81
.3%

90
.5%

55
.6%

98
.7%

1.5
0

1.2
9

0.5
7

0.9
5

0.9
2

1.6
3

1.0
0

1.2
8

2.9
4

2.3
3

1.0
0

2.6
9

SD
1.8

4
0.7

7
0.6

0
1.7

2
1.1

2
0.6

2
0.0

0
1.3

0
2.9

8
1.5

8
1.5

8
2.9

1
2.5

1
1.8

0
2.5

2
1.0

0
1.4

5
N/
A

1.1
0

2.7
7

2.3
0

1.6
4

1.4
4

3.0
9

SD
1.6

2
0.8

4
0.8

7
0.0

0
0.5

9
N/
A

0.3
2

1.8
7

0.6
5

0.6
7

0.5
3

1.8
0

3.0
%

3.7
%

5.5
%

11
.3%

1.8
%

0.0
%

0.0
%

0.0
%

27
.8%

17
.6%

3.0
%

0.0
%

46
.6%

9.1
%

76
.2%

64
.9%

63
.4%

40
.3%

10
0%

50
.4%

78
.7%

89
.8%

10
0%

15
.3%

1
62

.7
%

42
.3
%

93
.1
%

88
.6
%

37
.0
%

61
.9
%

87
.5
%

91
.7
%

47
.4
%

52
.4
%

50
.0
%

52
.6
%

2
20

.1
%

23
.1
%

3.
5%

6.
8%

34
.8
%

36
.1
%

12
.5
%

0.
0%

0.
0%

19
.1
%

42
.9
%

16
.4
%

3
9.
8%

26
.9
%

3.
5%

4.
6%

16
.3
%

0.
0%

0.
0%

8.
3%

31
.6
%

23
.8
%

7.
1%

12
.9
%

4
3.
9%

7.
7%

0.
0%

0.
0%

6.
5%

0.
0%

0.
0%

0.
0%

21
.1
%

0.
0%

0.
0%

8.
6%

>4
3.
5%

0.
0%

0.
0%

0.
0%

5.
4%

2.
1%

0.
0%

0.
0%

0.
0%

4.
8%

0.
0%

9.
5%

1
80

.6
%

82
.6
%

96
.3
%

72
.2
%

67
.9
%

10
0%

10
0%

90
.0
%

50
.0
%

12
.5
%

62
.5
%

72
.1
%

2
13

.3
%

17
.4
%

3.
7%

22
.2
%

29
.6
%

0.
0%

0.
0%

8.
0%

16
.7
%

43
.8
%

37
.5
%

14
.8
%

3
3.
3%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

2.
0%

33
.3
%

25
.0
%

0.
0%

7.
4%

4
1.
9%

0.
0%

0.
0%

5.
6%

2.
5%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

4.
1%

>4
0.
9%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

18
.8
%

0.
0%

1.
6%

38
.0%

0.0
%

0.0
%

10
0%

0.0
%

0.0
%

0.0
%

10
0%

56
.3%

10
0%

0.0
%

6.7
%

13
.7%

0.0
%

0.0
%

0.0
%

32
.5%

0.0
%

0.0
%

0.0
%

0.0
%

0.0
%

0.0
%

44
.2%

1.9
8

0.0
0

0.0
0

0.0
0

3.2
0

0.0
0

0.0
0

0.0
0

0.0
0

0.0
0

0.0
0

1.0
9

SD
1.6

9
N/
A

N/
A

N/
A

2.0
2

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

0.2
9

48
.5%

82
.4%

10
0%

0.0
%

0.0
%

97
.6%

0.0
%

0.0
%

0.0
%

23
.8%

77
.8%

0.0
%

10
.6%

0.0
%

0.0
%

97
.4%

0.0
%

0.0
%

0.0
%

0.0
%

0.0
%

0.0
%

0.0
%

0.0
%

36
.3%

10
0%

10
0%

10
0%

0.0
%

10
0%

0.0
%

0.0
%

68
.8%

57
.1%

0.0
%

0.0
%

3.2
%

1.2
%

1.1
%

17
.4%

0.3
%

0.0
%

0.0
%

0.0
%

0.0
%

0.0
%

0.0
%

9.0
%

6.3
%

0.0
%

0.5
%

0.0
%

0.0
%

0.0
%

25
.6%

14
.2%

0.0
%

0.0
%

6.1
%

33
.3%

71
.9%

27
.3%

10
0%

8.1
%

87
.3%

0.0
%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

28
.1%

72
.7%

0.0
%

91
.9%

12
.7%

10
0%

0.0
%

0.0
%

0.0
%

0.0
%

0.0
%

0.0
%

Pr
op

ert
y

Pr
oje

ct

Requirements specification independent

Nu
mb

er
of

use
 ca

ses
Nu

mb
er
of

ste
ps

in
ma

in
sce

na
rio

Me
an

Us
e c

ase
s w

ith
 ex

ten
sio

ns
Nu

mb
er
of

ext
en
sio

ns
in

use
 ca

se
Me

an

Nu
mb

er
of

ste
ps

in
ext

en
sio

n
Me

an

Ste
ps

wi
th

va
lid

ati
on
 ac

tio
ns

Ex
ten

sio
ns

wh
ich

 ar
e v

ali
da
tio

ns

Ma
in

act
or'
s s
tep

s s
eq
ue
nc
e l
en
gth

in

ma
in

sce
na
rio

Se
co
nd
ary

 ac
tor

's s
tep

s s
eq
ue
nc
e

len
gth

 in
 m
ain

 sc
en
ari

o

Requirements specification dependent

Us
e c

ase
s w

ith
 ad

dit
ion

al
de
scr

ipt
ion

Nu
mb

er
of

use
 ca

ses
 w
ith

 su
b-s

cen
ari

o
Nu

mb
er
of

ste
ps

in
sub

-sc
ena

rio
Me

an

Us
e c

ase
s w

ith
 pr

e-c
on
dit

ion
s

Us
e c

ase
s w

ith
 po

st-
co
nd
itio

ns
Us

e c
ase

s w
ith

 tri
gg
ers

Ste
ps

wi
th

co
nd
itio

na
l c
lau

ses
Nu

mb
er
of

ste
ps

wi
th
ref

ere
nc
e t
o u

se
cas

es
Nu

mb
er
of

ext
en
sio

ns
wi
th

sce
na
rio

Nu
mb

er
of

ext
en
sio

ns
wi
th

sto
rie

s

8 B. Alchimowicz, J. Jurkiewicz, J. Nawrocki, M. Ochodek

4.1 Specification domain and structure

It seems that large number of tools for the use-cases analysis have their roots
in the research community. Therefore the domain of the developed specification
should be easy to understand especially for the academia staff. One of the well-
recognised processes at universities is a students admission process. Although
developed specification will describe hypothetical process and tools, it should be
easy to understand for anyone who have ever participated in a similar process.

Another important decision concerns the structure of the specification (num-
ber of actors, use cases and business objects). Unfortunately the decision is rather
arbitral, because number of use cases, actors and business objects may depend
on the size of the system and level of details incorporated into its description. In
this case a median number of use cases and actors from the UCDB set has been
used as a number of use cases and actors in the constructed specification. The
final specification consist of 7 actors (Administrator, Candidate, Bank, Selec-
tion committee, Students Management System, System, User), 37 use cases (3
business, 33 user, and 1 sub-function level), and 10 business objects.

4.2 Use cases structure

A breadth-first rule has been followed in order to construct referential specifica-
tion. Firstly, all use cases were titled and augmented with descriptions. Secondly,
all of them were filled with main scenarios and corresponding extensions. During
that process all changes made in specification were recorded in order to check
conformance with the typical profile. This iterative approach was used until the
final version of the specification has been constructed. Its profile is presented
in table 3, in comparison to the corresponding average values from the UCDB
projects analysis (main actor’s step sequences lengths for referential specification,
are additionally presented in figure 4). The most important properties are those
which are observed in all of the specifications (specification independent). In case
of those metrics most values in the referential document are very close to those
derived from the analysis. This situation differs in case of properties which were
characteristic only for certain projects (or variability between projects were very
high). If the constructed specification is suppose to be a typical one, it should
not be biased by features observed only in some of the industrial specifications.
Therefore dependent properties were also incorporated into the referential use
cases, however they were not a subject of the tunning process.

5 Benchmarking use cases - case study

Having the example of the typical requirements specification, one can wonder
how it could be used. Firstly, researchers who construct methods and tools in
order to analyse use cases often face the problem of evaluating their ideas. Us-
ing some specification coming from the industrial project is a typical approach,
however, this cannot lead to the conclusion that the given solution would give

Towards Use-Cases Benchmark 9

Table 3. Referential specification profile in comparison to the average profile
derived from the UCDB use-cases analysis

4.89 4.87
SD 1.47 2.48

70.3% 72.92%
1.50 1.50

SD 0.69 1.84
2.49 2.51

SD 2.12 1.62
2.2% 3.0%
46,2% 46.6%
0.6% 3.2%

1 62.3% 62.7%
2 21.3% 20.1%
3 9.8% 9.8%
4 3.3% 3.9%
>4 3.3% 3.5%
1 80.7% 80.6%
2 12.9% 13.3%
3 4.8% 3.3%
4 1.6% 1.9%
>4 0.00% 0.9%

Property
Referential
Specification

Admission System
Observed in Use-
Cases Database

Number of steps in main
scenario

Mean

Use Cases with extensions
Number of extensions in use

case
Mean

Number of steps in extension Mean

Steps of validation nature
Extensions of validation nature
Steps with conditional clauses

Main actor's steps sequence
length in main scenario

Secondary actor's steps sequence
length in main scenario

the same results for other specifications. The situation looks different when the
typical specification is considered, then researchers can assume that their tool
would work for most of the industrial specifications. Secondly, analysts who want
to use some tools to analyse their requirements can have a problem to choose
the best tool that would meet their needs. With the typical specification in mind
it can be easier to evaluate the available solutions and choose the most suitable
one. To conclude the example of the typical requirements specification can be
used:

– to compare two specifications and asses how the given specification is similar
to the typical one

– to asses the time required for a tool to analyse requirement specification
– to asses the quality of a tool/method
– to compare tools and choose the best one

In order to demonstrate the usage of the constructed specification we have
conducted a case study. As a tool for managing requirements in form of use
cases we chose the UC Workbench tool [15], which has been developed at Poz-
nan University of Technology since the year 2005. Additionally we used the set

10 B. Alchimowicz, J. Jurkiewicz, J. Nawrocki, M. Ochodek

3.3%3.3%9.8%

62.3%

21.3%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 >4

Main actor's steps sequence length

D
e

n
si

ty

0.0%1.6%

12.9%
4.8%

80.7%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 >4
Secondary actor's steps

sequence length

D
e

n
si

ty

a) b)

Fig. 4. Distributions of actors steps-sequences lengths in referential specifica-
tion, a) histogram presents the length of the steps sequences performed by main
actor, b) histogram presents length of the steps sequences performed by secondary
actor - e.g. System

of tools for defects detection [4] to analyse the requirements. The aim of the
mentioned tools is to find potential defects and present them to analyst dur-
ing the development of the requirements specification. The tools are based on
the Natural Language Processing (NLP) methods and use Standford parser [7]
and/or OpenNLP [17] tools to perform the NLP analysis of the requirements.

5.1 Quality analysis

In order to evaluate the quality of the used tools, a confusion matrix will be used
[10] (see table 4).

Table 4. Confusion matrix

No

TP FP

No FN TN

Expert answer

Sy
ste

m
an
sw

er Yes

Yes

The symbols used in table 4 are described below:

Towards Use-Cases Benchmark 11

– T (true) - tool answer that is consistent with the expert decision
– F (false) - tool answer that is inconsistent with the expert decision
– P (positive) - system positive answer (defect occurs)
– N (negative) - system negative answer (defect does not occur)

On the basis of the confusion matrix, following metrics [14] can be calculated:

– Accuracy (AC) - proportion of the total number of predictions that were
correct. It is determined using the equation 1.

AC =
TP + TN

TP + FN + FP + TN
(1)

– True positive rate (TP rate) - proportion of positive cases that were correctly
identified, as calculated using the equation 2.

TP rate =
TP

TP + FN
(2)

– True negative rate (TN rate) is defined as the proportion of negatives cases
that were classified correctly, as calculated using the equation: 3.

TN rate =
TN

TN + FP
(3)

– Precision (PR) - proportion of the predicted positive cases that were correct,
as calculated using the equation 4.

PR =
TP

TP + FP
(4)

The referential use-case specification was analysed by the mentioned tools (to
perform the NLP processing Stanford library was used) in order to find 10 types
of defects described in [4]. Aggregated values of the above accuracy-metrics are
as follows:

– AC = 0.99
– TP rate = 0.96
– TN rate = 0.99
– PR = 0.82

This shows that the developed tools for defects detection are rather good,
however, the precision could be better and the researchers could conclude that
more investigation is needed in this area.

If the researchers worked on their tool using only defect-prone or defect-free
specifications the results could be distorted and could lead to some misleading
conclusions (e.g. that the tool is significantly better or that it gives very poor
outcome). Having access to the typical specification allows the researchers to ex-
plore main difficulties the tool can encounter during working with the industrial
specifications.

12 B. Alchimowicz, J. Jurkiewicz, J. Nawrocki, M. Ochodek

5.2 Time analysis

One of the main characteristics of a tool being developed is its efficiency. Not
only developers are interested in this metric, but also for the users - e.g. when
analysts have to choose between two tools which give the same results, they
would choose the one which is more efficient. However, it can be hard to asses
the efficiency just by running the tool with any data, as this may result with
distorted outcome. Use-cases benchmark gives the opportunity to measure the
time, required by a tool to complete its computations, in an objective way. It
can be also valuable for researchers constructing tools to consider using different
third-party components in their applications.

For instance, in case of the mentioned defect-detection tool there is a possi-
bility of using one of the available English grammar parsers. In this case study
two of them will be considered - Standford parser and OpenNLP. If one ex-
changes those components the tool will still be able to detect defects, but its
efficiency and accuracy may change. Therefore, the time analysis was performed
to asses how using those libraries influence the efficiency of the tool. The overall
time required to analyse the typical specification2 for the tool using Stanford
parser was 54.37 seconds and for the one with OpenNLP it was 31.21 seconds.
Although the first time value seems to be large, the examined tool needed on
average 290 ms to analyse a single use-case step, so it should not be a problem
to use it in the industrial environment. Of course, when comparing efficiency,
one have to remember that other factors (like the quality of the results, memory
requirements or the time needed for the initialization of the tools) should be
taken into account, as they can also have significant impact on the tool itself.
Therefore, time, memory usage and quality analysis is presented in table 5. This
summarised statistics allow researchers to choose the best approach for their
work.

Although this specification describes some abstract system, it shows the typ-
ical phenomenon of the industrial requirements specifications. The conducted
case study shows that the developed referential use-case specification can be
used in different ways by both researchers and analysts.

6 Conclusions

In the paper an approach to create a referential use-cases-based requirements
specification was presented.

In order to derive such a specification 432 use cases were analysed. It has
proved that some of the use-case properties are project-independent (are ob-
served in most of the projects). They have been used for creating the referential
specification. On the other hand, there is also a number of properties which
depend very much on the author.
2 Tests were performed for the tools in two versions: with Stanford and OpenNLP
parsers. Each version of the tools analysed the referential specification five times, on
the computer with Pentium Core Duo 2.0GHz processor and 2GB RAM.

Towards Use-Cases Benchmark 13

Table 5. Case-study results (tools are written in Java, so memory was auto-
matically managed – garbage collection)

54.37 0.29 212 37.44 0.8 27 547
31.21 0.17 339 14.58 15.6 226 3925

AC PR
0.99 0.96 0.99 0.82
0.99 0.84 0.99 0.79

Summarised for all components English grammar parser only

English
grammar
parser used

Overall
processing
time [s]

Mean time
needed to
analyse

one step [s]

Maximal
memory
utilization
[MB]

Overall
processing
time [s]

Startup
time [s]

Initial
memory

usage [MB]

Memory usage
while

processing
single element

[KB]
Stanford
OpenNLP

Quality
TP rate TN rate

Stanford
OpenNLP

In order to present potential usage of the benchmark specification, a case
study was conducted. Two sets of tools for defect detection in requirements were
compared from the point of view of efficiency and accuracy.

In the future it would be beneficial to extend the use-case database with
more use-cases coming from commercial projects. This would require an iterative
approach to updating the typical-profile as well as the referential specification.

Acknowledgments. We would like to thank Piotr Godek, Kamil Kwarciak and
Maciej Mazur for supporting us with industrial use cases.

This research has been financially supported by the Polish Ministry of Science
and Higher Education under grant N516 001 31/0269.

References

1. Steve Adolph, Paul Bramble, Alistair Cockburn, and Andy Pols. Patterns for
Effective Use Cases. Addison-Wesley, 2002.

2. B. Anda and D.I.K. Sjøberg. Towards an inspection technique for use case mod-
els. Proceedings of the 14th international conference on Software engineering and
knowledge engineering, pages 127–134, 2002.

3. B. Bernardez, A. Duran, and M. Genero. Empirical Evaluation and Review of
a Metrics-Based Approach for Use Case Verification. Journal of Research and
Practice in Information Technology, 36(4):247–258, 2004.

4. Alicja Ciemniewska, Jakub Jurkiewicz, Jerzy Nawrocki, and Łukasz Olek. Support-
ing use-case reviews. In 10th International Conference on Business Information
Systems, LNCS. Springer Verlag, April 2007.

5. A. Cockburn. Writing effective use cases. Addison-Wesley Boston, 2001.
6. Use Case Database. http://www.ucdb.cs.put.poznan.pl.

14 B. Alchimowicz, J. Jurkiewicz, J. Nawrocki, M. Ochodek

7. Marie-Catherine de Marneffe, B. MacCartney, and Ch. D. Manning. Generating
typed dependency parses from phrase structure parses. In Proceedings of the EACL
workshop on Linguistically Interpreted Corpora (LINC), 2006.

8. C. Denger, B. Paech, and B. Freimut. Achieving high quality of use-case-based
requirements. Informatik-Forschung und Entwicklung, 20(1):11–23, 2005.

9. S. Diev. Use cases modeling and software estimation: applying use case points.
ACM SIGSOFT Software Engineering Notes, 31(6):1–4, 2006.

10. T. Fawcett. Roc graphs: Notes and practical considerations for data mining re-
searchers. 2003.

11. R. Hurlbut. A Survey of Approaches for Describing and Formalizing Use Cases.
Expertech, Ltd, 1997.

12. I. Jacobson. Object-oriented development in an industrial environment. ACM
SIGPLAN Notices, 22(12):183–191, 1987.

13. Ivar Jacobson, Magnus Christerson, Patrick Jonsson, and Gunnar Overgaard.
Object-oriented software engineering: A use case driven approach, 1992.

14. K. Krawiec and J. Stefanowski. Uczenie maszynowe i sieci neuronowe.
Wydawnictwo Politechniki Poznańskiej, 2004.

15. Jerzy Nawrocki and Łukasz Olek. Uc workbench - a tool for writing use cases.
In 6th International Conference on Extreme Programming and Agile Processes,
volume 3556 of LNCS, pages 230–234. Springer Verlag, Jun 2005.

16. CJ Neill and PA Laplante. Requirements Engineering: The State of the Practice.
Software, IEEE, 20(6):40–45, 2003.

17. OpenNLP. http://opennlp.sourceforge.net.
18. PIMS. http://www.mole.ac.uk/lims/project/srs.html.
19. Forrest J. Shull, Jeffrey C. Carver, Siram Vegas, and Natalia Juristo. The role

of replications in empirical software engineering. Empirical Software Engineering,
13(2):211–218, April 2008.

20. S.S. Somé. Supporting use case based requirements engineering. Information and
Software Technology, 48(1):43–58, 2006.

21. UKCDR. http://www.ukoln.ac.uk/repositories/digirep/index
/all_the_scenarios_and_use_cases_submitted#ukcdr.

	Towards Use-Cases Benchmark
	Bartosz Alchimowicz, Jakub Jurkiewicz, Jerzy Nawrocki, Mirosław Ochodek
	Introduction
	Benchmark-oriented model of use-case-based specification
	Analysis of use-cases-based specifications structure
	Building referential specification
	Specification domain and structure
	Use cases structure

	Benchmarking use cases - case study
	Quality analysis
	Time analysis

	Conclusions

