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Abstract. This paper introduces the model-based software development method-
ology SMA—the SmyleModeling Approach-which is centered arourfdmyle a
dedicated learning procedure to support engineers to interactively agsign
models from requirements, characterized as either being desiratiMgosr un-
wanted (negative) system behavior. The learning approach is comptechby
scenario patternsvhere the engineer can specifigarly desired or unwanted be-
havior. This way, user interaction is reduced to the interesting scenaritisigim

the design effort considerably. BMA the learning phase is complemented by an
effective analysis phase that allows for detecting design flaws at dndesign
stage. This paper describes the approach and reports on first @ragperiences.
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1 Introduction

To put it bluntly, software engineering—under the assunmpti@t a requirements ac-
quisition has taken place—amounts to bridging the gap betwespiirements, typically
stated in natural language, and a piece of software. To a@&sstep, in model-driven
design (like MDA), architecture-independetgsign modelare introduced as interme-
diary between requirement specifications and concretecimghtations. These design
models typically describe the control flow, basic modulesamponents, and their in-
teraction. Design models are then refined towards exeeutaldle typically using sev-
eral design steps where system details are incorporateplgasively. Correctness of
these design steps may be checked using, e.g., model chexldeductive techniques.
Problems in software engineering cycles occur if, e.g.nttmaber of requirements
is abundant, they are ambiguous, contradictory, and chamgetime. Evolving re-
quirements may be due to changing user requirements or toaloos system behavior
detected at later design stages and thus occur at all sthtfesaevelopment process.
This paper presentsmvelsoftware engineering lifecycle model based on a new ap-
proach towards requirement specification and high-leveigte It is tailored to the de-
velopment of communicating distributed systems whosewiehean be specified using
sequence diagrams exemplifying either desired or unaksyrgtem runs. A widespread
notation for sequence diagrams is that of message sequearts (MSCs). They have

* This work is partially supported by EGIDE/DAAD (Procope 2008), DORSIR-06-SETIN-
003), and P2R MODISTECOVER.



been adopted by the UML, are standardized by the ITU [22], amedpart of several
requirements elicitation techniques such as CREWS [26].

At the heart of our approach—called the Smyle Modeling Appho&MA)—ded-
icated learning techniquesupport the engineer to interactively obtain implementa-
tion-independent design models from MSCs exemplifyingstfsgem’s behavior. These
techniques are implemented in the t&hyle(Synthesizing models by learning from
examples, cf. [5]). The incremental learning approachnalto gradually develop, re-
fine, and complete requirements, and supports evolvingnergents in a natural man-
ner, rather than requiring a full-fledged set of requirersemptfront. Importantlysmyle
does not only rely on given system behaviors but progrelysasks the engineer to
classify certain corner cases as either desired or unddséteavior, whenever the so-far
provided examples do not allow to uniquely determine a (mai) system model. As
abstract design modelSmylesynthesizes distributed finite-state automata (refeed t
as communicating finite-state machines, or CFMs for shéit)This model is imple-
mentation-independent and describes the local control disviinite automata which
communicate via unbounded order-preserving channels.

The learning approach is complemented by so-catezhario patternsvhere the
engineer can specifylearly desired or unwanted behavior via a dedicated formula edi-
tor. This way, user interaction is reduced to the intergssizenarios limiting the design
effort considerably. Once an initial high-level design een obtained by learning,
SMAsuggests an intensive analysis of the obtained model, firsbimprehensive sim-
ulation and second by checking elementary correctneseprep of the CFM, for ex-
ample by means of model checking or dedicated analysisitiigms [6]. This allows
for an early detection of design flaws. In case of a flaw, i.@me observed behav-
ior should be ruled out or some expected behavior cannotdlzed by the current
model, the learning phase can be continued with the cornelipg scenarios yielding
an adapted design model now reflecting the expected betavitre given scenarios.

A satisfactory high-level design may subsequently be rdfordranslated into, e.g.,
Stateflow diagrams [17] from which executable code is autmaldy generated using
tools as Matlab/Simulink. The final stage 8MAis a model-based testing phase [10]
in which it is checked whether the software conforms to tlyhHevel design descrip-
tion. The MSCs used for formalizing requirements now sewvelastract test cases.
Moreover, supplementary test cases are generated in amateth way. This system-
atic on-the-fly test procedure is supported by tools suctoaX @and TGV [2] that can
easily be plugged in into our design cycle. Again, any teiifa can be described by
MSCs which may be fed back to the learning phase.

Related work. To our best knowledge there is no related work on definingyiéée
models based on learning techniques. However, severabagpes for synthesizing
models based on scenarios are known. In [32, 31], Uchitel. e&eeommend the use
of high-level MSCs (HMSCs) as input for model synthesis. HHigvel MSCs aim at
specifying the overall system behavior, yet are hard to aghpn unwanted behavior
has to be removed or wanted behavior has to be defined. Thepaiilem arises for
Live Sequence Charts or related formalisms [13, 19, 8]. Imega, whenever model-
ing the overall global system behavior, a modification duehtanging requirements is
cumbersome and error prone.



The approaches taken in [25] and [12] are, similarlySasyle based on learning
techniques. The general advantage of learning technigukatichanging requirements
can be incorporated into the learning process. Howevenltarithms of [25] and [12]
both have the drawback that the resulting design model doesatessarily conform
to the given examples and requires that unwanted “[...]Ji@dptcenarios should be de-
tected and excluded” [12], manually, whisanmyledoes conform to the given examples.

A very interesting prospect is described in [18] where Harekents his ideas and
dreams abowgcenario-based programmirand proposes to use learning techniques for
system synthesis. In his vision “[the] programmer teacmesguides the computer to
get toknowabout the system’s intended behavior [...]"—just as it isiatention.

An extended journal version of this paper will be availatdd 4.

Outline.In Section 2 the ingredients for our learning approach aseriteed and com-
plemented by a theoretical result on its feasibility. S#c8 describeSMAIn detail and
compares it to traditional and modern software enginedifiacycle models. In Section
4 we applySMAgradually to a simple example, followed by insights on arustdal
case study in Section 5.

2 Ingredients of the SMA

We now recall message sequence charts (MSCs), commugidaiie-state machines,
describe the gist dmyleand present a logic for specifying sets of MSCs.

2.1 Message Sequence Charts

Message Sequence Charts (MSCs) are an ITU standardizeibn¢®2] for describing
message exchange between concurrent processes. An MS&sdegingle partially
ordered execution sequence of a system. It defines a coteatiprocesses, which are
drawn as vertical lines and interpreted as top-down time.axabeled vertical arrows
represent message exchanges, cf. Figure 1 (a).
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Fig. 1. An MSC (a) and its graph (b)

An MSC can be understood as a graph whose nodes representuoication ac-
tions, e.g., the graph in Figure 1 (b) represents the MSCafrEil (a). A node ogvent



represents the communication action indicated by its |akleére, e.g.1!2(a) stands
for sending a messagefrom 1 to 2, wherea?1(a) is the complementary action of
receivinga from 1 at proces®. The edges reflect causal dependencies between events.
An edge can be of two types: it is eithepeocess edgéproc), describing progress of
one particular process, omaessage eddgensg), relating a send with its corresponding
receive event. This graph can be represented as a partalardommunication events.

In this work we abstract from several features provided leystandard. Many of
them (e.g., local actions, co-regions, etc.) can be easilyded. Some of them, how-
ever, are excluded on purpose: loops and alternatives a@loaed assingleexecu-
tions are to be specified by MSCs. Note that, in corresporelamthe ITU standard
but in contrast to most works on learning MSCs, we considercimmunication of
an MSC to beasynchronousneaning that sending and receiving of a message may be
delayed.

A (finite or infinite) set of MSCs, which we call adSC languagemay represent
a system in the sense that it contains all possible scerthabthe system may exhibit.
MSC languages can be characterized and represented in nasy Mere, the notion
of aregular MSC language is of particular interest, as it comprisesuaggs that are
learnable. Regularity of MSC languages is based on linearizationdéin@arization
of an MSC M is a total ordering of its events that does not contradicttthesitive
closure of the edge relation. Any linearization can be regnéed as a word over the
set of communication actions. Two sample linearizationthefMSC from Figure 1
arel; = 112(a)3!2(¢)273(c)113(0)371(0)3!2(¢)273(c)2?1(a) andly = 3!2(c) 273(c)
112(a) 113(b) 371(b) 3!2(c) 273(c) 271(a). Let Lin(M) denote the set of linearizations
of M and, for set1 of MSCs, letLin(M) denote J ;.\ Lin(M).

2.2 Communicating Finite-State Machines

Regular MSC languages can be naturally and effectivelyémpeited in terms afom-
municating finite-state machiné€FMs) [9]. CFMs constitute an appropriate automa-
ton model for distributed systems where processes aresemed as finite-state au-
tomata that can send messages to one another throughedii&@® channels. We omit
a formal definition of CFMs and instead refer to the exampleiated in Figure 2 il-
lustrating theAlternating Bit Protocol[24, 30]. There, a producer process @nd a
consumer procesg)(exchange messages froff, 1,a}. Transitions are labeled with
communication actions such ak:(0), p?c(a), etc. (abbreviated b, ?a, and so on).
For a concise description of this protocol, see Section 4FMG@ccepts a set of MSCs
in a natural manner. For example, the language of the CFM Figure 2 contains the
MSCs depicted in Figure 4.

Using CFMs, we account for thesynchronousommunication behavior whereas
usually other approaches use synchronous communicatimcdmplicates the under-
lying theory of learning procedures but results in a modat #xactly does what the
user expects and does not represent an over-approximaterformal justification of
using regular MSC languages is given by the following thegrehich states that a set
of MSCs is implementable as a CFM if its set of linearizatignsegular, or if it can be
representedy a regular set of linearizations.
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Fig. 2. Example CFM

Theorem 1 ([20, 15]).LetlM be an MSC language. There is a CFM accepting precisely
the MSCs fromt1, if one of the following holds:

1. The setLin(M) is a regular set of words.

2. There is a channel bounBt and a regular subseL of Lin(M) such that (i) any
MSC froml exhibits a linearization that does not exceBdand (ii) L contains
precisely the linearizations frorhin (M) that do not exceed.

If the regular languages are given as finite automata, we canpute a corresponding
CFM effectively.

2.3 The Gist ofSmyle

Smyleis the learning procedure underlyiggMAand has recently been described in [5].
As input,Smylés given a set1™ of positive scenarios which are desired executions of
the system to be and a 9dt of negative scenarios which should not be observed as
system executions. If the given examples do not indicagamgle conforming model,
Smyle saturatelBoth sets by asking furthguerieswhich are successively presented to
the user who in turn has to classify each of them as eithetip®sir negative resulting
in M+ andM~. Otherwise, a minimal deterministic finite automaton andmespond-
ing CFM accepting the MSCs dfit and rejecting those dfi— are computed. If a
subsequent analysis of the obtained CFM shows that it daesomform to the user’s
intention, it can be refined by providing further examplebécadded ta1+ or M~ and
reinvoking the learning procedure. This process eventuahverges to any intended
CFM [5].

At first sight, one might think that inconsistencies couldrieoduced by the classi-
fications of the presented MSCs. However, this is not passibe to the simple nature
of MSCs: We do not allow branching, if-then-else or loop ¢ands. Thus they can-
not overlap and generate inconsistencies. Note moreoaettta learning algorithm is
deterministic in the following sense: For every (saturatest of examples, the learn-
ing algorithm computes anique CFM. This allows, withinSMA to rely only on all
classified MSCs within a long-term project and to resumeniegrwhenever new re-
quirements arise. Moreover, reclassification in case af@sers is likewise simple.

An important aspect that distinguish&mylefrom others [25, 12] is that the result-
ing CFM is consistent with the set of MSCs that served as inpther approaches



project their learning result onto the processes invohaatepting that the resulting
system is a (coarse) over-approximation.

2.4 MSC Patterns

In order to significantly reduce the number of scenarios #e has to classify during
a learning phase, it is worthwhile to consider a formalisnereh(un)desired behavior
can a priori be specified in terms of logical formulas.

Due to space constraints we only give a superficial desorii how to apply such
a logic within the SMA. A more sophisticated introductiomdae found in [7].

The logic we employ will be used as follows: positive and riegasets of formulas
& and®~ are input by the user, either directly or by annotating MS&sexample
for a negative statement would be, satj)ére are two receipts of the same message
in a row’. An annotated MSC for this example formula is given in Figiér(c). Then,
the learning algorithm can efficiently check for all formsila™ € &+, o~ € ¢~ and
unclassified MSC9/ whetherM [ o+ or M |= ¢~. If so, then the set of negative
samples is updated fal/ } U M~ and otherwise the question is passed to the user.

3 The Smyle Modeling Approach

It is common knowledge [14] that traditional engineerirfgdiycle models like theva-
terfall model[28, 29, 27, 16] or the V-model [27, 29] suffer from some sewvaeficien-
cies, despite their wide use in today’s software developn&me of the problems is that
both models assume (implicitly) that a complete set of negménts can be formulated
at the beginning of the lifecycle. Although in both approegit is possible to revisit a
previously passed phase, this is considered a backwapmstdving time-consuming
reformulation of documents, models, or code produced,icgusgh additional costs.

The nature of a typical software engineering project is, @y, that requirements
are usually incomplete, often contradicting, and freqglyecttanging. A high-level de-
sign, on the other hand, is typically a complete and consistedel that is expected
to conform to the requirements. Thus, especially the stp fiequirements to a high-
level design is a major challenge: The incomplete set ofirements has to be made
complete and inconsistencies have to be eliminated. Andsgire example for incon-
sistencies in industrial-size applications is given byztiwdnn [21] where for the design
and implementation of a part of Signaling System 7 in the 58S®itching system (the
ISDN User-Part protocol defined by the CCITT) “almost 55% lbfequirements from
the original design requirements [...] were proven to béchaly inconsistent [...]".

Moreover, also later stages of the development process oftguire additional
modifications of requirements and the corresponding hégktidesign, either due to
changing user requirements or due to unforeseen techifialifies. Thus, a lifecycle
model should support an easy adaptation of requirementstaiednforming design
model also at later stages. TB®&IAis a new software engineering lifecycle model that
addresses these goals.



3.1 ABird’'s-eye View onSMA

TheSmyle Modeling ApproadqisMA) is a software engineering lifecycle model tailored
to communicating distributed systems. A prerequisitedsyéver, that the participating
units (processes) and their communication actions can bd fixthe first steps of the
development process, before actually deriving a designeinétequirements for the
behavior of the involved processes, however, may be givganels and incomplete first
but are made precise within the process. While clearly natyesrevelopment project
fits these needs, a considerable amount of systems espétidle automotive domain
do.

Within SMA our goal is to round-off requirements, remove inconsigenand to
provide methods catering for modifications of requiremeémister stages of the soft-
ware engineering lifecycle. One of the main challenges tueae these goals is to
come up with simple means for concretizing and completingirements as well as
resolving conflicts in requirements. We attack this intigay hard problem using the
following rationale:

While it is hard to come up with a complete and consistent fbepecification
of the requirements, it is feasible to classify exemplifylehavior as desired
or illegal. (SMArationale)

This rationale builds on the well-known experience that harbeings prefer to ex-
plain, discuss, and argue in terms of example scenariogéuffien overstrained when
having to give precise and universally valid definitionsu$hwhile the general idea
to formalize requirements, for example using temporaldp@ in general desirable,
this formalization is often too cumbersome and therefotecost-effective and the re-
sult is, unfortunately, often too error-prone. This alsstifies our restriction to MSCs
without branching, if-then-else, and loops, when learmagign models: It may be too
error-prone to classify complex MSCs as either wanted oraumed behavior.

Our experience with requirements documents shows thatiedlgerequirements
formulated in natural language are often explained in tesmscenarios, expressing
wanted or unwanted behavior of the system to develop. Aatuitly, it is evident that it
is easier for the customer to judge whether a given simpless@®is intended or not, in
comparison to answering whether a formal specification hestthe customer’s needs.

The key idea o5MAIs therefore to incorporate the novearningalgorithmSmyle
(with supporting tool) [5] forsynthesizinglesign models based on scenarios explaining
requirements. Thus, requirements- and high-level desigaare interweavefimyles
nature is to extend initially given scenarios to consider,dxample, corner cases: It
generatesiew scenarios whose classification as desired or undesiiedispensable
to complete the design model and asks the engineer exaetle $tenarios. Thus, the
learning algorithm actually causes a natural iteratiomefrequirements elicitation and
design model construction phase. Note t8atylesynthesizes a design model that is
indeed consistent with the given scenarios and thus doessphg exhibit the scenario
behavior.

While SMAs initial objective is to elaborate on the inherent cor@spence of re-
quirements and design models by asking for further exegipiif scenarios, it also
provides simple means for modifications of requirementsr lat the design process.



Whenever, for example in the testing phase, a mismatch oftipdementation’s be-

havior and the design model is withessed which can be traaekdtb an invalid design

model, it can be formulated as a negative scenario and cativee tp the learning

algorithm to update the design model. This will, possiblga€onsidering further sce-
narios, modify the design model to disallow the unwantedakie. Thus, necessary
modifications of the current software system in later pha$ése software engineering
lifecycle can easily be fed back to update the design modes. Aigh level of automa-

tion is aimed at an important reduction of development costs

3.2 TheSMA Lifecycle Model in detalil

The Smyle Modeling Approaclef. Figure 3, consists of a requirements phase, a high-
level design phase, a low-level design phase, and a testishgngegration phase. Fol-
lowing modernmodel-basedlesign lifecycle models, the implementation model is
transformed automatically into executable code, as it éseiasingly done in the au-
tomotive and avionics domain.

In the following, the main steps of tHeéMAlifecycle model are described in more
detail, with a focus on the phases depicted in Figure 3.
Derivation of a design modelAccording to Figure 3, the derivation of design models
is divided into three steps: The first phase is cafleenario extraction phase

Based on the usually incomplete system specification thigershas to infer a set
of scenarios which will be used as input3myle*
In thelearning and simulation phasthe designer and client (referred tostiakeholders
in the following) will work hand in hand according to tlesigning-in-pairgparadigm.
The advantage is that both specific knowledge about reqeinesr(contributed by the
customer) and solutions to abstract design questionsr{boted by the designer) coa-
lesce into one model. With its progressive nat@gyleattempts to derive a model by
interactively presenting new scenarios to the stakehshdbich in turn have to classify
them as either positive or negative system behavior. Dubdaevolution of require-
ments implied by this categorization the requirements dwmt should automatically
be updated incorporating the new MSCs. Additionally, thestimportant scenarios are
to be user-annotated with the reason for the particulasifieation to complement the
documentation. When the internal model is complete and stargiwith regard to the
scenarios classified by the stakeholders, the learningedrwe halts an8mylepresents
a frame for simulating and analyzing the current systemhis dedicated simulation
component—depicted in Figure 5 (a) and (c)—the designer asier pursue their
designing-in-pairs task and try to obtain a first impressiothe system to be by execut-
ing events and monitoring the resulting system behavioictiesgh as an MSC. In case
missing requirements are detected the simulator can &xraet of counterexample
MSCs which should again be augmented by the stakeholdersniplete documen-
tation. These MSCs are then introducedSimylewhereupon the learning procedure
continues until reaching the next consistent automaton.

11t is worthwhile to study the results from [23] in this context, which allow to if$Cs from
requirements documents by means of natural language processisgpmentially yielding
(premature) initial behavior.



The Smyle Modelling Approach
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Fig. 3. The Smyle Modeling ApproaciBMA

The designer then advances to fyathesis and analysis phas@ere a distributed
model (a CFM) is synthesized in an automated way. To get dstgnfeedback as
soon as possible in the software engineering lifecyclebaeguent analysis phase asks
for an intensive analysis of the current design model. Citingumodel-checking-like
tools” asMSCan[6] which are designed for checking dedicated propertiesoafimu-
nicating systems might lead to additional knowledge abbetdurrent model and its
implementability. WithMSCanthe designer is able to check for potential deficiencies
of the forthcoming implementation, likeon-local choiceor non-regularity[3, 20], i.e.,
process divergence. The counterexamples generatbtBianare again MSCs and as
such can be fed back to the learning phase.

If the customer and designer are satisfied with the resultltaet’'s presence is not
required anymore and their direct collaboration termisaiote that the design model
obtained at this stage may also serve as a legal contrattdaystem to be built.

2 Note that currently there are no general purpose model checkeEéfds available.



Enhancing the learning proces&Vhile it is hard to come up with a universally valid
specification right in the beginning of the design phaseicaipatternsof clearly al-
lowed or disallowed MSCs usually are observed during thenleg phase. An unclas-
sified MSC has to fulfill all positive patterns and must nofifubny negative pattern
in order to be passed to the designer. In case some posititexrpé not fulfilled or
some negative pattern is fulfilled the scenario is be classdis negative without user
interaction. Roughly speakingmploying a set of formulas in the learning procedure
will further ease the designer’s taslecause she has to classify less scenarios.
Transformation to an implementation moddlhe engineer’s task now is to semi-auto-
matically transform the design model into an implementatimdel. For this purpose
the SMAproposes to employ tools likdatlab Simulinkwhich takes as input for exam-
ple a so-calledtateflow diagranfil 7] and transforms it into an implementation model.
Hence, the manual effort the designer has to perform in theectiphase reduces to
transforming the CFM (as artifact of the design phase) ih®ibput language (e.g.,
Stateflow).

Conformance testingAs early as possible the implementation model should pass a
testing phase before being transformed into real code terlthe risk of severe design
errors and supplementary cos&MA employsmodel-based testinfi0] as it allows

a much more systematic treatment by mechanizing the gémermeatt tests as well as
the test execution phase. Moreover, in 8/ dAthe MSCs classified during the learn-
ing phase and contained in the requirements document edrig additional MSCs
form a natural test suite (a set of tests). If the designeealieta failure during the
testing phase, counterexamples are automatically gexakeaad again the requirements
document is updated accordingly enclosing the new scenarid their corresponding
requirements derived by the designer. At last, the gengstenarios are introduced
into Smyleto refine the model. In practice, model-based testing has ineglemented
in several software tools and demonstrated its power imuarcase studies [11, 10].
Synthesis of code and maintenanétaving converged to a final, consistent implemen-
tation model a code generator is employed for generating skdletons or even entire
code fragments for the distributed system. These fragnteatshave to be completed
by programmers such that afterwards the software can fiballpstalled at the client's
site. If new requirements arise after some operating timbekystem the old design
model can be upgraded by restarting 8/ dA

3.3 SMA vs. other Lifecycle Models

This section briefly compares tf#MAto other well-known traditional and modern
lifecycle models. Due to lack of space, an extended compaiiscluding coarse de-
scriptions of the lifecycle models mentioned below can hatbin [7].

In contrast to traditional lifecycle models like the wetlidwn waterfall- and V-
model inSMArequirements need not be fixed in advance but can be deritecdn
tively while evolving towards a final conforming and validdtmodel. Intensive sim-
ulation and analysis phases reduce the need for costly em@ddbnsuming backward
steps during the software development process. While in rpeogesses the documen-
tation is not regularly updated tf&MAprovides means for extending this documenta-
tion whenever additional information becomes availablen@ared to several modern



lifecycle models like thespiral model[4] andrapid prototyping[14, 29], SMAadapted
the feature of periodic prototype generation in order toatigely improve the design
model by constantly learning from the insights achievedrduthe previous iteration.
But to our opinion it has the extra benefit of only demandindgasification for auto-
matically derived scenarios whereas in other models themgasios have to be derived
manually, first. However, the spiral model describes a meregal process as it aims at
developing large-scale projects while the main applicesicea forSMAIs to be seen in
developing software for embedded systems where the nunfilsemmunication enti-
ties is fixed a priori. Another advantage $MAcompared to, e.g., rapid prototyping is
that for closing the gaps between requirements and desigleltitere is no mandatory
need for highly experienced and thus very expensive desigsopnel. Requirements
engineers with specific domain knowledge, however, arecserfii because design ques-
tions are mainly solved automated by the learning procedutast model we would
like to compareSMAto is theextreme programming modgl] where, similarly, in each
iterationuser storieqi.e., scenarios) are planned for implementation and ezcahd
early testing phases are stipulated. As a further risk smlutechnique both models
employdesigning- and programming-in-pairthus lessening the danger of errors and
lowering the costs of possible redesign or implementation.

4 SMA by example

Our goal now is to derive a model for the well-knoviternating Bit ProtocolABP).
Along the lines of [24, 30], we start with a short requirensedéscription in natural
language. Examining this description, we will identify tparticipating processes and
formulate some initial MSCs exemplifying the behavior of forotocol. These MSCs
will be used as input faBmylewhich in turn will ask us to classify further MSCs, before
deriving a first model of the protocol. Eventually, we comewith a design model for
the ABP matching the model from [30]. However, we refraimfranplementing and
maintaining the example, due to resource constrains.
Problem descriptionThe main aim of the ABP is to assure the reliability of datasra
mission initiated by @roducerthrough arunreliableFIFO (first-in-first-out) channel to
aconsumerHere, unreliable means that data can be corrupted dugangrrission. We
suppose, however, that the consumer is capable of detestioigcorrupted messages.
Additionally, there is a channel from the consumer to thedpoer, which, however, is
assumed to be reliable.

Cr 11 []0C] The protocol now works as follows: ini-
0 0 tially a bit b is set to 0. Theproducerkeeps
sending the value dj until it receives an ac-
0 knowledgment messagdrom the consumer.
: L This affirmation message is sent some time
. after a message of the producer containing the
message conteffit is obtained. After receiv-
ing such an acknowledgment, the producer
€)) (b) inverts the value ob and starts sending the
new value until the next affirmation message

Fig. 4. Two input scenarios fobmyle
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Fig.5. Smylés simulation window: (a) intermediate internal model with missing behauipr (
missing scenario (c) final internal model

is received at the producer. The communication can termiatier any received ac-
knowledgment: that was received at the producer side.

Applying the SMA.We first start with identifying the participating processeshis
protocol: theproducerp and theconsumer. Next, we turn towards th&cenario extrac-
tion phaseand have to come up with a set of initial scenarios. Follovihegproblem
description, we first derive the MSC shown in Figure 4 (a). letnow consider the
behavior caused by the non-reliability of the channel. Waaémagine thap sends a
messag® but, due to channel latency, does not receive a confirmatithinaa certain
time bound and thus sends a seconehile the first one is already being acknowledged
by c. This yields the MSC in Figure 4 (b).

Within the learning phase&Smyleasks us to classify further scenarios —most of
which we are easily able to negate—before providing a firsgdewnodel.

Now the simulation phase is activated (cf. Figure 5 (a)), iehvee can test the current
model. We execute several events as shown in the right pdfigofe 5 (a) and re-
view the model’s behavior. We come across an execution wafeean initial phase of
sending & and receiving the corresponding affirmation we expect t@ondsa similar
behavior as in Figure 4 (b) (but now containing the messagéeotb = 1). Accord-
ing to the problem description this is a feasible protoc@aesion but is not contained
in our system, yet. Thus, we encountered a missing sceridrerefore, we enter the
scenario extraction phasagain, formulate the missing scenario (cf. Figure 5 (b))l an
input it into Smyleas a counterexample.

As before Smylepresents further MSCs that we have to classify: Among otlezs
are confronted with MSCs that (1) do not end with an acknogneehnt (cf. Figure 6
(a)) and with MSCs that (2) have two subsequent acknowledgeents (cf. Figure 6
(c)). Both kinds of behavior are not allowed according togiheblem description. We
identify a pattern in each of these MSCs, by marking the pzrthke MSCs as shown
in Figure 6 (a) and (c), yielding the patterns:

1. Every system run has to finish with an acknowledgement
2. There must never be two subsequent sends or receipts of aaveleklgement.



To tell Smyleto abolish all MSCs fulfilling the patterns we mark them as anted
behavior. Thus, the MSCs from Figure 6 (b) and (d) are autizalbt classified as
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Fig. 6. Some patterns for (un) desired behavior

negative later on. In addition, we reflect these patternbénréquirements documents
by adding, for example, the explanation tlegery system run has to end with an ac-
knowledgmen(cf. (1)) and its formal specification. With the help of thése patterns,
we continue our learning effort and end with the next hypsithafter a total of 55
user queries. Without patterns, we would have needed 70eguddoreover, identify-
ing three more obvious patterns at the beginning of the iegmrocess, we could have
managed to infer the correct design model with only 12 userigs in total. One can
argue that this is a high number of scenarios to classifytisti$ the price one has to
pay for getting an exact system and not an approximation ifidaed can be arbitrarily
inaccurate) as in related approaches.

At the end of the second iteration an intensive simulatiénHigure 5 (c)) does not
give any evidence of wrong behavior. Thus, we enter the aigaphase to check the
model with respect to further properties. For example, wecktwhether the resulting
system can be implemented fixing a maximum channel capatiggvanceMSCan
tells us that the system does not fulfill this property. Tfenewe need to add a (fair)
scheduler to make the protocol work in practice. Accordimgheorem 1 a CFM is
constructed which exactly is the one from Figure 2.

5 SMA in an industrial case study

This section examines a real-world industrial case-stuehved within a project with
a Bavarian automotive manufacturer. The main goal of thisice is not to present a
detailed report of the underlying system and the waySMA was employed but to
share insights acquired while inferring the design modelgithe SMA

The case study describes the functionality of the autoraatimnufacturer’s onboard
diagnostic service integrated into their high-end produmatase the climate control unit
(CCU) of the automobile does not operate as expected a rispgent to theonboard
diagnostic servicavhich in turn initiates a CCU-self-diagnosis and waits fesponse
to the query. After the reply the driver has to be briefed altbe malfunction of the



climate control via the car’s multi-information-displayhe driver is asked to halt at the
next gas station where the onboard diagnostic service cancaties the problems to the
automotive manufacturer’s central server. A diagnosticise is downloaded from the
server and executed locally on the vehicle’s on-board caenptihe diagnostic routine
locates the faulty component within the CCU and sends thiel@noreport back to the

central server. In case of a hardware failure a car garagel d@uinformed and the

replacement part be reordered to minimize the CCU’s dowatifmo hardware failure

is detected a software update (if available) is installeditae CCU reset.

By applyingSMAto the given problem we were able to infer a system model & les
than one afternoon fulfilling exactly the requirements isguebby our customer.
Lessons learned.Throughout the entire process, we applied the designinggirs
paradigm to minimize the danger of misunderstandings asdltreg system flaws.
The early feedback of the simulation and analysis resulidihding missing system
behavior and continuously growing insights—even on ouramsts site—about the
client’s needs. The automated scenario derivation wasftamibe a major gain because
even corner cases (i.e., exceptional scenarios the cliemiod consider) were covered.
As requirements in th&MAare accumulated in an iterative process, growing system
knowledge could be applied to derive new patterns easinddhign task and to obtain
increasingly more elaborate design models. Last but net taon-the-flycompletion
of the requirements document resulted in a complete syséserigtion after finishing
the design phase which could then be used as contract fontiderfiplementation.

Besides all the positive issues we also faced inconvensamnsiag theSMA Finding
an initial set of scenarios turned in some cases out to befiauttiftask. This could
be eased in the future by integrating an approach proposéBjrwhere scenarios
represented as MSCs are derived from natural languagefispions. These could
then smoothly be fed t8myle Moreover, the simulation facilities have to be improved
allowing for random simulations etc.

Additional details on lessons learned can be found in [7].

6 Conclusion

This paper presented a software engineering lifecycle hremtgered around learning
and early analysis in the design trajectory. Our model ignilesd, has been compared
with the main development models, and applied to a toy, asasein industrial exam-

ple. Further applications are planned to show its feagjtaind to refine the method.
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