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Abstract. This paper introduces the model-based software development method-
ologySMA—the SmyleModeling Approach—which is centered aroundSmyle, a
dedicated learning procedure to support engineers to interactively obtain design
models from requirements, characterized as either being desired (positive) or un-
wanted (negative) system behavior. The learning approach is complemented by
scenario patternswhere the engineer can specifyclearlydesired or unwanted be-
havior. This way, user interaction is reduced to the interesting scenarios limiting
the design effort considerably. InSMA, the learning phase is complemented by an
effective analysis phase that allows for detecting design flaws at an early design
stage. This paper describes the approach and reports on first practical experiences.
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1 Introduction

To put it bluntly, software engineering—under the assumption that a requirements ac-
quisition has taken place—amounts to bridging the gap between requirements, typically
stated in natural language, and a piece of software. To ease this step, in model-driven
design (like MDA), architecture-independentdesign modelsare introduced as interme-
diary between requirement specifications and concrete implementations. These design
models typically describe the control flow, basic modules orcomponents, and their in-
teraction. Design models are then refined towards executable code typically using sev-
eral design steps where system details are incorporated progressively. Correctness of
these design steps may be checked using, e.g., model checking or deductive techniques.

Problems in software engineering cycles occur if, e.g., thenumber of requirements
is abundant, they are ambiguous, contradictory, and changeover time. Evolving re-
quirements may be due to changing user requirements or to anomalous system behavior
detected at later design stages and thus occur at all stages of the development process.

This paper presents anovelsoftware engineering lifecycle model based on a new ap-
proach towards requirement specification and high-level design. It is tailored to the de-
velopment of communicating distributed systems whose behavior can be specified using
sequence diagrams exemplifying either desired or undesired system runs. A widespread
notation for sequence diagrams is that of message sequence charts (MSCs). They have
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been adopted by the UML, are standardized by the ITU [22], andare part of several
requirements elicitation techniques such as CREWS [26].

At the heart of our approach—called the Smyle Modeling Approach (SMA)— ded-
icated learning techniquessupport the engineer to interactively obtain implementa-
tion-independent design models from MSCs exemplifying thesystem’s behavior. These
techniques are implemented in the toolSmyle(Synthesizing models by learning from
examples, cf. [5]). The incremental learning approach allows to gradually develop, re-
fine, and complete requirements, and supports evolving requirements in a natural man-
ner, rather than requiring a full-fledged set of requirements up front. Importantly,Smyle
does not only rely on given system behaviors but progressively asks the engineer to
classify certain corner cases as either desired or undesired behavior, whenever the so-far
provided examples do not allow to uniquely determine a (minimal) system model. As
abstract design models,Smylesynthesizes distributed finite-state automata (referred to
as communicating finite-state machines, or CFMs for short) [5]. This model is imple-
mentation-independent and describes the local control flowas finite automata which
communicate via unbounded order-preserving channels.

The learning approach is complemented by so-calledscenario patternswhere the
engineer can specifyclearlydesired or unwanted behavior via a dedicated formula edi-
tor. This way, user interaction is reduced to the interesting scenarios limiting the design
effort considerably. Once an initial high-level design hasbeen obtained by learning,
SMAsuggests an intensive analysis of the obtained model, first by comprehensive sim-
ulation and second by checking elementary correctness properties of the CFM, for ex-
ample by means of model checking or dedicated analysis algorithms [6]. This allows
for an early detection of design flaws. In case of a flaw, i.e., some observed behav-
ior should be ruled out or some expected behavior cannot be realized by the current
model, the learning phase can be continued with the corresponding scenarios yielding
an adapted design model now reflecting the expected behaviorfor the given scenarios.

A satisfactory high-level design may subsequently be refined or translated into, e.g.,
Stateflow diagrams [17] from which executable code is automatically generated using
tools as Matlab/Simulink. The final stage ofSMA is a model-based testing phase [10]
in which it is checked whether the software conforms to the high-level design descrip-
tion. The MSCs used for formalizing requirements now serve as abstract test cases.
Moreover, supplementary test cases are generated in an automated way. This system-
atic on-the-fly test procedure is supported by tools such as TorX and TGV [2] that can
easily be plugged in into our design cycle. Again, any test failure can be described by
MSCs which may be fed back to the learning phase.

Related work. To our best knowledge there is no related work on defining lifecycle
models based on learning techniques. However, several approaches for synthesizing
models based on scenarios are known. In [32, 31], Uchitel et al. recommend the use
of high-level MSCs (HMSCs) as input for model synthesis. High-level MSCs aim at
specifying the overall system behavior, yet are hard to adapt when unwanted behavior
has to be removed or wanted behavior has to be defined. The sameproblem arises for
Live Sequence Charts or related formalisms [13, 19, 8]. In general, whenever model-
ing the overall global system behavior, a modification due tochanging requirements is
cumbersome and error prone.



The approaches taken in [25] and [12] are, similarly asSmyle, based on learning
techniques. The general advantage of learning techniques is that changing requirements
can be incorporated into the learning process. However, thealgorithms of [25] and [12]
both have the drawback that the resulting design model does not necessarily conform
to the given examples and requires that unwanted “[...] implied scenarios should be de-
tected and excluded” [12], manually, whileSmyledoes conform to the given examples.

A very interesting prospect is described in [18] where Harelpresents his ideas and
dreams aboutscenario-based programmingand proposes to use learning techniques for
system synthesis. In his vision “[the] programmer teaches and guides the computer to
get toknowabout the system’s intended behavior [...]”—just as it is ourintention.
An extended journal version of this paper will be available as [7].
Outline.In Section 2 the ingredients for our learning approach are described and com-
plemented by a theoretical result on its feasibility. Section 3 describesSMAin detail and
compares it to traditional and modern software engineeringlifecycle models. In Section
4 we applySMAgradually to a simple example, followed by insights on an industrial
case study in Section 5.

2 Ingredients of theSMA

We now recall message sequence charts (MSCs), communicating finite-state machines,
describe the gist ofSmyleand present a logic for specifying sets of MSCs.

2.1 Message Sequence Charts

Message Sequence Charts (MSCs) are an ITU standardized notation [22] for describing
message exchange between concurrent processes. An MSC depicts a single partially
ordered execution sequence of a system. It defines a collection of processes, which are
drawn as vertical lines and interpreted as top-down time axes. Labeled vertical arrows
represent message exchanges, cf. Figure 1 (a).
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Fig. 1. An MSC (a) and its graph (b)

An MSC can be understood as a graph whose nodes represent communication ac-
tions, e.g., the graph in Figure 1 (b) represents the MSC of Figure 1 (a). A node orevent



represents the communication action indicated by its label, where, e.g.,1!2(a) stands
for sending a messagea from 1 to 2, whereas2?1(a) is the complementary action of
receivinga from 1 at process2. The edges reflect causal dependencies between events.
An edge can be of two types: it is either aprocess edge(proc), describing progress of
one particular process, or amessage edge(msg), relating a send with its corresponding
receive event. This graph can be represented as a partial order of communication events.

In this work we abstract from several features provided by the standard. Many of
them (e.g., local actions, co-regions, etc.) can be easily included. Some of them, how-
ever, are excluded on purpose: loops and alternatives are not allowed assingleexecu-
tions are to be specified by MSCs. Note that, in correspondence to the ITU standard
but in contrast to most works on learning MSCs, we consider the communication of
an MSC to beasynchronousmeaning that sending and receiving of a message may be
delayed.

A (finite or infinite) set of MSCs, which we call anMSC language, may represent
a system in the sense that it contains all possible scenariosthat the system may exhibit.
MSC languages can be characterized and represented in many ways. Here, the notion
of a regular MSC language is of particular interest, as it comprises languages that are
learnable . Regularity of MSC languages is based on linearizations: Alinearization
of an MSCM is a total ordering of its events that does not contradict thetransitive
closure of the edge relation. Any linearization can be represented as a word over the
set of communication actions. Two sample linearizations ofthe MSC from Figure 1
are l1 = 1!2(a)3!2(c)2?3(c)1!3(b)3?1(b)3!2(c)2?3(c)2?1(a) and l2 = 3!2(c) 2?3(c)
1!2(a) 1!3(b) 3?1(b) 3!2(c) 2?3(c) 2?1(a). LetLin(M) denote the set of linearizations
of M and, for setM of MSCs, letLin(M) denote

⋃
M∈M Lin(M).

2.2 Communicating Finite-State Machines

Regular MSC languages can be naturally and effectively implemented in terms ofcom-
municating finite-state machines(CFMs) [9]. CFMs constitute an appropriate automa-
ton model for distributed systems where processes are represented as finite-state au-
tomata that can send messages to one another through reliable FIFO channels. We omit
a formal definition of CFMs and instead refer to the example depicted in Figure 2 il-
lustrating theAlternating Bit Protocol[24, 30]. There, a producer process (p) and a
consumer process (c) exchange messages from{0, 1, a}. Transitions are labeled with
communication actions such asp!c(0), p?c(a), etc. (abbreviated by!0, ?a, and so on).
For a concise description of this protocol, see Section 4. A CFM accepts a set of MSCs
in a natural manner. For example, the language of the CFM fromFigure 2 contains the
MSCs depicted in Figure 4.

Using CFMs, we account for theasynchronouscommunication behavior whereas
usually other approaches use synchronous communication. This complicates the under-
lying theory of learning procedures but results in a model that exactly does what the
user expects and does not represent an over-approximation.The formal justification of
using regular MSC languages is given by the following theorem, which states that a set
of MSCs is implementable as a CFM if its set of linearizationsis regular, or if it can be
representedby a regular set of linearizations.
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Theorem 1 ([20, 15]).LetM be an MSC language. There is a CFM accepting precisely
the MSCs fromM, if one of the following holds:

1. The setLin(M) is a regular set of words.

2. There is a channel boundB and a regular subsetL of Lin(M) such that (i) any
MSC fromM exhibits a linearization that does not exceedB, and (ii) L contains
precisely the linearizations fromLin(M) that do not exceedB.

If the regular languages are given as finite automata, we can compute a corresponding
CFM effectively.

2.3 The Gist ofSmyle

Smyleis the learning procedure underlyingSMAand has recently been described in [5].
As input,Smyleis given a setM+ of positive scenarios which are desired executions of
the system to be and a setM− of negative scenarios which should not be observed as
system executions. If the given examples do not indicate asingleconforming model,
Smyle saturatesboth sets by asking furtherquerieswhich are successively presented to
the user who in turn has to classify each of them as either positive or negative resulting
in M̄+ andM̄−. Otherwise, a minimal deterministic finite automaton and a correspond-
ing CFM accepting the MSCs of̄M+ and rejecting those of̄M− are computed. If a
subsequent analysis of the obtained CFM shows that it does not conform to the user’s
intention, it can be refined by providing further examples tobe added tōM+ or M̄− and
reinvoking the learning procedure. This process eventually converges to any intended
CFM [5].

At first sight, one might think that inconsistencies could beintroduced by the classi-
fications of the presented MSCs. However, this is not possible due to the simple nature
of MSCs: We do not allow branching, if-then-else or loop constructs. Thus they can-
not overlap and generate inconsistencies. Note moreover that the learning algorithm is
deterministic in the following sense: For every (saturated) set of examples, the learn-
ing algorithm computes auniqueCFM. This allows, withinSMA, to rely only on all
classified MSCs within a long-term project and to resume learning whenever new re-
quirements arise. Moreover, reclassification in case of user errors is likewise simple.

An important aspect that distinguishesSmylefrom others [25, 12] is that the result-
ing CFM is consistent with the set of MSCs that served as input. Other approaches



project their learning result onto the processes involved,accepting that the resulting
system is a (coarse) over-approximation.

2.4 MSC Patterns

In order to significantly reduce the number of scenarios the user has to classify during
a learning phase, it is worthwhile to consider a formalism where (un)desired behavior
can a priori be specified in terms of logical formulas.

Due to space constraints we only give a superficial description of how to apply such
a logic within the SMA. A more sophisticated introduction can be found in [7].

The logic we employ will be used as follows: positive and negative sets of formulas
Φ+ andΦ− are input by the user, either directly or by annotating MSCs.An example
for a negative statement would be, say, “there are two receipts of the same message
in a row”. An annotated MSC for this example formula is given in Figure 6 (c). Then,
the learning algorithm can efficiently check for all formulasϕ+ ∈ Φ+, ϕ− ∈ Φ− and
unclassified MSCsM whetherM 6|= ϕ+ or M |= ϕ−. If so, then the set of negative
samples is updated to{M} ∪ M− and otherwise the question is passed to the user.

3 The Smyle Modeling Approach

It is common knowledge [14] that traditional engineering lifecycle models like thewa-
terfall model[28, 29, 27, 16] or the V-model [27, 29] suffer from some severe deficien-
cies, despite their wide use in today’s software development. One of the problems is that
both models assume (implicitly) that a complete set of requirements can be formulated
at the beginning of the lifecycle. Although in both approaches it is possible to revisit a
previously passed phase, this is considered a backwards step involving time-consuming
reformulation of documents, models, or code produced, causing high additional costs.

The nature of a typical software engineering project is, however, that requirements
are usually incomplete, often contradicting, and frequently changing. A high-level de-
sign, on the other hand, is typically a complete and consistent model that is expected
to conform to the requirements. Thus, especially the step from requirements to a high-
level design is a major challenge: The incomplete set of requirements has to be made
complete and inconsistencies have to be eliminated. An impressive example for incon-
sistencies in industrial-size applications is given by Holzmann [21] where for the design
and implementation of a part of Signaling System 7 in the 5ESSR©switching system (the
ISDN User-Part protocol defined by the CCITT) “almost 55% of all requirements from
the original design requirements [...] were proven to be logically inconsistent [...]”.

Moreover, also later stages of the development process often require additional
modifications of requirements and the corresponding high-level design, either due to
changing user requirements or due to unforeseen technical difficulties. Thus, a lifecycle
model should support an easy adaptation of requirements andits conforming design
model also at later stages. TheSMAis a new software engineering lifecycle model that
addresses these goals.



3.1 A Bird’s-eye View onSMA

TheSmyle Modeling Approach(SMA) is a software engineering lifecycle model tailored
to communicating distributed systems. A prerequisite is, however, that the participating
units (processes) and their communication actions can be fixed in the first steps of the
development process, before actually deriving a design model. Requirements for the
behavior of the involved processes, however, may be given vaguely and incomplete first
but are made precise within the process. While clearly not every development project
fits these needs, a considerable amount of systems especially in the automotive domain
do.

Within SMA, our goal is to round-off requirements, remove inconsistencies and to
provide methods catering for modifications of requirementsin later stages of the soft-
ware engineering lifecycle. One of the main challenges to achieve these goals is to
come up with simple means for concretizing and completing requirements as well as
resolving conflicts in requirements. We attack this intrinsically hard problem using the
following rationale:

While it is hard to come up with a complete and consistent formal specification
of the requirements, it is feasible to classify exemplifying behavior as desired
or illegal. (SMArationale)

This rationale builds on the well-known experience that human beings prefer to ex-
plain, discuss, and argue in terms of example scenarios but are often overstrained when
having to give precise and universally valid definitions. Thus, while the general idea
to formalize requirements, for example using temporal logic, is in general desirable,
this formalization is often too cumbersome and therefore not cost-effective and the re-
sult is, unfortunately, often too error-prone. This also justifies our restriction to MSCs
without branching, if-then-else, and loops, when learningdesign models: It may be too
error-prone to classify complex MSCs as either wanted or unwanted behavior.

Our experience with requirements documents shows that especially requirements
formulated in natural language are often explained in termsof scenarios, expressing
wanted or unwanted behavior of the system to develop. Additionally, it is evident that it
is easier for the customer to judge whether a given simple scenario is intended or not, in
comparison to answering whether a formal specification matches the customer’s needs.

The key idea ofSMAis therefore to incorporate the novellearningalgorithmSmyle
(with supporting tool) [5] forsynthesizingdesign models based on scenarios explaining
requirements. Thus, requirements- and high-level design phase are interweaved.Smyle’s
nature is to extend initially given scenarios to consider, for example, corner cases: It
generatesnew scenarios whose classification as desired or undesired is indispensable
to complete the design model and asks the engineer exactly these scenarios. Thus, the
learning algorithm actually causes a natural iteration of the requirements elicitation and
design model construction phase. Note thatSmylesynthesizes a design model that is
indeed consistent with the given scenarios and thus does precisely exhibit the scenario
behavior.

While SMA’s initial objective is to elaborate on the inherent correspondence of re-
quirements and design models by asking for further exemplifying scenarios, it also
provides simple means for modifications of requirements later in the design process.



Whenever, for example in the testing phase, a mismatch of the implementation’s be-
havior and the design model is witnessed which can be traced back to an invalid design
model, it can be formulated as a negative scenario and can be given to the learning
algorithm to update the design model. This will, possibly after considering further sce-
narios, modify the design model to disallow the unwanted behavior. Thus, necessary
modifications of the current software system in later phasesof the software engineering
lifecycle can easily be fed back to update the design model. This high level of automa-
tion is aimed at an important reduction of development costs.

3.2 TheSMA Lifecycle Model in detail

TheSmyle Modeling Approach, cf. Figure 3, consists of a requirements phase, a high-
level design phase, a low-level design phase, and a testing and integration phase. Fol-
lowing modernmodel-baseddesign lifecycle models, the implementation model is
transformed automatically into executable code, as it is increasingly done in the au-
tomotive and avionics domain.

In the following, the main steps of theSMAlifecycle model are described in more
detail, with a focus on the phases depicted in Figure 3.
Derivation of a design model.According to Figure 3, the derivation of design models
is divided into three steps: The first phase is calledscenario extraction phase.

Based on the usually incomplete system specification the designer has to infer a set
of scenarios which will be used as input toSmyle.1

In thelearning and simulation phase, the designer and client (referred to asstakeholders
in the following) will work hand in hand according to thedesigning-in-pairsparadigm.
The advantage is that both specific knowledge about requirements (contributed by the
customer) and solutions to abstract design questions (contributed by the designer) coa-
lesce into one model. With its progressive nature,Smyleattempts to derive a model by
interactively presenting new scenarios to the stakeholders which in turn have to classify
them as either positive or negative system behavior. Due to the evolution of require-
ments implied by this categorization the requirements document should automatically
be updated incorporating the new MSCs. Additionally, the most important scenarios are
to be user-annotated with the reason for the particular classification to complement the
documentation. When the internal model is complete and consistent with regard to the
scenarios classified by the stakeholders, the learning procedure halts andSmylepresents
a frame for simulating and analyzing the current system. In this dedicated simulation
component—depicted in Figure 5 (a) and (c)—the designer and customer pursue their
designing-in-pairs task and try to obtain a first impressionon the system to be by execut-
ing events and monitoring the resulting system behavior depicted as an MSC. In case
missing requirements are detected the simulator can extract a set of counterexample
MSCs which should again be augmented by the stakeholders to complete documen-
tation. These MSCs are then introduced toSmylewhereupon the learning procedure
continues until reaching the next consistent automaton.

1 It is worthwhile to study the results from [23] in this context, which allow to inferMSCs from
requirements documents by means of natural language processing tools, potentially yielding
(premature) initial behavior.



Fig. 3.The Smyle Modeling Approach:SMA

The designer then advances to thesynthesis and analysis phasewhere a distributed
model (a CFM) is synthesized in an automated way. To get diagnostic feedback as
soon as possible in the software engineering lifecycle, a subsequent analysis phase asks
for an intensive analysis of the current design model. Consulting model-checking-like
tools2 asMSCan[6] which are designed for checking dedicated properties ofcommu-
nicating systems might lead to additional knowledge about the current model and its
implementability. WithMSCanthe designer is able to check for potential deficiencies
of the forthcoming implementation, likenon-local choiceor non-regularity[3, 20], i.e.,
process divergence. The counterexamples generated byMSCanare again MSCs and as
such can be fed back to the learning phase.

If the customer and designer are satisfied with the result theclient’s presence is not
required anymore and their direct collaboration terminates. Note that the design model
obtained at this stage may also serve as a legal contract for the system to be built.

2 Note that currently there are no general purpose model checkers for CFMs available.



Enhancing the learning process.While it is hard to come up with a universally valid
specification right in the beginning of the design phase, typical patternsof clearly al-
lowed or disallowed MSCs usually are observed during the learning phase. An unclas-
sified MSC has to fulfill all positive patterns and must not fulfill any negative pattern
in order to be passed to the designer. In case some positive pattern is not fulfilled or
some negative pattern is fulfilled the scenario is be classified as negative without user
interaction. Roughly speaking:employing a set of formulas in the learning procedure
will further ease the designer’s taskbecause she has to classify less scenarios.
Transformation to an implementation model.The engineer’s task now is to semi-auto-
matically transform the design model into an implementation model. For this purpose
theSMAproposes to employ tools likeMatlab Simulinkwhich takes as input for exam-
ple a so-calledStateflow diagram[17] and transforms it into an implementation model.
Hence, the manual effort the designer has to perform in the current phase reduces to
transforming the CFM (as artifact of the design phase) into the input language (e.g.,
Stateflow).
Conformance testing.As early as possible the implementation model should pass a
testing phase before being transformed into real code to lower the risk of severe design
errors and supplementary costs.SMA employsmodel-based testing[10] as it allows
a much more systematic treatment by mechanizing the generation of tests as well as
the test execution phase. Moreover, in theSMA the MSCs classified during the learn-
ing phase and contained in the requirements document enriched by additional MSCs
form a natural test suite (a set of tests). If the designer detects a failure during the
testing phase, counterexamples are automatically generated and again the requirements
document is updated accordingly enclosing the new scenarios and their corresponding
requirements derived by the designer. At last, the generated scenarios are introduced
into Smyleto refine the model. In practice, model-based testing has been implemented
in several software tools and demonstrated its power in various case studies [11, 10].
Synthesis of code and maintenance.Having converged to a final, consistent implemen-
tation model a code generator is employed for generating code skeletons or even entire
code fragments for the distributed system. These fragmentsthen have to be completed
by programmers such that afterwards the software can finallybe installed at the client’s
site. If new requirements arise after some operating time ofthe system the old design
model can be upgraded by restarting theSMA.

3.3 SMA vs. other Lifecycle Models

This section briefly compares theSMA to other well-known traditional and modern
lifecycle models. Due to lack of space, an extended comparison including coarse de-
scriptions of the lifecycle models mentioned below can be found in [7].

In contrast to traditional lifecycle models like the well-known waterfall- and V-
model inSMA requirements need not be fixed in advance but can be derived interac-
tively while evolving towards a final conforming and validated model. Intensive sim-
ulation and analysis phases reduce the need for costly and time-consuming backward
steps during the software development process. While in manyprocesses the documen-
tation is not regularly updated theSMAprovides means for extending this documenta-
tion whenever additional information becomes available. Compared to several modern



lifecycle models like thespiral model[4] andrapid prototyping[14, 29],SMAadapted
the feature of periodic prototype generation in order to iteratively improve the design
model by constantly learning from the insights achieved during the previous iteration.
But to our opinion it has the extra benefit of only demanding a classification for auto-
matically derived scenarios whereas in other models these scenarios have to be derived
manually, first. However, the spiral model describes a more general process as it aims at
developing large-scale projects while the main application area forSMAis to be seen in
developing software for embedded systems where the number of communication enti-
ties is fixed a priori. Another advantage ofSMAcompared to, e.g., rapid prototyping is
that for closing the gaps between requirements and design model there is no mandatory
need for highly experienced and thus very expensive design personnel. Requirements
engineers with specific domain knowledge, however, are sufficient because design ques-
tions are mainly solved automated by the learning procedure. A last model we would
like to compareSMAto is theextreme programming model[1] where, similarly, in each
iterationuser stories(i.e., scenarios) are planned for implementation and regular and
early testing phases are stipulated. As a further risk reduction technique both models
employdesigning- and programming-in-pairs, thus lessening the danger of errors and
lowering the costs of possible redesign or implementation.

4 SMA by example

Our goal now is to derive a model for the well-knownAlternating Bit Protocol(ABP).
Along the lines of [24, 30], we start with a short requirements description in natural
language. Examining this description, we will identify theparticipating processes and
formulate some initial MSCs exemplifying the behavior of the protocol. These MSCs
will be used as input forSmylewhich in turn will ask us to classify further MSCs, before
deriving a first model of the protocol. Eventually, we come upwith a design model for
the ABP matching the model from [30]. However, we refrain from implementing and
maintaining the example, due to resource constrains.
Problem description.The main aim of the ABP is to assure the reliability of data trans-
mission initiated by aproducerthrough anunreliableFIFO (first-in-first-out) channel to
aconsumer. Here, unreliable means that data can be corrupted during transmission. We
suppose, however, that the consumer is capable of detectingsuch corrupted messages.
Additionally, there is a channel from the consumer to the producer, which, however, is
assumed to be reliable.
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Fig. 4.Two input scenarios forSmyle

The protocol now works as follows: ini-
tially a bit b is set to 0. Theproducerkeeps
sending the value ofb until it receives an ac-
knowledgment messagea from the consumer.
This affirmation message is sent some time
after a message of the producer containing the
message contentb is obtained. After receiv-
ing such an acknowledgment, the producer
inverts the value ofb and starts sending the
new value until the next affirmation message
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Fig. 5. Smyle’s simulation window: (a) intermediate internal model with missing behavior (b)
missing scenario (c) final internal model

is received at the producer. The communication can terminate after any received ac-
knowledgmenta that was received at the producer side.
Applying the SMA.We first start with identifying the participating processesin this
protocol: theproducerp and theconsumerc. Next, we turn towards thescenario extrac-
tion phaseand have to come up with a set of initial scenarios. Followingthe problem
description, we first derive the MSC shown in Figure 4 (a). Letus now consider the
behavior caused by the non-reliability of the channel. We could imagine thatp sends a
message0 but, due to channel latency, does not receive a confirmation within a certain
time bound and thus sends a second0 while the first one is already being acknowledged
by c. This yields the MSC in Figure 4 (b).

Within the learning phase,Smyleasks us to classify further scenarios —most of
which we are easily able to negate—before providing a first design model.
Now the simulation phase is activated (cf. Figure 5 (a)), where we can test the current
model. We execute several events as shown in the right part ofFigure 5 (a) and re-
view the model’s behavior. We come across an execution whereafter an initial phase of
sending a0 and receiving the corresponding affirmation we expect to observe a similar
behavior as in Figure 4 (b) (but now containing the message contentb = 1). Accord-
ing to the problem description this is a feasible protocol execution but is not contained
in our system, yet. Thus, we encountered a missing scenario.Therefore, we enter the
scenario extraction phaseagain, formulate the missing scenario (cf. Figure 5 (b)), and
input it intoSmyleas a counterexample.

As before,Smylepresents further MSCs that we have to classify: Among others, we
are confronted with MSCs that (1) do not end with an acknowledgment (cf. Figure 6
(a)) and with MSCs that (2) have two subsequent acknowledgment events (cf. Figure 6
(c)). Both kinds of behavior are not allowed according to theproblem description. We
identify a pattern in each of these MSCs, by marking the partsof the MSCs as shown
in Figure 6 (a) and (c), yielding the patterns:

1. Every system run has to finish with an acknowledgementa.
2. There must never be two subsequent sends or receipts of an acknowledgementa.



To tell Smyleto abolish all MSCs fulfilling the patterns we mark them as unwanted
behavior. Thus, the MSCs from Figure 6 (b) and (d) are automatically classified as

(a) (b) (c) (d)

Fig. 6.Some patterns for (un) desired behavior

negative later on. In addition, we reflect these patterns in the requirements documents
by adding, for example, the explanation thatevery system run has to end with an ac-
knowledgment(cf. (1)) and its formal specification. With the help of thesetwo patterns,
we continue our learning effort and end with the next hypothesis after a total of 55
user queries. Without patterns, we would have needed 70 queries. Moreover, identify-
ing three more obvious patterns at the beginning of the learning process, we could have
managed to infer the correct design model with only 12 user queries in total. One can
argue that this is a high number of scenarios to classify but this is the price one has to
pay for getting an exact system and not an approximation (that indeed can be arbitrarily
inaccurate) as in related approaches.

At the end of the second iteration an intensive simulation (cf. Figure 5 (c)) does not
give any evidence of wrong behavior. Thus, we enter the analysis phase to check the
model with respect to further properties. For example, we check whether the resulting
system can be implemented fixing a maximum channel capacity in advance.MSCan
tells us that the system does not fulfill this property. Therefore we need to add a (fair)
scheduler to make the protocol work in practice. According to Theorem 1 a CFM is
constructed which exactly is the one from Figure 2.

5 SMA in an industrial case study

This section examines a real-world industrial case-study derived within a project with
a Bavarian automotive manufacturer. The main goal of this section is not to present a
detailed report of the underlying system and the way theSMAwas employed but to
share insights acquired while inferring the design model using theSMA.

The case study describes the functionality of the automotive manufacturer’s onboard
diagnostic service integrated into their high-end product. In case the climate control unit
(CCU) of the automobile does not operate as expected a reportis sent to theonboard
diagnostic servicewhich in turn initiates a CCU-self-diagnosis and waits for response
to the query. After the reply the driver has to be briefed about the malfunction of the



climate control via the car’s multi-information-display.The driver is asked to halt at the
next gas station where the onboard diagnostic service communicates the problems to the
automotive manufacturer’s central server. A diagnostic service is downloaded from the
server and executed locally on the vehicle’s on-board computer. The diagnostic routine
locates the faulty component within the CCU and sends the problem report back to the
central server. In case of a hardware failure a car garage could be informed and the
replacement part be reordered to minimize the CCU’s downtime. If no hardware failure
is detected a software update (if available) is installed and the CCU reset.

By applyingSMAto the given problem we were able to infer a system model in less
than one afternoon fulfilling exactly the requirements imposed by our customer.
Lessons learned.Throughout the entire process, we applied the designing-in-pairs
paradigm to minimize the danger of misunderstandings and resulting system flaws.
The early feedback of the simulation and analysis resulted in finding missing system
behavior and continuously growing insights—even on our customers site—about the
client’s needs. The automated scenario derivation was found to be a major gain because
even corner cases (i.e., exceptional scenarios the client did not consider) were covered.
As requirements in theSMAare accumulated in an iterative process, growing system
knowledge could be applied to derive new patterns easing thedesign task and to obtain
increasingly more elaborate design models. Last but not least theon-the-flycompletion
of the requirements document resulted in a complete system description after finishing
the design phase which could then be used as contract for the final implementation.

Besides all the positive issues we also faced inconveniences using theSMA. Finding
an initial set of scenarios turned in some cases out to be a difficult task. This could
be eased in the future by integrating an approach proposed in[23] where scenarios
represented as MSCs are derived from natural language specifications. These could
then smoothly be fed toSmyle. Moreover, the simulation facilities have to be improved
allowing for random simulations etc.

Additional details on lessons learned can be found in [7].

6 Conclusion

This paper presented a software engineering lifecycle model centered around learning
and early analysis in the design trajectory. Our model is described, has been compared
with the main development models, and applied to a toy, as well as an industrial exam-
ple. Further applications are planned to show its feasibility and to refine the method.
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