
Code  Generation for a Bi-dimensional  
Composition Mechanism  

Jacky Estublier1, Anca Daniela Ionita2, Tam Nguyen1  

1LIG-IMAG, 220, rue de la Chimie BP5338041 Grenoble Cedex 9, France 
{Jacky.Estublier, Tam.Nguyen}@imag.fr  

2 Automatic Control and Computers Faculty, Univ. "Politehnica" of Bucharest, 
Spl.Independentei 313, 060042, Bucharest, Romania Anca.Ionita @ aii.pub.ro 

Abstract. Composition mechanisms are intended to build a target system out of 
many independent units. The paper presents how the aspect technology may 
leverage the hierarchical composition, by supporting two orthogonal mecha-
nisms (vertical and horizontal) for composing completely autonomous parts. 
The vertical mechanism is in charge of coordinating heterogeneous compo-
nents,  tools or services at a high level of abstraction, by hiding the technical 
details. The result of such a composition is called “domain” and, at its turn, it 
represents a high granularity unit of reuse. The horizontal mechanism composes 
domains at the level of their abstract concepts, even if they have been inde-
pendently designed and implemented. The paper discusses the formalization of 
the vertical and horizontal compositions, and the wizard we have developed for 
generating the needed code (using Aspect Oriented Programming) in order to 
build the modeled applications.  

Keywords: Model Driven Engineering, code generation, AOP, model composi-
tion, Domain Engineering 

1 Introduction 

Creating software based on already available components is an obvious way to speed 
up the development process and to increase productivity. The “classical” composition 
approach - often referred as CBSE (Component Based Software Engineering) – deals 
with components especially designed to be composed and with a hidden internal 
structure. This approach works well under constraints related to context dependency 
and component homogeneity. These constraints involve a rigid composition mecha-
nism, since components know each other, must have compatible interfaces and must 
comply with the constraints of the same component model, which reduces the likeli-
hood of reuse and prevents from obtaining a large variety of assemblies.   

The paper presents an alternative composition approach, which still sticks to the 
encapsulation principle (parts have a hidden internal structure) and reuse components 
without any change, but which relaxes the composition constraints found in CBSE. 
The aims of this approach can be summarized as below:  
A. The components or, generally speaking, the parts ignore each other and may have 

been designed and developed independently, i.e. they do not call each other; 



B. Composed parts may be of any nature (ad hoc, legacy, commercial, COTS, local 
or distant); 

C. Parts are heterogeneous i.e. they do not need to follow a particular model (com-
ponent model, service etc.); 

D. Parts have to be reused without performing any change on their code.  
To solve the heterogeneity issue (the above mentioned aims B and C), one can 

imagine that the part to be composed is wrapped, directly or indirectly, into a “com-
posable element” [1].  For composing parts that ignore each other and have been de-
signed independently (aim A), there is a need to define a composition mechanism that 
is not based on the traditional method call.  

The publish subscribe mechanism [2] is an interesting candidate, since the compo-
nent that sends events ignores who (if any) is interested in that event, but the receiver 
knows and must declare what it is interested in. If other events, in other topics are 
sent, the receiver code has to be changed. Moreover, the approach works fine only if 
the sender is an active component. Aspect Oriented Software Development (AOSD) 
[3][4] satisfies some of the requirements above, since the sender (the main program) 
ignores and does not call the receiver (the aspects). Unfortunately, the aspect knows 
the internals of the main program, which defeats the encapsulation principle [5] and 
aspects are defined at a low level of abstraction (the code) [6][7]. 

The bi-dimensional composition mechanism presented here is intended to be a so-
lution for such situations. The idea is that the elements to be composed are not tradi-
tional components, but much larger elements, called domains, which do not expose 
simple interfaces, but (domain) models (described in chapter 2). Composition is not 
performed calling component interfaces, but composing such (domain) models. 
Model composition allows the definition of variability points, which make the 
mechanism more flexible than component composition [8]. In contrast with a method 
call, model composition does not require from the models to stick to common inter-
faces, or to know each other, it may even compose independent concepts.  

One of our main goals is also to reuse code without changing it (aim D) because:  
- we have to compose tools, for which we do not have access to the internal code, 
but to an API only - this is what we call vertical composition and results in a so-called 
domain (see chapter 2.1 about the concepts and chapter 3 about the code generation); 
- we want to reuse domains (which may be quite large) without changing them, 
because any change would require new tests and validations. For this purpose, we ap-
ply the horizontal composition (described in chapter 2.2. and 4).  

So, our method is non-invasive, using an implementation based on AOP; the com-
posed domains and their models are totally unchanged and the new code is isolated 
with the help of aspects. However, since the AOP technique is at code level, perform-
ing domain composition has proved to be very difficult in practice; the conceptual 
complexity is increased, due to the necessity to deal with many technical details. The 
solution would be to specify composition at a high, conceptual level and to be able to 
generate the code based on aspects.  

The elevation of crosscutting modeling concerns to first-class constructs has been 
done in [9], by generating weavers from domain specific descriptions, using ECL, an 
extension of OCL (Object Constraint Language). Another weaver constructed with 
domain modeling concepts is presented in [10], while [11] discusses mappings from a 
design-level language, Theme/UML, to an implementation-level language, AspectJ.  



For managing the complexity in a user friendly manner, we propose a conceptual 
framework, such as the AOP code is generated and the user defines the composition at 
a conceptual level, using wizards for selecting among pre-defined properties, instead 
of writing a specification in a textual language. Mélusine is the engineering environ-
ment that assists designers and programmers for developing such autonomous do-
mains, for composing them and for creating applications based on them [1]. Recently, 
Mélusine has been leveraged by a new tool, which supports domain composition by 
generating Java and AspectJ code; it guides the domain expert for performing the 
composition at the conceptual level, as opposed to the programming level.    

Chapters 3 and 4 describe the metamodels that allow code generation for vertical 
and horizontal composition. Chapter 5 compares the approach with respect to other 
related works and evaluates its usefulness when compared with the domain composi-
tions we have performed before the availability of the code generation facility. 

2 A Bi-dimensional Composition Technique  

A possible answer to the requirements presented above is to create units of reuse that 
are autonomous (eliminating dependencies on the context of use) and composable at 
an abstract level (eliminating dependencies on the implementation techniques and de-
tails). The solution presented here combines two techniques (see Fig. 1):  

 
Fig. 1. Bi-dimensional composition mechanism 

- Building autonomous domains using vertical composition - which is a coordina-
tion of heterogeneous and “low level” components or tools, in order to provide an 
homogeneous and autonomous functional unit, called domain; 



- Abstract composition of domains using horizontal composition – performed be-
tween the abstract concepts of independent domains, without modifying their code. 

2.1 Developing Autonomous Domains: Vertical Composition 

Developing a domain can be performed following a top-down or a bottom-up ap-
proach. From a top down perspective, the required functionalities of the domain can 
be specified through a model, irrespective of its underlying technology; then, one 
identifies the software artifacts (available or not) that will be used to implement the 
expected functionality and make them interoperate. From a bottom up perspective, the 
designer already knows the software artifacts that may be used for the implementation 
and will have to interoperate; therefore, the designer has to identify the abstract con-
cepts shared by these software artifacts and how they are supposed to be consistently 
managed; then, one defines how to coordinate the software artifacts, based on the be-
havior of the shared concepts. 

In both cases, the composition is called vertical, because the real software compo-
nents, services or tools are driven based on a high level model of the application The 
model elements are instances of the shared concepts, which are abstractions of the ac-
tual software artifacts. The synchronization between these software artifacts and the 
model means that the evolution of the model is transformed into actions performed by 
the software artifacts.  

The set of the shared concepts and their consistency constraints constitute a domain 
model, to which the application model must conform to. In the Model Driven Engi-
neering (MDE) vocabulary, the domain model is the metamodel of all the application 
models for that domain [6]. For instance, one of our domains, which has been in-
tensely reused, is the Product domain, which will also be presented in the case study 
of this paper. It was developed as a basic versioning system for various products, 
characterised by a map of attributes, according to their type; the versions are stored in 
a tree, consisting of branches and revisions. The domain model of Product domain 
contains the following concepts: Product, Branch, Revision, Attribute, ProductType, 
ProductAttribute, AttributeType (see [8] for a detailed presentation).  

The application models are interpreted by a virtual machine built according to the 
domain model, which orchestrates then the lower level services or tools (see Fig. 1). 
The domain interpreter is realized by Java classes that reify the shared concepts (the 
domain model) and whose methods implement the behavior of these concepts. In 
many cases, these methods are empty because most, if not all, the behavior is actually 
delegated to other software artifacts, with the help of aspect technology. Thus, the 
domain interpreter, also called the domain virtual machine, separates the abstract, 
conceptual part from the implementation, creating architecture with 3 layers [6] (see 
Fig. 1). The domains may be autonomously executed, they do not have dependencies 
and they may be easily used for developing applications (details in chapter 3). 

For the example of Product domain, one of our application models is dedicated to 
the J2EE architecture, versioning typed software artefacts. A Servlet from this appli-
cation model conforms to the concept ProductType from the Product domain model. 
Moreover, in order to assure its persistency, the Product domain interpreter may use 
one of the domain tools, based either on SQL storage, or on the repository of another 



versioning system, like Subversion or CVS. They correspond to the third layer pre-
sented in Fig. 1. The tool is then chosen with respect to the client preference.  

2.2 Abstract Composition of Domains: Horizontal Composition 

It may happen that the development of a new application requires the cooperation of 
two concepts, pertaining to two different domains, and realized through two or more 
software components, services or tools. In this case, the interoperation is performed 
through a horizontal composition between these abstract concepts, and also through 
the domain virtual machines, ignoring the low level components, services, tools used 
for the implementation. The mechanism consists in establishing relationships between 
concepts of the two domain models and implementing them using aspect technology, 
such as to keep the composed domains unchanged. A very strict definition of the hori-
zontal relationship properties is necessary, such as to be able to generate most of the 
AOP code for implementing them. This code belongs to the Composition Virtual Ma-
chine (Fig. 1) and is separated from the virtual machines of the composed domains. 
This composition is called horizontal, because it is performed between parts situated 
at the same level of abstraction. It can be seen as a grey box approach, taking into ac-
count that the only visible part of a domain is its domain model. It is a non-invasive 
composition technique, because the components and adapters are hidden and are re-
used as they are (details in chapter 4).  

The composition result is a new domain model (Fig. 1) and therefore, a new do-
main, with its virtual machine, so that the process may be iterated. As the domains are 
executable and the composition is performed imperatively, its result is immediately 
executable, even if situated at a high level of abstraction. 

Fig. 2 is a real example of two domain models –used and reused in our industrial 
applications. On the left, there is the Activity domain, which supports workflow exe-
cution, while on the right there is the Product domain, meant to store typed products 
and their attributes. The light colored boxes represent the visible concepts (the ab-
stract syntax) used for defining the models with appropriate editors; the dark grey 
ones show the hidden classes, introduced for implementing the interpreters (the vir-
tual machines).  

For each domain, a model is made by instantiating the concepts from the light col-
ored part. Fig. 3 shows an Activity model, conforming to the metamodel from Fig. 2; 
the boxes for Design, Programming and Test are instances of the ActivityDefinition 
concept; connector labels, like requirement, specification etc. are instances of 
DataVariable from Fig. 2. They correspond (conform) to the data types defined in this 
model (Requirement, Specification, Program etc.) shown in the bottom panel. Simi-
larly, a Product model could contain product types, like JML Specification, JavaFile.  

These two models are related together by the horizontal relationships, for example 
there may be a link between the data type Specification from the Activity model and 
the product type JML Specification from the Product model; this link conforms to the 
relationship represented between the concepts DataType and ProductType in Fig. 2. 

 



 
Fig. 2. Activity domain model vs. Product domain model 

3 Generating code for the vertical composition 

The methods defined in a concept are introduced for providing some functionality. In 
most cases, only a part (if any) of the functionality is defined inside the method itself, 
because, most often, the behavior involves the execution of some tools. The concept 
of Feature has been defined to provide the code calling the services that actually im-
plement the expected behavior of the method. Additionally, a feature can implement a 
concern attached to that method, like an optional behavior, as in product line ap-
proaches.  

 



 
Fig. 3. An Activity model (fragment) 

 

 
Fig. 4. Metamodel for the vertical composition 

An abstract service is an abstraction for a set of functionalities defined in a Java in-
terface that are ultimately executed by services / tools supporting the service (i.e. im-
plementing its methods). For example, in Fig. 4, the method getProducts, in class 
ProductType is empty and it is its associated feature that will delegate the call to a da-
tabase in which the actual products are stored. 

More than one feature can be attached to the same method and each feature can ad-
dress a different concern. The word feature is used in the product line approach to ex-
press a possible variability that may be attached to a concept. Our approach is a com-
bination of the product line intention with the AOP implementation [12]. Moreover, 



the purpose is to aid software engineers as much as possible, in the design and devel-
opment of such kind of applications.  

Using the Codèle tool, which “knows” this metamodel, the software engineer sim-
ply creates instances of its concepts (Behavior, Interception, Feature, Service etc.) and 
the tool generates the corresponding code in the Eclipse framework. As well as all 
Mèlusine domain models, Codèle metamodels are implemented with Java, while As-
pectJ, its aspect-oriented extension, is used for delegating the implementation to dif-
ferent tools and/or components (instances of the concept Service).  

The Eclipse mappings currently used in Mélusine environment are presented in 
Table 1. In particular, users never see, and even ignore, that AspectJ code is generated; 
they simply create a feature associated with a concept behavior. A similar idea is pre-
sented in [13], where Xtend and Xpand languages are used for specifying mappings 
from problem to solution space and the code generation is considered to be less error-
prone than the manual coding. 
Table 1.  Mapping on Eclipse Artifacts for the Vertical Composition Metamodel 

Metamodel  
element 

Eclipse artifact Elements generated inside the artifacts 

Domain Project Interfaces for the domain management  
Concept Class Skelton for the methods 
Behavior Method Empty body by default. 
Feature AspectJ Project The AspectJ aspect and a class for the behavior 
Abstract service Project Java interface defining the service interface 
Service  Project An interface and an implementation skeleton 
Interception AspectJ Capture  The corresponding AspectJ code 

4 Generating code for the horizontal composition 

In other similar approaches, as in model collaboration [14], AOP was mentioned as a 
possible solution for implementing the collaboration templates, among service ori-
ented architectures (SOA), orchestration languages or coordination languages. As our 
approach is based on establishing relationships, it can be compared to [15], where the 
properties of AOP concepts are identified (e.g. behavioral and structural cross-cutting 
advices, static and dynamic weaving). Our intention is to identify such properties at a 
more abstract level, because in our approach, aspects only constitute an implementa-
tion technique. The technique we use for generating horizontal composition between 
domains is similar to transforming UML associations into Java code [16], but using 
AOP, because we are not allowed to change the domain code. 

4.1 Meta-Metamodel for the horizontal composition 

To provide an effective support for domain composition, Mélusine requires a specific 
formal definition and semantics. Fig. 5 shows that domain composition relies on 
Horizontal Relationship, made of connections.  



A connection is established between a source concept, pertaining to the source do-
main, and a destination concept in the target domain. A connection intercepts a behav-
ior (method) pertaining to the source concept (class), and performs some computation 
depending on its type: Synchronization, StaticInstantiation, DynamicInstantiation.  

Synchronization connections are meant to synchronize the state of the destination 
object; they intercept all methods that change the state of the source concept, and per-
form the needed actions in order to change the destination concept object accordingly.  

Instantiation connections intercept the creation of an instance of Element conform-
ing to the source concept and are in charge of creating a link toward an instance of 
Element conforming to the destination concept. This instantiation connection may be 
performed statically or dynamically. Statically means that the pair of model elements 
(source, destination) are known and created before execution; dynamically means that 
this pair is computed during the execution, when the source object is created (eager) 
or when the link is needed for the first time (lazy). 

To implement horizontal relationships in AspectJ, each connection is transformed 
into an AspectJ code that calls a method in a class generated by Codèle; users never 
“see” AspectJ code. In practice, the code for horizontal relationships semantics repre-
sents about 15% of the total code. The mappings towards Eclipse artifacts used by 
Mélusine are indicated in the table below. 
Table 2. Mapping between Horizontal Composition concepts and Eclipse Artifacts 

Metamodel element Eclipse  Elements generated inside the artifacts 
Domain Project Predefined interfaces and classes. 
Concept Class None 
Behavior Method None 
HorizontalRelationship AJ Class and 

Java classes 
- an AspectJ file containing the code for 
all the interceptions 
- a Java file for each instantiation connec-
tions 
- a Java file for each synchronization con-
nections 

Interception AspectJ Cap-
ture  

Lines in the AspectJ file for the intercep-
tion, and a java file for the connection 
code. 

 
 
 



  
Fig. 5. Metamodel for the horizontal composition 

 

4.2 Relationships for horizontal composition at metamodel level 

Composing two domains means establishing relationships between the concepts per-
taining to these domains [17]. In our example, one can establish a relationship be-
tween the concept of DataType in the Activity domain, and the concept of Pro-
ductType defined in the Product domain (see Fig. 2). The screen shot in Fig. 6 shows 
how this relationship is defined using Codèle tool. The horizontal relationship is de-
fined as static, because in this specific case, the involved data types are defined in the 
models (Specification from the Activity model - Fig. 3 and UMLDocument from the 
Product model) and therefore are known before the execution. This relationship has a 
single connection, which intercepts the constructor of a ProcessDataType, with the 
type name as parameter, and declares that the relationship should be static and its in-
stantiation should be done automatically, by choosing “Static instantiation Automatic 
selection” (Fig. 6). 



 
Fig. 6. Defining horizontal relationships at metamodel level. 

It is important to mention that the system knows which concepts are visible in each 
domain; thus, the wizard does not allow horizontal relationships that are not valid. 
The interceptions are defined at the conceptual level; the developer of the composite 
domain does not know that AspectJ captures are generated. For the instantiation con-
nections, the wizard proposes a set of predefined instantiation strategies, for which all 
the code is generated (as in our example); for the synchronization connection, the de-
veloper has to fill a method that has as parameters the context of the interception and 
the connection destination object. 

4.3 Relationships for horizontal composition at model level 

At metamodel level, a horizontal relationship definition is established between 2 con-
cepts, i.e. between the Java classes that implement these concepts. However, at execu-
tion, instances of these horizontal relationships must be created between instances of 
these classes. At model level, Codèle proposes an editor that allows the selection of 
two domains (i.e. two domain models and the horizontal relationships defined as 



shown in Fig. 6) and a pair of models pertaining to these domains.  The top left panel 
lists the horizontal relationships (between the Activity and Product domains, in the 
example from Fig. 7). When selecting a horizontal relationship, the two top right pan-
els show the names of the entities that are instances of the source and destination 
classes.  

 

 
Fig. 7. Defining static links at model level 

In our example, the DataType-ProductType horizontal relationship has been se-
lected, for which one displays the corresponding instances, like Specification in the 
Activity domain, and Use Case Document, or JMLSpecification  in the Product do-
main. As this horizontal relationship has been declared Static, the developer is asked 
to provide the pairs of model entities that must be linked, according to that Horizontal 
relationship. Otherwise, they would have been selected automatically, at run time. 
The bottom panel lists the pairs that have been defined. For example, the data type 
called Specification in the Activity domain is related to JML Specification in the 
Product domain. The system finds this information by introspecting the models and is 
in charge of creating these relationships at model level. 

5 Discussion 

In order to make the domain composition task as simple as possible, the metamodels 
presented above take into account the specificities of Mélusine domains. Conse-
quently, the composition we realized is specific for this situation, as opposed to other 
approaches that try to provide mechanisms for composing heterogonous models in 
general contexts, generally without specifying how to implement them precisely. For 
this reason, many researches have tried to find out a generic approach that solves this 
problem, by proposing abstract composition operators, like: match [18], relate [19], 
compare [20]  for discovering correspondences between models;  merge [18], com-



pose [18], weaving [21] for integrating models and sewing [21] for relating models 
without changing their structure.  

The elaboration of metamodels that support code generation in Codèle tool was pos-
sible after years of performing Mélusine’s domain compositions. Through trials and 
errors, we have found recurring patterns of code when defining vertical and horizontal 
relationships and we have been capable of identifying some of their functional and 
non functional characteristics. Codèle embodies and formalizes this knowledge 
through simple panels, such that users “only” need to write code for the non standard 
functionalities. Experience shows that more than half of the code is generated in aver-
age, and that it is the generated code which is error prone, since it manages the low 
level technical code including AOP captures, aspect generation and so on. The user’s 
added code fully ignores the generated one and the existence of AOP; it describes at 
the logical level the added functionality. Experience with Codele has shown a dra-
matic simplification for writing relationship, and the elimination of the most difficult 
bugs. In some cases, the generated code is sufficient, allowing application composi-
tion without any programming.  This experience also led to the definition of a meth-
odology for developing horizontal relationships, described in [17].  

However, many other non functional characteristics could be identified and gener-
ated in the same way, and Codèle can (should) be extended to support them. We have 
also discovered that some, if not most, non functional characteristics cannot be de-
fined as a domain (security, performance, transaction etc.), and therefore these non 
functional properties cannot be added through horizontal relationships. For these 
properties, we have developed another technique, called model annotation, described 
in [22].  

6 Conclusion 

Designing and implementing large and complex artifacts always relies on two basic 
principles: dividing the artifacts in parts (reducing the size and complexity of the each 
part) and abstracting (eliminating the irrelevant details). Our approach is an applica-
tion of these general principles to the development of large software applications. 

The division of applications in parts is performed by reusing large functional areas, 
called domains. Domains are units of reuse, primary elements for dividing the prob-
lem in parts, and atoms on which our composition techniques are applied. To support 
the abstraction principle, the visible part of these domains is their (domain) model; 
conceptually as well as technically, our composition technique only relies on domain 
models. 

A domain is usually implemented by reusing existing parts, found on the market or 
inside the company, which are components or tools of various size and nature. We 
call vertical composition the technique which consists in relating the abstract elements 
found in the domain model, with the existing components found in the company. Re-
use imposes that vertical relationships are implemented, without changing the domain 
concepts, or the existing components. 

In our approach, one develops independent and autonomous domains, which be-
come the primary element for reuse. Domain composition is performed without any 



change in the composed domains, but only through so-called horizontal composition, 
by defining relationships between modeling elements pertaining to the composed do-
mains. 

Domains can be defined and implemented independently of each other. They are 
large reuse units, whose interfaces are abstract models and whose composition is only 
based on the knowledge of these models.  

The necessity to design and implement large applications in the presence of exist-
ing components or tools led us and to develop Mélusine, a comprehensive environ-
ment, for supporting the approach presented in this paper, based on: 
• Formalizing the architectural concepts related to domains, based on modeling and 

metamodeling; 
• Formalizing domain reuse and composition through horizontal relationships; 
• Formalizing component and tool reuse and composition through vertical relation-

ships; 
• Generating aspects as a hidden implementation of these composition concepts. 

 An important goal of our approach is to raise the level of abstraction and the 
granularity level at which large applications are designed, decomposed and recom-
posed.  Moreover, these large elements are highly reusable, because the composition 
only needs to “see” their abstract models, not their implementation. Finally, by relat-
ing domain concepts using wizards, most compositions can be performed by domain 
experts, not necessarily by highly trained technical experts, as it would be the case if 
directly using AOP techniques.  

References 

1. Le-Anh T., Estublier J., Villalobos J.: Multi-Level Composition for Software Federations. 
SC'2003, Warsaw, Poland, April (2003) 

2. Bass L., Clements P., Kazman R.: Software Architecture in Practice. Addison-Wesley 
(2003) 

3. Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C., Loingtier J.-M., Irwin J.: As-
pect-oriented programming. Proceedings of the European Conference on Object-Oriented 
Programming, 1241,  220--242 (1997)  

4. Filman R.E., Elrad T., Clarke S., Aksit M.: Aspect-Oriented Software Development. 
Addison-Wesley Professional  ISBN10: 0321219767 (2004) 

5. Dave, Th.: Reflective Software Engineering - From MOPS to AOSD. Journal Of Object 
Technology, 1(4), September-October (2002) 

6. Estublier J., Vega G., Ionita A.D.: Composing Domain-Specific Languages for Wide-scope 
Software Engineering Applications. Lecture Notes in Computer Science. Proceeding of 
MoDELS/UML Conference, Jamaica 3713, 69 – 83 (2005)   

7. Monga M.: Aspect-oriented programming as model driven evolution. Proceedings of the 
linking aspect technology and evolution workshop (LATE)  Chicago, IL (USA) (2005)  

8. Ionita A. D., Estublier J., Vega G.: Variations in Model-Based Composition of Domains. 
Software and Service Variability Management Workshop, Helsinki, Finland, April (2007) 

9. Gray J., Bapty T., Neema S., Schmidt D.C., Gokhale A., Natarajan B.: An Approach for 
Supporting Aspect-Oriented Domain Modeling. GPCE 2003, LNCS 2830, Springer Verlag 
(2003) 



10. Ho W., Jezequel J.-M., Pennaneac’h F., and Plouzeau N.: A Toolkit for Weaving Aspect-
Oriented UML Designs. First International Conference on Aspect-Oriented Software Devel-
opment, Enschede, The Netherlands, April, 99-105 (2002). 

11. Clarke S., Walker R.: Towards a Standard Design Language for AOSD. Proc. of the 1st Int. 
Conf. on Aspect Oriented Software Development, Enschede, Netherlands, 113-119 (2002)  

12. Estublier J., Vega G.: Reuse and Variability in Large Software Applications. Proceedings of 
the 10th European Software Engineering Conference. Lisbon, Portugal. September (2005)  

13. Voelter M., Groher I.: Product Line Implementation Using Aspect-Oriented and Model-
Driven Software Development. Proc. Of the 11th International Software Prouct Line Confer-
ence (SPLC), Kyoto, Japan (2007) 

14. Occello A., Casile O., Dery-Pinna A., Riveill M.: Making Domain-Specific Models Col-
laborate. Proc. of the 7th  OOPSLA Workshop on Domain-Specific Modeling, Montréal, 
Canada (2007) 

15. Barra Zavaleta E., Génova Fuster G., Llorens Morillo J.: An Approach to Aspect Modelling 
with UML 2.0. UML'2004 Workshop on Aspect-Oriented modeling, Oct. 2004, Lisbon, Por-
tugal (2004) 

16. Génova G., Ruiz del Castillo C., Lloréns J.: Mapping UML Associations into Java Code. 
Journal of Object Technology. 2(5): p. 135-162. Sep-Oct (2003) 

17.  Estublier J., Ionita A. D., Vega G.: Relationships for Domain Reuse and Composition. 
Journal of Research and Practice in Information Technology, 38, 4, 287-301 (2006) 

18. Bernstein, P.A.: Applying model management to classical meta data problems. Proceedings 
of the Conference on Innovative Database Research (CIDR). Janvier 2003: Asilomar, CA, 
USA (2003) 

19. Kurtev, I. and M. Didonet  Del Fabro: A DSL for Definition of Model Composition Opera-
tors. Models and Aspects Workshop at ECOOP. July 2006, Nantes, France (2006) 

20. Kolovos, D.S., R.F. Paige, and F.A.C. Polack: Model Comparison: A Foundation for Model 
Composition and Model Transformation Testing. GaMMa 2006, 1st International Workshop 
on Global Integrated Model Management. Shanghai (2006) 

21. Reiter, T., et al.: Model Integration Through Mega Operations. Workshop on Model-driven 
Web Engineering (MDWE). Sydney (2005) 

22. Stéphanie Chollet, Philippe Lalanda, André Bottaro: Transparently adding security proper-
ties to service orchestration. 3rd International IEEE Workshop on Service Oriented Archi-
tectures in Converging Networked Environments (SOCNE 08). March 2008, Ginowan, Oki-
nawa, Japan (2008) 

 


