
Query Processing Using Negative and Temporal Tuples
in Stream Query Engines

Marcin Gorawski and Aleksander Chrószcz

Silesian University of Technology,
Institute of Computer Science,

Akademicka 16, 44-100 Gliwice Poland
Marcin.Gorawski@polsl.pl, Aleksander.Chroszcz@polsl.pl

Abstract. In this paper, we analyze how stream monotonicity classification can
be adopted for the introduced developed model, which processes both temporal
and negative events. As we show, information about stream monotonicity can be
easily used to optimize individual stream operators as well as a full query plan.
Comparing our stream engine with such engines as CEDR, STREAM and PIPES
we demonstrate how a primary key constraint can be used in different types of
the developed stream schemes. We implemented all of the above techniques in
StreamAPAS.

1 Introduction

The definition of time is the foundation of all stream processing systems. There are
unitemporal, bitemporal and tritemporal stream models. The unitemporal stream model,
adopted by many existing stream systems, describes events with timestamps belonging
to an application domain, whereas the bitemporal stream model supports both applica-
tion time and local processing time ([1]).

The current unitemporal systems can be classified into two groups: one represent-
ing events whose lifetimes are known a priori (e.g. [2,3]) and the other comprising
events whose lifetimes also depend on the facts that will appear later (e.g. [4,5,6,7]).
The second approach to data stream processing is more general. The lifetime of a single
process is decomposed into a positive and a negative tuple that represent the beginning
and the end of the lifetime, respectively. It is worth noticing that a single positive tuple
does not carry the information of its exact or potential duration as it carries a temporal
tuple which contains a start timestamp and an end timestamp.

Our objective is to create a unitemporal stream model which incorporates posi-
tive/negative and temporal tuples. Thanks to this it is easier to develop new operators
in comparison with more general models such as [8,1]. Having joined temporal and
positive/negative approaches, we can more easily control internal tuple collections of
stream operators using both the event approach and the temporal approach. As a result,
we can monitor not only the current operator state but also predict its duration.

Another challenge in designing a continuous query system is to minimize the
amount of storage and computation. In order to show the advantages of our approach,
we compare the join, aggregate, minus and distinct operators defined in different stream
processing systems.

71

Additionally, we also adapt the monotonicity classification [9] to our model in or-
der to optimize implementations of stream operators. This information is also helpful
during the optimization of the full query plan.

2 Concept of Data Stream Processing

2.1 Tuple Lifetime

In contrast to such stream processor architectures as [2,7,3,5,8,10] our stream defini-
tion incorporates positive temporal tuples and negative tuples. Let T be a discrete time
domain. Let I := {[ts, te) | ts, te 2 T ^ ts  te} be the set of time intervals.

Definition 1. Stream: A triple S = (M,ts,te , pk) is a stream, if:

M – is an infinite sequence of tuples (type, e, [ts, te)),
where:

type – tuple type,
e – attributes,
[ts, te) 2 I – start timestamp and end timestamp, respectively.

ts,,te – is the lexicographical order relation over M
(primarily sorting by ts and secondarily by te).

pk – attributes of primary key.

The tuples are of two types: positive temporal and negative. The end timestamp of a po-
sitive temporal tuple defines the upper boundary of the tuple lifetime. When lifetimes of
tuples are known at the time of their generation, the start and end timestamps define the
exact lifetimes. When we do not know the lifetimes of tuples at the time of their genera-
tion, the end timestamps determine the upper boundary of the tuple lifetimes. Negative
tuples expire positive tuples according to the primary key value. In comparison with
positive temporal tuples, negative tuples have zero lifetime periods and are represented
in figures by points.

4 5 6 9

6 4 5 4 5 6 9

4 5 6 9

9

S2

S1

S3

T0 T1 T2 T3 T4 T5 T6 T7

6 4 5 4 5 6 9
 9

4 5 6 9 6 4 5
9

S4

S6

T0 T1 T2 T3 T4 T5 T6 T7

4 5 6 9

S5

Fig. 1. Different stream models.

72

In order to show the flexibility of the defined stream model we compare it with the
existing models.

Let us assume that we are monitoring some real phenomenon, which consists of ele-
mentary processes. They are described by attributes and timestamps. Streams in Fig. 1
illustrate the observation of the same elementary processes but they are represented by
a different stream model. Stream S1 uses two tuples so as to define the lifetime of an
event. Positive tuples signal the beginnings of events and negative ones show the ends.
Knowing the application time and the lifetime period, we can define a time window [7]
which translates the input stream into the collection of valid tuples. For instance, when
the lifetimes of the above processes are constant and equal !, we can only transmit
positive tuples as it is shown on S2. When we know the exact lifetimes of tuples at
the time of their creation, we can use temporal tuples [2] which contain start and end
timestamps, as it is shown on S3. The main advantage of temporal tuples is that they
reduce the amount of transmitted data twice, which is shown on S3. On the other hand,
it becomes complicated to use temporal tuples [2] when their lifetimes are not known
at the time of their creation. In such a case, time is divided into smaller periods. When
a period elapses, there are produced temporal tuples which prolong the lifetimes of
previously sent tuples that are still valid. Nevertheless, this solution generates a lot of
additional data.

The observation of another real phenomenon is illustrated by streams S4, S5 and
S6. Let us assume that we don’t know the lifetimes of events at the time of their cre-
ations. As a result we cannot represent them directly as it is shown on stream S5. The
integration of the temporal stream model and the model of streams with positive and
negative tuples allows as to solve this problem. An example of this model is stream S6.
In this scenario, if we know that a tuple will have been expired by a given time, we
assign this value to the end timestamp. Otherwise we assign infinity. In order to distin-
guish between positive temporal tuples and temporal ones, the broken lines represent
the lifetimes of positive temporal tuples.

2.2 Stream Monotonicity

Depending on the source type, streams transmit either only positive temporal tuples or
both positive temporal tuples and negative ones. The content of streams can be clas-
sified according to their monotonicity. As we show further, this property enables the
stream database to optimize the implementations of operators by using more efficient
tuple collections. In the stream processing system, we borrow the stream monotonicity
classification from [9]. Let Q be a query and ⌧ a point in time. Assume that at ⌧ , all
tuples with lower or equal timestamps have already been processed. The multi-set of
input tuples at time ⌧ is denoted as S(⌧), whereas all the tuples from time 0 to time ⌧
are denoted as S(0, ⌧). Furthermore, let PS(⌧) be the result multi-set produced at time
⌧ and let ES(⌧) be the multi-set of expired tuples at time ⌧ . The equation below defines
the function of the result set update.

8 ⌧ Q(⌧ + 1) = Q(⌧) [PS(⌧ + 1)� ES(⌧ + 1) . (1)

The types of stream monotonicity are defined indirectly. Using the above symbols we
define operators which generate streams of a given monotonicity:

73

1. The monotonic operator is an operator that produces result tuples that never expire.
Formally the property is described as follows: 8 ⌧ 8 S : ES(⌧) = 0.

2. The weakest non-monotonic operator is an operator that produces result tuples
whose lifetime is known and constant. Thanks to this the order in which those tuples
appear at the operator input corresponds to the order of their expiration. This can be
formalized as: 8 ⌧ 8 S 9 c 2 N: ES(⌧) = P(⌧ � c).

3. The weak non-monotonic operator is an operator whose result tuples have diffe-
rent lifetimes but they are still known at the time of their generation. Let us note
that the order of tuple insertion and the order of their expiration are different.
Formally represented, it looks like: 8 ⌧ 8 S 8 S0

: S(0, ⌧) = S0
(0, ⌧), it is true that

8 t 2 PS(0, ⌧) 9 e : t 2 ES(e) ^ t 2 E0
S(e).

4. The strict non-monotonic operator is an operator whose expiration of tuples de-
pends on the input tuples that will arrive in the future. The lifetimes of tuples
are not known at the time of their generation. This can be formalized as follows:
9 ⌧ 9 S 9 S0

: S(0, ⌧) = S0
(0, ⌧) and 9 e 9 t 2 PS(0, ⌧) then t 2 ES(e) ^ t /2 E0

S(e).

The monotonicity of type one says that tuples of a given stream never expire. This
means that streams of this type transmit only positive temporal tuples with infinity as-
signed to end timestamps. The monotonicity of type two is illustrated by S3 in Fig. 1.
Stream S5 exemplifies a stream with monotonicity of type three. The last type of mono-
tonicity is illustrated by S6.

It is worth noticing that the higher the number of stream monotonicity, the more
complicated the architecture of the tuple collection which is linked to a given stream.
Collections connected with streams of monotonicity: 1, 2 and 3 process no negative
tuples. Those collections check only end timestamps so as to find expired tuples. If
a stream is of the weakest non-monotonic type, the order of tuple expiration and their
arrival order are the same. As a result, if a simple list data structure is used, then poten-
tially expired tuples exist only at its beginning. The stream monotonicity of type three
has two potential implementations. The expired tuples can be identified by testing all
the elements of a collection or we can add auxiliary indexes which store tuples in the
end timestamp order.

According to [7], positive tuples and corresponding negative ones have the same
values of attributes except for the flag which distinguishes types of tuples. In order to
speed up finding positive temporal tuples which correspond to given negative tuples,
we have introduced the primary key (PK) into stream schemes. If a stream of strict
non-monotonic type has a defined PK, then we can create an index which simplifies
processing negative tuples. In a traditional DBMS, the PK not only identifies records in
relations but also excludes duplicates from relations. Similarly, if an operator is attached
to a strict non-monotonic stream, it has to filter out duplicates and does not process
them.

3 Stream Operators

It is worth noticing that the chosen stream model determines the lowest latency of re-
sult tuples which can be theoretically achieved. The stream model with temporal tu-
ples assumes that the lifetime of generated tuples can’t be changed (to be more precise

74

shortened). In consequence, some state-full operators (e.g. the aggregation operator)
produces only tuples which elapse by t at time t. In summary, the effect of processing
temporal tuples [ts, te) will be shown at an output stream after processing another tuple
that has a grater ts value. In contrast to that, operators defined in a stream model with
positive/negative tuples always generate the result tuples which correspond to the most
recent state of an operator. Despite the fact that our stream model uses positive temporal
tuples, it doesn’t have the above drawback.

3.1 Join Operator

In Fig. 2, we compare join operators for: a) the model with positive and negative tu-
ples; b) the temporal model; and c) the mixed model. Streams In1 and In2 are the input
streams and Out is the result of a join operator in Fig. 2c). Stream In1 transmits only pos-
itive temporal tuples and In2 transmits both types of tuples. Let us notice that the result
streams Out in Fig. 2b) and Fig. 2c) transmit the same tuples but they have a different
interpretation. The result tuples in Fig. 2b) define their lifetimes precisely, whereas the
result tuples in Fig. 2c) define the upper boundaries of their lifetimes. In contrast to
the stream model with positive and negative tuples, there is no negative result tuples in
Out. This situation occurs because the negative tuples arrive in In2 later than the upper
lifetime boundary of result tuples in Out.

6 4 5 4 5 6 9

4 5 6

9

6

4
5

4 5 6 4 5 6

T0 T1 T2 T3 T4 T5 T6 T7

4 5 6 9

4 5 6

4 5 6

T0 T1 T2 T3 T4 T5 T6 T7

4 5 6 9

4 5 6

4 5 6

6

4
5

T0 T1 T2 T3 T4 T5 T6 T7
a) b) c)

In1

In2

Out

In1

In2

Out

In1

In2

Out

Fig. 2. Join operators for different stream models.

3.2 Aggregate Operator

In order to emphasize differences between implementations of aggregate operators, we
analyze examples of calculating sum aggregates. Although the aggregate operator can
have a defined grouping function on tuple attributes, in order to make figures easier to
follow, we analyze aggregate operators without them.

1. Figure 3a) shows an operator designed to process temporal tuples [2] only. After
a new tuple t enters the operator, the output stream is fed with result tuples whose end
timestamp is lower or equal to the start timestamp of t. This operator puts forward

75

1 2 3 4 5 6 7 8 9 0

1
4

3
2

1

7
9

6
4

5

Time 1 2 3 4 5 6 7 8 9 0

1
4

3
2

1 7 9 6 4 5 null

1-
4-

3-
2-

a) b)

Time

In In

Out Out

Fig. 3. Aggregate operators for different stream models: a) temporal tuples, b) positive/negeative
tuples.

only aggregates whose lifetimes are fully defined. As a result the operator propagates
the current values of aggregates when it receives another tuple.

2. The operator designed to process positive/negative tuples [7] is shown in Fig. 3b).
In order to make this figure easier to follow, we have put the corresponding positive
and negative tuples on the same level. This operator recalculates the aggregate value
and pushes it to the output right after receiving le. Additionally, if we assume that
the latest output value for a group overrides the previous value for the same group
then this operator does not produce negative tuples. Moreover, after processing the
last input tuple for a given group, the operator produces null tuple for this group [7].

3. The aggregate operator that processes streams of type 3) (Fig. 4) produces a tuple
with the current aggregate value immediately after receiving a new tuple, similarly
to the above operator. Aggregates are represented by positive temporal tuples. The
lifetime of tuple t that represents the aggregate belonging to group g tells us when
the aggregate value finally expires according to tuples received by g before t was
produced. The output of this operator is always of strict non-monotonic type.

Now we summarize the aggregate operator for the above stream models:

1. The aggregate operator that processes temporal tuples is always delayed by one
tuple. In consequence, we observe the old aggregate value until a new tuple arrives.
In order to shorten the delay, the authors [2] suggest dividing the lifetime of an ente-
ring tuple into smaller periods. As a result the aggregate operator more frequently
refreshes the output stream. However, it generates more tuples which have to be
processed.

2. The aggregate operator that processes positive/negative tuples is free of the above
imperfection. Figure 3 b) shows a solution which generates only positive tuples.
Let us assume that the aggregate operator has defined grouping attributes. In this
case, when new result tuple tnew is produced, it overrides the previous aggregate
value of the same group as tnew. In consequence, successive operators attached to
this aggregate operator have to know the definition of the grouping function so as to
detect tuples expiration correctly. As a result, attaching subsequent operators to such
an aggregate operator becomes complicated. If we want to avoid this drawback, the
operator has to produce both positive and negative tuples.

76

1 2 3 4 5 6 7 8 9 0

1
4

3
2

1

7

9
2

1-

4-

5

7- Out1

1 5
7 9 2

Out2

In

Time

Fig. 4. Aggregate operator which process positive temporal and negative tuples.

3. Considering our stream model, lifetimes of tuples are determined by either end
timestamps or negative ones. We do not make use of the assumption that a new tuple
overwrites the previous one. Consequently, linking aggregate operators in a query
plan is easy. Moreover, the result aggregates are propagated to the output when a new
tuple arrives, like in the previous operator description.

Now let us compare the aggregate operators with the defined grouping attributes.
The input stream is divided into Ngr groups.

The aggregate operator for model 1) generates result tuples for all Ngr groups after
processing a new input tuple because all aggregates of groups have to be propagated to
the output. The explanation of it is as follows: when a new aggregate is sent to the output
it has to have a defined exact lifetime. In consequence it is generated when another tuple
arrives at the input. Having Ngr groups of aggregates, the next input tuple triggers the
calculation for each group.

The aggregate operator for model 2) updates the aggregate value of the group af-
fected by an input tuple. The number of result tuples depends on the operator configu-
ration. It can generate either positive and negative tuples or only positive tuples like in
Fig. 3b). Even if we consider the configuration which generates positive and negative
tuples, it generates less tuples than the operator defined for mode 1).

The aggregate operator in model 3) updates the aggregate value of the group affected
by an input tuple, similarly to the operator defined on model 2). Positive temporal tuples
determine lifetime boundaries. Thanks to this the operator does not produce as many
tuples as the operator in model 1).

3.3 Stream Compression

When DSMS is loaded, more tuples are stored in stream buffers. In consequence,
a stream operator processes a packet of tuples in one round of a scheduler assignment

77

1 2 3 4 5 6 7 8 9 0

1 1
2 2

2 3
1 4

2 5
1-
-

4

1 1
2 2

2 3
1 4

1-

-
4

2 5

In

Out

Time

Fig. 5. A sample output of the distinct operator attached to a strict non-monotonic stream.

[11]. Let us assume that the aggregate operator buffers the result tuples while proces-
sing this packet. Having processed the last tuple of the packet, the buffer consists of
positive temporal tuples and negative ones. Now we can check if each negative tuple
tn corresponds to a positive temporal tuple tp which also appears in this buffer. If the
above conditions are met, we can reduce those tuples as follows: a positive temporal
tuple tp has updated tp.te = tn.ts and a negative tuple tn is removed. Finally, the buffer
is compressed and subsequently transmitted to the output stream.

3.4 Distinct Operator

The distinct operator uses an internal collection, which contains input tuples as long
as they are valid. The input tuple has attributes DSTAttr which represent distinct values.
When a positive temporal tuple t1 arrives, the internal operator collection is checked
for the existence of DSTAttr values of t1. If not, t1 is propagated to the output and added
to the collection. Otherwise it is only added to the collection. When t1 is terminated by
either the lifetime limit or the corresponding negative tuple, the distinct operator checks
if there is a valid tuple with the same DSTAttr values as t1. If there is such a tuple tnext,
the operator produces a new result which has attribute values from tnext and the lifetime:
start = t1.end, end = tnext.end. Let us consider the monotonicity of the result stream.
If the operator is fed with a strict non-monotonic stream, then the result stream is also
of that type. Otherwise it is of the weak non-monotonic type. A sample output of the
distinct operator is shown in Fig. 5. The numbers printed in black represent DSTAttr,
and the numbers in white are PK. Let us consider a scenario in which negative tuple 2�
arrives at t = 4: < 2, [4, 4) >�. Without knowing the PK value, we cannot chose the
right tuple to remove because both tuples < 2, [2, 4) > and < 2, [3, 5) > have the same
attribute values. On the other hand, they have different lifetimes. Depending on which
tuple was removed, a different result tuple will be produced. In contrast to this operator,
the distinct operator defined for streams with positive and negative tuples [7] does not
have to use the PK. All positive tuples represent an infinite lifetime so that if there exist
duplicates, the operator removes just one of them.

78

The algorithm below gives the pseudo code of the distinct operator which is attached
to the strict non-monotonic stream. This algorithm uses the following collections:

– Hash table, HPK, which stores input tuples sorted by PK.
– Collection, HDST , which contains buckets of tuples sorted by DSTAttr.
– Collection, LExp, which stores input tuples sorted by start and end timestamp.
– Collection, DL, which stores tuples that generate distinct tuples.

Let us notice that the collection HPK can be removed when the operator is attached to
the streams of other monotonicity types.

Operator distinct; main procedure.
Input: t - an incoming tuple

1 RemoveExpiredTuples(t)
2 If t is a positive temporal tuple
3 If t is not found in HPK
4 Add t to HPK
5 Add t to LExp
6 If HDST doesn’t contain bucket for t
7 Create bucket b; add b to HDST
8 Add t to b
9 Add t to DL

10 Produce positive temporal tuple to Output
11 Else
12 Add t to that bucket
13 If t is a negative tuple
14 If t is found in HPK
15 Remove t from HPK
16 Remove t from LExp
17 Get bucket b containing tuple t
18 Remove t from b
19 If b.size() == 0

20 Remove t from DL; produce negative tuple to Output
21 Disconnect b from HDST
22 Else If t 2 DL
23 Remove t from DL; produce negative tuple to Output
24 Add the next tuple from b to DL,
25 Produce new distinct tuple to Output

3.5 Minus Operator
The minus operator calculates S � R and sends the result to stream Out. This operator
uses internal collections one which contains valid tuples from S and the other one con-
tains valid tuples from R. Tuple t at input S (R) has a counterpart in the R (S) collection

79

Procedure: RemoveExpiredTuples(Tuple t) definition.
It removes expired tuples from the collection of the operator.

1 Get next tuple texp to expire from LExp
2 While (texp <> null) and (texp precedes or coexists with t)
3 Get bucket b containing tuple texp
4 Remove t from LExp
5 Remove t from HPK
6 Remove texp from b
7 If b.size() == 0

8 Remove t from DL; produce negative tuple to Output
9 Disconnect b from HDST

10 Else If t 2 DL
11 Remove t from DL; produce negative tuple to Output
12 Add the next tuple from b to DL
13 Produce new distinct tuple to Output
14 Get next tuple texp to expire from LExp

if there exists tuple tR (tS) whose values of attributes AttrR (AttrS) are equal to corre-
sponding values of attributes AttrS (AttrR) of t. Let us consider the following scenario.
Tuple tR arrives at input R and it has its counterpart tS in the S collection. In conse-
quence, the operator produces a negative tuple which terminates corresponding tS. This
scenario shows that even if the input contains only positive temporal tuples the result
may contain negative tuples. Summing up, the minus operator always generates a re-
sult stream of strict non-monotonic type. Fig. 6 shows a sample execution of such an
operator.

4 Tests

We tested the proposed stream compression algorithm in order to check how this algo-
rithm works on the output of an aggregate operator with a defined grouping function. In
this configuration, the distance between the corresponding positive temporal tuple and a
negative one is higher. The number of result tuples which are generated after processing
one input tuple increases as the number of groups increases. Moreover, aggregate ope-
rators produce negative tuples when the tuples that belong to the same group overlap as
it is illustrated in Fig. 4. The above features make this sample query a good benchmark.
Figure 7 shows the query plan, which is a chain composing of a generator, a range win-
dow, a filter operator, an aggregate operator, an map operator and a sink, respectively.
We defined this test in StreamAPAS using the query statement that is shown on the right
side of Fig. 7.

In order to measure the compression efficiency and the latency time of the results,
we present the configurations in which the aggregate operator has enabled or disabled
compression. A single experiment consists of processing 1000 tuples generated by gen1

80

S

R

1 1
2 2

3 3
2-
-

2

1 1
3 2

1 1

1-

-
1

2 2

1 2 3 4 5 6 7 8 9 0 10

1 3
1-

-
3

1 1

1 1
3 3

1-
-

1
2-

-
2

Time

Out

Fig. 6. The example result stream of the operator minus.

µ

range

gen1

out

O1

 O4

O2

O3

O5

O6

 select s{a = $I.valL,
 sum = Agg.sum($I.valD+3),
 min = Agg.min($I.valD), addPK(a)}
 where I{rangeWindow(800)}, $I.valL < 50
 group by I.valL

Fig. 7. The tested query.

for both configurations. Those measures were repeated for the input stream load which
starts from 5000 [tuples/min] to 60000 [tuples/min] produced by generator gen1. The
generator produces a uniform load measured in [tuples/min]. Additionally, for each
tuple the generator assigns a group g 2 0..N using uniform distribution. In our experi-
ments, value N equals 100. Figure 8 shows the changing efficiency of the compression
when the system has a higher load and Fig. 9 compares the latency of result tuples.
The lines named 100N and 100C represent configurations in which compression was
disabled and enabled, respectively.

Figure 8 shows that the compression of the result stream is weaker than it could be
expected. It is caused by the N groups which increase the distance between the corre-
sponding positive temporal and negative tuples. As a result, there is a low probability
that a single packet contains elements that can be reduced. Figure 9 shows that the im-
pact of compression algorithm on the result latency is huge. When the system has a low
load and the compression is enabled, the latency is from 20% to 50% higher. Summing
up, although the stream model that is based on positive temporal and negative tuples
offers a simple stream compression algorithm, its real usability depends on the distance
between the corresponding positive temporal and negative tuples. A similar compres-

81

sion algorithm has been introduced in the systems PIPES and CEDR. In PIPES, the
context of stream compression is different. Let us assume that we have a query plan
with an input stream S. In PIPES, the tuples of stream S can be divided into a series of
tuples 1 time unit in length so as to reduce the result latency of the query plan [2]. In
this configuration, the stream compression efficiency is high.

0 1 2 3 4 5 6
x 104

5

10

15

20

25

30

35

40

45

[tuple/min]

la
te

nc
y[

m
s]

100N
100C

Fig. 8. Compression efficiency.

5 Conclusion

The functionality of operators which have been introduced to stream databases comes
from traditional relational databases. In StreamAPAS, we develop a stream database
which adapts the basis of relational databases and temporal databases [12,13,14] be-
cause they are also oriented towards processing ordered data. In contrast to other sys-
tems, our system processes both temporal positive tuples and the negative ones in
a unitemporal stream model. As a result, this allows us to freely model an expiration
time in a unitemporal stream system, which is useful in many application scenarios.

In contrast to CEDR, we have adopted stream monotonicity classification [9] and
a primary key constraint. Depending on the type of monotonicity, the interpretation
of a positive temporal stream can be simplified. In consequence, the stream operators
do not have to maintain all collections. Additionally, the monotonicity can support the
query model optimization as it was suggested in [9]. We have also introduced a primary
key constraint in order to define the semantics of negative tuples. The current systems

82

0 1 2 3 4 5 6
x 104

650

700

750

800

850

900

950

1000

1050

[tuple/min]

re
su

lt
si

ze

100N
100C

Fig. 9. The impact of compression on latency time.

that process negative tuples assume that each tuple has only one ID attribute which
identifies the corresponding tuple to be removed. This causes the problem of calculating
a new ID attribute for the join operator. In our approach, we have two options. Either
the user can define the function which calculates a new primary key attribute upon the
attributes of the joined tuples, or the user can define the primary key composed from
a few attributes.

Our work aims to research new analytical systems which we name stream data ware-
houses. Traditional data warehouses are designed to separate the loading process (ETL)
from processing analytical queries. Stream data warehouses are to enable users to mo-
nitor the analysis in a continuous way. Therefore, we have introduced a new stream data
model which joins temporal information with tuples. Thanks to this we will be able to
adapt the indexes of data warehouses in the streaming model.

References

1. Barga, R.S., Goldstein, J., Ali, M.H., Hong, M.: Consistent Streaming Through Time: A
Vision for Event Stream Processing. In: CIDR. pp. 363–374 (2007)

2. Krämer, J., Seeger, B.: A Temporal Foundation for Continuous Queries Over Data Streams.
In: COMAD. pp. 70–82 (2005)

3. Krämer, J.: Continuous Queries Over Data Streams Semantics and Implementation. PhD
thesis, Philipps-Universität Marburg (2007)

4. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and Issues in Data Stream
Systems. In: PODS ’02: Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database Systems, pp. 1–16. ACM Press, New York, NY, USA (2002)

83

5. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M.,
Tatbul, N., Zdonik, S.: Aurora: a New Model and Architecture for Data Stream Management.
The VLDB Journal 12(2), 120–139 (2003)

6. Balakrishnan, H., Balazinska, M., Carney, D., Cetintemel, U., Cherniack, M., Convey, Ch.,
Galvez, E., Salz, J., Stonebraker, M., Tatbul, N., Tibbetts, R., Zdonik, S.: Retrospective on
Aurora. The VLDB Journal 13(4), 370–383 (2004)

7. Ghanem, T.M., Hammad, M.A., Mokbel, M.F., Aref, W.G., Elmagarmid, A.K.: Query Pro-
cessing Using Negative Tuples in Stream Query Engines. Technical Report 04-040, Purdue
University (2005)

8. Tucker, P.: Punctuated Data Streams. PhD thesis, OGI School of Science & Technology At
Oregon Heath (2005)

9. Golab, L.: Sliding Window Query Processing over Data Streams. PhD thesis, University of
Waterloo (2006)

10. Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., M. Datar, G.M., Olston, C.,
Rosenstein, J., Varma, R.: Query Processing, Resource Management, and Approximation and
in a Data Stream Management System. In: Proceedings of the First Biennial Conference on
Innovative Data Systems Research (CIDR 2003), pp. 245–256. Asilomar, CA, USA (2003)

11. Babcock, B., Babu, S., Datar, M., Motwani, R.: Chain: Operator Scheduling for Memory
Minimization in Data Stream Systems. In: ACM International Conference on Management
of Data (SIGMOD 2003), pp. 253–264. San Diego, CA, USA (2003)

12. Ozsoyoglu, G., Snodgrass, R.T.: Temporal and Real-time Databases: A Survey. IEEE Trans-
action on Knowledge and Data Engineering 7(4), 513–532 (1995)

13. Slivinskas, G., Jensen, C.S., Snodgrass, R.T.: Query Plans for Conventional and Temporal
Queries Involving Duplicates and Ordering. In: (ICDE’00) Proceedings of the 16th Interna-
tional Conference on Data Engineering, p. 547–558. IEEE Computer Society, Washington,
DC, USA (2000)

14. Slivinskas, G., Jensen, C.S., Snodgrass, R.T.: A Foundation for Conventional and Temporal
Query Optimization Addressing Duplicates and Ordering. IEEE Transaction on Knowledge
and Data Engineering 13(1), 21–49 (2001)

