
Mobile Ambients in Aspect-Oriented Software
Architectures

Nour Ali, Jennifer Pérez, Cristóbal Costa, Isidro Ramos, Jose A. Carsí

Department of Information Systems and Computation
Polytechnic University of Valencia

Camino de Vera s/n
E-46022 Valencia, Spain

{ nourali, jeperez, ccosta, iramos, pcarsi }@dsic.upv.es

Abstract. Nowadays, distributed and mobile systems are acquiring importance
and becoming widely extended for supporting ubiquitous computing. In order
to develop such systems in a technology-independent way, it is important to
have a formalism that describes distribution and mobility at a high abstraction
level. Ambient Calculus is a formalism that allows the representation of
boundaries where computation occurs. Also, distributed and mobile systems are
usually difficult to develop as they need to take into account functional and
non-functional requirements and reusability and adaptability mechanisms. In
order to achieve these needs it is necessary to separate the distribution and mo-
bility concerns from the rest of the concerns. PRISMA is an approach that inte-
grates the advantages of Component-Based Software Development and Aspect-
Oriented Software Development for specifying software architectures. In this
paper, we describe how our work combines Ambient Calculus with PRISMA to
develop distributed and mobile systems gaining their advantages.

1 Introduction

In the last few decades, the information society has undergone important changes.
New technologies have become part of our daily life and the Internet has been estab-
lished as a framework for global knowledge. For these reasons, two important ideas
have been arisen: the world is considered as a whole unit with no boundaries, and
people work in a collaborative way without meeting physically. These ideas have cre-
ated the need for current software development processes to deal with complex struc-
tures, new non-functional requirements, dynamic adaptation, and new technologies. In
addition, most software systems require the capability to work with different devices
(PCs, laptops, PDAs, smart phones, etc) through communication networks in a dis-
tributed and secure way. As a result, software development processes must also take
into account the distributed, ubiquitous and mobile nature of software systems.

The development of distributed, ubiquitous and mobile software systems is a diffi-
cult task, especially if these characteristics are to be considered from the beginning of
the software life cycle. Currently, decisions about these characteristics are usually
postponed to late stages of the software life cycle (design and implementation). As a

Mobile Ambients in Aspect-Oriented Software Architectures 37

result, there is a loss of traceability, and the system is subject to a specific technologi-
cal platform (such as CORBA [1] or .NET Remoting [2]). As a result, the develop-
ment of systems of this kind introduces important challenges such as: how to specify
distribution and mobility features in a technology-independent way, how to consis-
tently manage a distributed state, how to support non-functional requirements such as
security or fault tolerance.

Software Architecture is considered to be the bridge between the requirements and
implementation phases of the software life cycle. Software Architectures describe the
structure of software systems in terms of computational (components) and coordina-
tion (connectors) units of software. Architecture Description Languages (ADLs) spec-
ify the functional and coordination properties of these software units in a formal way.
However, current ADLs do not provide constructs for describing distribution or mo-
bility features in an abstract way.

A formalism that provides mechanisms to describe distribution and mobility prop-
erties is Ambient Calculus (AC) [3]. AC introduces the concept of ambient, which
represents boundaries where computation occurs. Ambients can model the location
hierarchy encountered in distributed systems and model the mobility as the crossing
of the locations boundaries.

PRISMA [4] is an approach that integrates the advantages of Component-Based
Software Development (CBSD) [5] and Aspect-Oriented Software Development
(AOSD) [6] to specify software architectures. This approach has a meta-model [4],
formal Aspect-Oriented Architecture Description Language (AOADL) [7], and a
framework [8].

In this paper, we combine the PRISMA approach and the AC in order to deal with
the specification of distributed and mobile features from the beginning of the software
life cycle in a technology-independent way. In this work, ambients are specified as ar-
chitectural elements that use separation of concerns (aspects) to describe their func-
tionalities.

The paper is structured as follows: Section 2 presents related works performed in
the area of distribution at an architectural level. Section 3 presents the PRISMA ap-
proach and the motivation for the work presented in this paper. Section 4, gives an
overview of AC. Section 5, introduces how the PRISMA approach combines ambi-
ents. Finally, Section 6 presents conclusions and further works.

2 Related Work

One of the reasons why software architectures emerged was to simplify the construc-
tion of dynamic distributed systems. However, at the present time, few ADLs support
the specification of distributed systems properties. The first research that provided
significant results in distributed software architectures was carried out in the Darwin
ADL [9]. Darwin uses S-calculus [10] to define the semantics of distributed message-
passing. It builds architectures by defining composite components that are bound and
given locations at instantiation time. Darwin has also been used in the CORBA envi-
ronment to specify the overall architecture of component-based applications [11].
However, in the literature, we have not found new advances to Darwin in constructing

38 Nour Ali, Jennifer Pérez, Cristóbal Costa, Isidro Ramos, Jose A. Carsí

software architectures with mobile and replicable components. As Darwin is based on
S-calculus only, mobility can only be simulated by the movement of channels. It lacks
primitives to express the movement of crossing boundaries.

The work in [12] states that an ADL should consider features such as composition,
reusability, and configuration in order to specify dynamic distributed software archi-
tectures. It presents a configuration language that describes a method for a reconfigu-
ration model at run-time. However, the reconfiguration model is not formal. More-
over, it neglects a distribution model for specifying distributed message-passing
among components and connectors.

The works of Mascolo and Ciancarini [13,14] introduce MobiS, which is a specifi-
cation language that is based on a tuple-space model that specifies coordination by
multiset rewriting. MobiS can also be used to specify architectures containing mobile
components. However, it does not specify the mobility concern separately from the
rest of the functionalities of the software architectures, reducing reusability and
adaptability to changes.

The ADL C2Sadel has adapted a style to support both distribution and mobility.
The style [15] provides software connectors that are able to move components. It also
has an implementation infrastructure to support this architectural style. However, this
approach has the drawback that there is no separation between coordination and dis-
tribution. Therefore, the components are the only architectural elements that are mo-
bile while the connectors are static.

The work of Lopes in [16] describes the semantics of externalizing a distribution
dimension in order to support distribution and mobility for software architectures.
This distribution dimension is very similar to a connector, but instead of containing
the business logic, it controls the rules for mobility and location. In this way, a separa-
tion between computation, coordination and distribution is achieved. A difference be-
tween our work and Lopes’s work is that our work defines the semantics of distribu-
tion and mobility by using Ambient Calculus. This allows our approach to have an
explicit primitive to represent a location with boundaries allowing the specification of
security and authentication.

3 PRISMA Distribution and Mobile Model

The PRISMA model [4] allows the definition of software architectures of complex
software systems by integrating the AOSD and the CBSD. PRISMA uses the AOSD
to separate the crosscutting concerns (distribution, security, context-aware, coordina-
tion, etc.) of architectures in aspects. The PRISMA architectural elements are speci-
fied using aspects that define their behaviour. As a result, an architectural element
(components and connectors) can be viewed as a prism where each side of the prism
is an aspect (white box view). In addition, an architectural element encapsulates its
functionality and publishes a set of services that it offers to the rest of the architectural
elements (black box view) (see Figure 1).

There are two kinds of architectural elements: components and connectors. A com-
ponent is an architectural element that captures the functionality of software systems
and a connector is an architectural element that acts as a coordinator among other ar-

Mobile Ambients in Aspect-Oriented Software Architectures 39

chitectural elements. Components and connectors are formed by a set of aspects, the
weaving relationships among these aspects, and the ports that offer and request ser-
vices.

A m b ie n t
… …

M o b i l i t y A s p e c t
S e c u r i t y A s p e c t

C a p a b i l i t y
(i n , o u t , o p e n)

M

X T { x }

W e a v i n g

… …

M o b i l i t y A s p e c t
S e c u r i t y A s p e c t

C a p a b i l i t y
(i n , o u t , o p e n)

M

X T { x }

… …

M o b i l i t y A s p e c t
S e c u r i t y A s p e c t

C a p a b i l i t y
(i n , o u t , o p e n)

M

X T { x }

M o b i l i t y A s p e c t
S e c u r i t y A s p e c t

C a p a b i l i t y
(i n , o u t , o p e n)
C a p a b i l i t y
(i n , o u t , o p e n)

M

X T { x }X T { x }

W e a v i n g

A m b ie n t
… …

M o b i l i t y A s p e c t
S e c u r i t y A s p e c t

C a p a b i l i t y
(i n , o u t , o p e n)

M

X T { x }

W e a v i n g

… …

M o b i l i t y A s p e c t
S e c u r i t y A s p e c t

C a p a b i l i t y
(i n , o u t , o p e n)

M

X T { x }

… …

M o b i l i t y A s p e c t
S e c u r i t y A s p e c t

C a p a b i l i t y
(i n , o u t , o p e n)

M

X T { x }

M o b i l i t y A s p e c t
S e c u r i t y A s p e c t

C a p a b i l i t y
(i n , o u t , o p e n)
C a p a b i l i t y
(i n , o u t , o p e n)

M

X T { x }X T { x }

W e a v i n g

Architectural
Element

Port1Port2

White Box View Black Box View

Fig. 1. Views of an Architectural Element

Weavings indicate that the execution of an aspect service can trigger the execution
of services in other aspects. Weavings are the glue of the aspects of an architectural
element. This glue is defined using temporal operations called weaving operators. Ini-
tially, the weaving operators that PRISMA provides are after, before, around, afterif,
beforeif, and insteadif. For example, if a weaving with the after operator is specified
between service s1 of aspect A1 and service s2 of aspect A2, this means that s2 of A2
is executed after s1 of A1.

It is important to emphasize that connectors do not have the references of the com-
ponents that they connect and vice versa. Thus, architectural elements are reusable
and unaware of each other. This is possible due to the fact that the channels (attach-
ments) defined between components and connectors have their references, instead of
architectural elements. Attachments are the channels that enable the communication
between components and connectors. Each attachment is defined by attaching a com-
ponent port with a connector port (represented as lines in Figure 2).

However, when we applied PRISMA to a real case study such as the tele-operated
TeachMover robot local communication was a limitation. Tele-operation systems are
control systems that depend on software to perform their operations. They are usually
robots that perform high-risk activities. For this reason, they must be controlled by
operators from safe areas. As a result, the need to locate components in different
places (nodes) as well as to communicate the distributed software components of the
operator and the robot emerged.

Node 1

 Robot

<<connector>>

CnctRobot

Node 2 Node 1
 Robot

<<connector>>

CnctRobot
Operator

Operator

a) Architecture Configuration between the
Operator and a Tele-Operated Robot

b) The reconfiguration of the architecture
caused by the movement of the Operator

Fig. 2. Mobility of the Operator in a Tele-Operated System

Mobility is also a characteristic that is fundamental in distributed and dynamic sys-
tems, where the topology of the architecture can change at run-time. For example, in
the tele-operated system, the mobility requirement emerges to be able to move the op-
erator to different places (nodes). This mobility is necessary to allow the operator

40 Nour Ali, Jennifer Pérez, Cristóbal Costa, Isidro Ramos, Jose A. Carsí

send commands to the robot from different places, maintaining the information of the
operator component consistent (see Figure 2).

As Figure 2 illustrates, mobility is the process of transferring a component instance
from one node to another one. Moreover, the transfer process must ensure that the
transferred component instance continues its execution at the target node, conserving
its state and maintaining the same execution point.

PRISMA has been adapted to support distribution and mobility properties [17] in
order to be applied to real case studies. Distribution is supported in PRISMA by in-
troducing the following properties into the model:

1. The use of attachments: Attachments store, not only the references of the architec-
tural elements that they are connecting, but also the locations of these architectural
elements (nodes). In this way, the reusability of architectural elements is preserved,
and distributed communication is enabled. As a result, architectural elements are
unaware of the distributed or local nature of the others.

2. The use of a Distribution Aspect: The distribution aspect specifies the features and
strategies that are related to the distributed behaviour of a PRISMA architectural
element. It specifies the site where the architectural element is located and indi-
cates when an element needs to be moved.

This distribution model was initially implemented in the PRISMANET middleware
[8] and has been validated using case studies where distribution properties are re-
quired. However, a model that includes an explicit primitive for supporting locations
as boundaries, describes the location hierarchies and supports the mobility of ele-
ments by the crossing of boundaries is richer. Therefore, we have combined the
PRISMA model and AC.

4 Ambient Calculus

Ambient Calculus [3] (AC) is a process algebra that extends S-calculus [11] in order
to introduce the concept of ambient. An ambient is a bounded place where computa-
tion occurs. Thus, an ambient can be anything with a boundary such as a laptop, a
web page, a folder, etc. Each ambient has a set of running computations that can con-
trol it. These are responsible for moving an ambient. In addition, an ambient can con-
tain other subambients that have running computations.

Thus, mobility is performed at an ambient level, i.e. ambients are mobile. Also,
mobility is performed by crossing boundaries of ambients. AC provides mobility and
local communication primitives. These primitives can be expressed in a textual syntax
and in a graphical syntax which is called Folder Calculus [20] (see Figure 3). Folder
Calculus is a graphical metaphor for AC where ambients are visually represented as
folders.

AC uses some of the constructs inherited from S-calculus such as naming, restric-
tion, parallel processes, inactive process and replication. However, the names in AC
are names of ambients instead of names of channels as in S-calculus. Therefore, in
order to syntactically write that an ambient with name n has process P, it is written as
n[P].

Mobile Ambients in Aspect-Oriented Software Architectures 41

Fig. 3. The Textual and Visual Syntax of Ambient Calculus constructs

Some of the primitives that AC provides are called capabilities. Capabilities are ac-
tions that can be performed on ambients. There are three main types of capabilities:
enter, exit and open capabilities. The enter capability orders an ambient to enter an-
other ambient on its same hierarchy level (see Figure 4). The exit capability orders an
ambient to exit its parent ambient. The open capability dissolves an ambient leaving
the processes that were in it.

Fig. 4. Applying the enter capability to the ambient n

4 AMBIENT-PRISMA: Combining Ambient Calculus and the
PRISMA Approach

This section presents how the AC concepts are integrated to the PRISMA approach in
order to describe distributed and mobile systems. To allow PRISMA architectural
elements to make use of the ambient concept of AC, the ambient construct must be
included in the PRISMA meta-model. Therefore, some mappings between the AC
meta-model and the PRISMA meta-model have been identified.

In [18], it is discussed that an ambient can be seen as a software component that of-
fers mobility and that it has a proper identity at run-time so that it can be maintain-
able. In our model, this corresponds to a PRISMA architectural element. Since
PRISMA architectural elements are components and connectors, an ambient cannot
be a PRISMA Component because a PRISMA component performs the computations.
Nor can the ambient be a PRISMA Connector because a PRISMA Connector coordi-
nates computations. Therefore, in the PRISMA meta-model an ambient is introduced
as a new type of architectural element (see Figure 5) that is responsible for providing
mobility sevices to distributed architectural elements. As a result, an ambient inherits
all the characteristics of a PRISMA architectural element (its CBSD view and its
AOSD view) and provides its proper semantics. Figure 6 shows the graphical repre-

42 Nour Ali, Jennifer Pérez, Cristóbal Costa, Isidro Ramos, Jose A. Carsí

sentation of a PRISMA ambient. The graphical representation preserves the folder
calculus representation of an ambient. The Ambient CBSD view describes it as a
black box where it communicates with others by using ports that send and receive in-
vocations of services.

Fig. 5. Including the Ambient as another architectural element

An ambient has a collection of local agents and can also have other subambients
[18]. In PRISMA, the local agents correspond to components that are coordinated us-
ing connectors. Ambients in PRISMA are complex architectural elements that repre-
sent the places where components, connectors and other ambients are located. In addi-
tion, by allowing an ambient to have other ambients inside it, the hierarchy of
distributed and mobile systems can be modelled in PRISMA.

Ambient
… …

Mobility Aspect
Security Aspec

t

Capability
(in, out, open)

M

X T{x}

Weaving

… …

Mobility Aspect
Security Aspec

t

Capability
(in, out, open)

M

X T{x}

… …

Mobility Aspect
Security Aspec

t

Capability
(in, out, open)

M

X T{x}

Mobility Aspect
Security Aspec

t

Capability
(in, out, open)
Capability
(in, out, open)

M

X T{x}X T{x}

Weaving

Ambient
… …

Mobility Aspect
Security Aspec

t

Capability
(in, out, open)

M

X T{x}

Weaving

… …

Mobility Aspect
Security Aspec

t

Capability
(in, out, open)

M

X T{x}

… …

Mobility Aspect
Security Aspec

t

Capability
(in, out, open)

M

X T{x}

Mobility Aspect
Security Aspec

t

Capability
(in, out, open)
Capability
(in, out, open)

M

X T{x}X T{x}

Weaving

Fig. 6 A PRISMA Ambient with CBSD and AOSD views

The AOSD view describes the PRISMA ambient with a set of aspects that can be
weaved. The ambient uses different aspects to specify the services it offers and re-
quests. As ambients are responsible for the mobility concern, all ambients must have
the Mobility Aspect to provide mobility services to their local architectural elements.

The Mobility Aspect specifies the following ambient functionalities:

� It allows an ambient to offer the exit service to its subambients that need to exit
from it. (The specification of the AC exit capability).

� It allows an ambient to offer the enter service to its subambients that need to enter
other subambients. (The specification of the AC enter capability).

� It allows an ambient to create subambients. (The specification of the AC restric-
tion).

� It allows an ambient to accept a new ambient in it from external ambients.
� It allows an ambient to execute the open service. The open service allows a

subambient to be destroyed a local ambient without destroying its local architec-

Mobile Ambients in Aspect-Oriented Software Architectures 43

tural elements. As a result, the architectural elements of the destroyed subambient
become to form part of the ambient. (The specification of the AC open capability)

The separation of the Mobility Aspect concern from the rest of concerns provides a
better maintainability of these functionalities because they are not scattered through
the ambient specification. In addition, this is a generic aspect that must be reused by
all PRISMA ambients. As a result, ambients are defined by importing the generic mo-
bility aspect and adapting it to the software system needs through weavings. For ex-
ample, a LAN ambient may need some security policies that are different from a PC
ambient inside of the LAN. Therefore, both the LAN and PC ambient import the same
Mobility Aspect, but the Mobility Aspect is weaved with different security aspects.

Fig. 7. The Ambient Package in the PRISMA meta-model

In order to introduce the concepts that describe a PRISMA ambient, an Ambient
Package has been defined in the PRISMA meta-model(see Figure 7). This package
contains the relationships and constraints that an ambient has with other meta-model
concepts. An Ambient can contain Components, Connectors, Attachments, and other
ambients. A constraint is specified in the Object Constraint Language in order to in-
dicate that an Ambient must have a Mobility Aspect.

LANTS

PC

«connector»

CnctRobot
Robot

PDA

«connector»

LANTSCnctr

«connector»

PCCnctr

OperatorOperator

«connector»
PDACnctr

……

MobilityAspect
Security Aspect

Capability
(in, out, open)

M

X T{x}

……

MobilityAspect
Security Aspect

Capability
(in, out, open)

M

X T{x}

MobilityAspect
Security Aspect

Capability
(in, out, open)
Capability
(in, out, open)

M

X T{x}X T{x}
… …

MobilityAspect
Security Aspect

Capability
(in, out, open)

M

X T{x}

… …

MobilityAspect
Security Aspect

Capability
(in, out, open)

M

X T{x}

MobilityAspect
Security Aspect

Capability
(in, out, open)
Capability
(in, out, open)

M

X T{x}X T{x}

……

MobilityAspect
Security Aspect

Capability
(in, out, open)

M

X T{x}

……

MobilityAspect
Security Aspect

Capability
(in, out, open)

M

X T{x}

MobilityAspect
Security Aspect

Capability
(in, out, open)
Capability
(in, out, open)

M

X T{x}X T{x}

Fig. 8. The Initial Configuration of the Robot software architecture modeled with Ambients.

We are going to use the tele-operation system example to illustrate how a distrib-
uted and mobile system is specified in PRISMA after introducing the ambient archi-
tectural element. In the example, the operator is a mobile component that can move
from a PC to a PDA to be closer to the robot. Figure 8 shows the distributed hierarchy
of the tele-operation software architecture. It shows that the LANTS ambient (the LAN
of the Tele-operation System) consists of a PDA ambient and a PC ambient. The Op-
erator component, Robot component and their connector (CnctrRobot) are initially

44 Nour Ali, Jennifer Pérez, Cristóbal Costa, Isidro Ramos, Jose A. Carsí

located in the PC ambient. Using the ambient calculus syntax, this is written as
LANTS[PDA[]| PC[Operator[out PC, in PDA] , CnctRobot, Robot].

 Every ambient has services that are offered to its local architectural elements and
services that are offered to the exterior. As a result, some of the ambient ports in Fig.
8 are only internally connected through attachments to a connector (e.g. the PCCnctr
of the PC) that synchronizes the ambient with its local architectural elements.

Figure 9 (b) shows how the Operator Component is specified in the PRISMA
ADL. As the Operator is a distributed component, it imports a predefined Distribu-
tion Aspect OpDistribution, specified in Figure 9(a), which defines a distributed be-
haviour. The Operator has three ports: ExitingPort to request an exit, EnteringPort to
request an enter, and FunctPort to send commands to the robot. The OpDistribution
specifies the move. Move indicates that the movement of the element that imports this
aspect needs to exit from its parent ambient and then enter to another ambient. For
this reason, requests for enter and exit are made to other architectural elements (out =
client behaviour). For example in Figure 8, to move the Operator from the PC to the
PDA, the Operator makes a request to exit the PC from the PC. Figure 8 also shows
that the ports ExitigPort and EnteringPort are connected to the PCCnctr in order to be
synchronized with the PC ambient. FunctPort is connected to CnctRobot to be syn-
chronized with the Robot.

Distribution Aspect OpDistribution
using IExiting, IEntering

Services
… …
out exit (MyName: String);
out enter (MyName: String, NewAmbient: loc);
… …
Transactions move(NewAmbient: loc)

Exiting= out exit(MyName).Entering;
Entering= out enter(MyName, NewAmbient);

… … …
End Distribution Aspect OpDistribution

(a)

Component_type Operator
Import Distribution Aspect OpDistribution;
Import Functional Aspect OpFunct;
Port

ExitingPort: IExiting;
EnteringPort: IEntering;
FunctPort: IRobotCommands,;

End_Port
End Component_type Operator;

(b)

Fig. 9. The Operator Distribution Aspect and Component specified in the ADL

Mobility Aspect Mobile
using IExiting, IEntering, IAccepting

…. ….
Transactions in exit(Requested: String, NewAmbient: loc):
EXIT ::= out isSon(input Requested, output isSonOK)Æ

EXIT1;
EXIT1::= {isSonOK==true} out checkTypeAmbient(input

Requested, output isTypeAmbient) Æ
EXIT2;

EXIT2::= if(isTypeAmbient==false)then
createAmbientFor (input
Requested, output RequestedAmbient Æ
EXIT3 else EXIT3 ;

EXIT3::= out movingInf(input RequestedAmbient, output Type,
output MobileInstance, output AttachmentList[])Æ
EXIT4;

EXIT4::= out accept(input Type, input MobileIntstance, input
AttachmentsList, output Acceptance)Æ EXIT5;

EXIT5::= {Acceptance==true} out modifyAttachment(Requested)Æ
EXIT6;

EXIT6::= out destroy(RequestedAmbient)ÆEXIT7;
EXIT7::= out removeAttachments(requestedAmbient);
… …

End_Mobility Aspect Mobile

(a)

Ambient_type PC
 Import Mobility Aspect Mobile;
 Import Security Aspect Sec;
 Weavings
 Sec.CheckSecurity() before
 Moile.exit(Requested, Ne-
wAmbient);
 End_Weavings

 Ports
 AccceptancePort: IAccept;
 DistServicesPort: ICall;
 ServicesPort: ICall;
 Capabili
 End_Ports

tiesPort: ICapability

End Ambient_type PC ;

(b)

Fig. 10. The Mobility Aspect and the PC Ambient specified in the ADL

Mobile Ambients in Aspect-Oriented Software Architectures 45

Figure 10(a) shows a fragment of the Mobility Aspect Mobile that all ambients im-
port. It shows how the exit capability is mapped in PRISMA. Figure 10(b) shows the
specification of the PC ambient. It shows that the PC imports the behavior that the
Mobile aspect defines. It also shows that it imports a Security Aspect Sec. In the
Weavings section, a weaving is specified to indicate that a security rule must be
checked in the Sec aspect before the exit is executed in the Mobile aspect.

LANST

«connector»

LANSTCnctr

……

MobilityAspect
Security Aspect

Capability
(in, out, open)

M

X T{x}

……

MobilityAspect
Security Aspect

Capability
(in, out, open)

M

X T{x}

MobilityAspect
Security Aspect

Capability
(in, out, open)
Capability
(in, out, open)

M

X T{x}X T{x}

PDA

«connector»

PDACnctr

……

MobilityAspect
Security Aspect

Capability
(in, out, open)

M

X T{x}

……

MobilityAspect
Security Aspect

Capability
(in, out, open)

M

X T{x}

MobilityAspect
Security Aspect

Capability
(in, out, open)
Capability
(in, out, open)

M

X T{x}X T{x}

PC

«connector»

CnctRobot
Robot

«connector»
PCCnctr

… …

Mobility Aspect
Security Aspect

Capability
(in, out, open)

M

X T{x}

… …

Mobility Aspect
Security Aspect

Capability
(in, out, open)

M

X T{x}

Mobility Aspect
Security Aspect

Capability
(in, out, open)
Capability
(in, out, open)

M

X T{x}X T{x}

Oper
ator
Oper
ator

tempAm

«connector»

… …

MobilityAspect
Security Aspect

Capability
(in, out, open)

M

X T{x}

… …

MobilityAspect
Security Aspect

Capability
(in, out, open)

M

X T{x}

MobilityAspect
Security Aspect

Capability
(in, out, open)
Capability
(in, out, open)

M

X T{x}X T{x}

OperatorOperator

Fig. 11. The new configuration of Figure 8 after the execution of the exit

 The exit in Figure 10(a) is specified as a transaction in the Transactions section.
The exit has a server behaviour in the ambient that imports the aspect, that is, other
architectural elements are going to request it (in=server behaviour). Using the exam-
ple in Figure 8, the Operator would be the element that makes an exit request to the
ambient. Then the exit Transaction consists of a set of services. First, it checks if the
requested element (Operator) is one of the PCs children (is one of its local elements).
If it is, then the exit checks if the requester is an ambient or not. If it is not an ambient,
then an ambient is created to encapsulate the element. The creation of an ambient is
necessary due to the fact that ambients are the only architectural elements that can be
mobile. Then the information needed for the exit of the Operator is collected: the
state of the Operator and its attachments. The exit transaction then asks the parent
ambient (LANTS) if it can accept the Operator’s ambient (tempAm) and sends the
needed information. If LANTS accepts the tempAm, for each attachment between the
Operator and other architectural elements, a new attachment is created between the
PCCnctr and those local architectural elements that are connected to Operator. Fig-
ure 11 shows the new attachment that is created between CnctRobot and PCCnctr in
place of the attachment between CnctRobot and Operator. Then the PC ambient de-
letes the Operator and all its attachments. Figure 11 shows the result of the software
architecture configuration after executing the exit transaction.

Finally, Figure 12 shows the Operator component in the PDA. This is possible af-
ter the Operator in tempAm in Figure 11 requests the LANTS to enter PDA. Then, the
LANTS checks if the PDA is local to it and requests the PDA to accept the tempAm.
The PDA accepts tempAm and opens it, leaving the Operator in PDA.

The tele-operation system specification shows how its distributed and mobile prop-
erties can be described. The previous specification benefits from the concepts intro-
duced in AC; thus the mobility of the Operator is specified in a formal way thanks to

46 Nour Ali, Jennifer Pérez, Cristóbal Costa, Isidro Ramos, Jose A. Carsí

the AC capabilities. Also, the AC primitives can be completely specified by the
PRISMA ADL in a technology-independent way. In this way, the ambient functional-
ities can benefit from the reusability and maintainability that the AOSD and CBSD
provide.

LANTS

«connector»

LANTSCnctr

……

MobilityAspect
Security Aspect

Capability
(in, out, open)

M

X T{x}

……

MobilityAspect
Security Aspect

Capability
(in, out, open)

M

X T{x}

MobilityAspect
Security Aspect

Capability
(in, out, open)
Capability
(in, out, open)

M

X T{x}X T{x}

PDA

«connector»

PDACnctr

……

MobilityAspect
Security Aspect

Capability
(in, out, open)

M

X T{x}

……

MobilityAspect
Security Aspect

Capability
(in, out, open)

M

X T{x}

MobilityAspect
Security Aspect

Capability
(in, out, open)
Capability
(in, out, open)

M

X T{x}X T{x}

PC

«connector»

CnctRobot
Robot

«connector»
PCCnctr

… …

Mobility Aspect
Security Aspect

Capability
(in, out, open)

M

X T{x}

… …

Mobility Aspect
Security Aspect

Capability
(in, out, open)

M

X T{x}

Mobility Aspect
Security Aspect

Capability
(in, out, open)
Capability
(in, out, open)

M

X T{x}X T{x}

OperarioOperario

OperarioOperario

Fig. 12. The configuration of the architecture when the Operator reaches PDA.

5. Conclusions and Further Work

In this work, we have presented an approach to represent complex, distributed and
mobile systems in a technology-independent. Our model combines the PRISMA ap-
proach with the AC formalism, which provides the following advantages: 1) It can
describe a complex system in terms of computational, coordination and distribution
and mobility units on different levels of abstraction. In this way, a system is built by
reusing and adapting these separated units achieving a higher level of maintainability.
2) It can also describe the specific issues of current distributed systems such as the
network topology and security.

We have introduced the ambient concept in the PRISMA meta-model as a new ar-
chitectural element that can contain several computation and coordination processes
(components and connectors) or other subambients. The capabilities provided by an
AC ambient are offered in PRISMA by an ambient-specific aspect called the Mobility
Aspect. Another aspect, the Distribution Aspect, manages the location of an architec-
tural element and defines how and when ambient capabilities can be executed. A Se-
curity Aspect can be added to an ambient in order to provide security mechanisms.
Mobility, distribution and security concerns are specified separately from other func-
tional and non-functional requirements, thereby increasing reusability and adaptability
to changes.

In the near future, we are going to introduce these concepts into the PRISMA tool
to be able to model and execute mobile distributed software architectures. This will be
done in three stages: first, ambients will be introduced in the PRISMANET middle-
ware [8] to execute these concepts; second, ambient graphical metaphor and code
templates will be introduced in the modelling framework; third, the implementation
will be validated by modelling and executing a complex, distributed, and mobile case
study.

Mobile Ambients in Aspect-Oriented Software Architectures 47

References

 1. CORBA Official Web Site of the OMG Group, http://www.corba.org/
 2. Microsoft .Net Remoting: A Technical Overview,

http://msdn.microsoft.com/library/default.asp?url=/library/enus/dndotnet/html/hawkremotin
g.asp

 3. Cardelli, L., Gordon, A. D. “Mobile Ambients”, Foundations of Software Science and
Computational Structures: First International Conference, FOSSACS '98, LNCS 1378,
Springer, 1998, pp. 140-155.

 4. Perez, J., Ali, N., Carsí, J.A., Ramos, I. “Dynamic Evolution in Aspect-Oriented Architec-
tural Models”, European Workshop on Software Architecture, Pisa, June 2005 © Springer
LNCS vol n.3527.

 5. Szyperski, C., Component Software: Beyond Object Oriented programming, ACM Press
and Addison Wesley, New York, USA, 2002.

 6. Aspect-Oriented Software Development, http://aosd.net
 7. Pérez, J., Ali, N., Carsí, J.A., Ramos, I. “Designing Software Architectures with an Aspect-

Oriented Architecture Description Language”, 9th International Symposium on Component-
Based Software Engineering (CBSE 2006), Mälardalen University, Västerås near Stock-
holm, Sweden, June 29th -1st July 2006 (accepted to appear)

 8. Perez, J., Ali, N., Costa, C., Carsí, J.A., Ramos, I. “Executing Aspect-Oriented Component-
Based Software Architectures on .NET Technology”,3rd International Conference on .NET
Technologies, Pilsen, Czech Republic, May-June 2005 , 2005

 9. Magee, J., Dulay, N., Eisenbach, S., Krammer, J. “Specifying Distributed Software Archi-
tectures”. 5th European Software Engineering Conference (ESEC 95), Sitges, Spain, 1995,
pp 137-153.

10. Milner, R., Parrow, J., Walker, D. “A calculus of mobile processes”, Parts 1-2. Information
and Computation, 100(1), 1992, pp. 1-77.

11. Magee, J., Tseng, A, Kramer, J. “Composing Distributed Objects in CORBA”, Third Inter-
national Symposium on Autonomous Decentralized Systems, Berlin Germany, 1997, pp
257-263.

12. Virginia C. de Paula, G.R., Justo, Cunha, Ribeiro, P. R. F. “Specifying Dynamic Distributed
Software Architectures”, XII Brazilian Symposium on Software Engineering, BCS Press,
October, 1998.

13. Ciancarini, P., Mascolo, C. “Software Architecture and Mobility”, 3rd Int. Software Archi-
tecture Workshop (ISAW-3), November, 1998.

14. Mascolo, C. “MobiS: A Specification Language for Mobile Systems”. 3rd International
Conference on Coordination Models and Languages, 1999.

15. Medvidovic, N., Rakic, M. “Exploiting Software Architecture Implementation Infrastruc-
ture in Facilitating Component Mobility”. Software Engineering and Mobility Workshop,
Toronto, Canada, May 2001.

16. Lopes, A. Fiadeiro, J.L., Wermelinger, M. “Architectural Primitives for Distribution and
Mobility”, 10th Symposium on Foundations of Software Engineering, SIGSOFT FSE 2002,
pp. 41-50.

17. Ali, N., Ramos, I., Carsi, J.A. “A Conceptual Model for Distributed Aspect Oriented Soft-
ware Architectures”, International Conference on Information Technology (ITCC 2005),
IEEE Computer Society, ISBN 0-7695-2315-3, April 2005, pp 422-427.

18. Cardelli, L. “Abstractions for Mobile Computation.” In Vitek, J. and (Eds.), C. J., editors,
Secure Internet Programming: Security Issues for Distributed and Mobile Objects, volume
1603 of LNCS, Springer Verlag, pp. 51-94.

