j2eeprof — a tool for testing multitier applications

Pawel Klaczewski and Jacek Wytrebowicz

Institute of Computer Science of Warsaw University of Technology
P.Klaczewski @elka.pw.edu.pl, J.Wytrebowicz @elka.pw.edu.pl

Abstract. Quality assurance of multitier application is still a challenge. Especially
difficult is testing big, distributed applications written by several programmers,
with the use of components from different sources. Due to multi threaded
and distributed architecture, their ability to be observed and their profiling are
extremely difficult. J2eeprof is a new tool developed for testing and profiling
multitier applications that run in the J2EE environment. The tool is based on the
paradigm of aspect insertion. The main goal of j2eeprof is to help in fixing
of integration errors and efficiency errors. This paper presents the concept of
J2eeprof and gives some insides of j2eeprof development. On the beginning
we give some introduction to the methods of software profiling, and a brief
characteristic of existing profilers, i.e., JFluid, Iron Track Sql, Optimizelt Server
Trace and JXInsight. Next we present the architecture of j2eeprof, and we describe
how it collects data, what protocols it uses, and what kind of analysis it supports.
On the end we demonstrate how j2eeprof works in practice. In conclusions we list
the strong and weak points of this tool, which is still in a beta version. J2eeprof
is planned to be offered as an open source for the programmer community.

1 Introduction

Software testing and software profiling are time consuming tasks, especially during
development of multitier, distributed applications. Sometimes these tasks take more
time than coding. They are crucial when the target application is safety or business
critical. We mean by testing the process of defect discovery in a developed code. We
mean by profiling the process of performance analysis of an application.

Because Java Platform Enterprise Edition (J2EE) is a widely used programming
platform for developing and running distributed multitier architecture applications, we
have focused our attention on testing and profiling applications that run in the J2EE
environment. The result is j2eeprof [7] - a new tool to help in fixing of integration
errors and efficiency errors. Integration testing and profiling need very similar methods
and tools. We shortly describe them.

To make not frequent or exceptional conditions testable we have to extend the
tested application to make controllable its execution flow. During an execution flow a
programmer collects selected data for subsequent analysis. Selection of the data depends
on programmer aim, it could be: remote function checking, bottleneck discovery, time
consumption of selected functions and memory consumption. In general, there are two
methods of data gathering: sampling and tracinge. The advantage of sampling is that
this method slightly influences the tested application in contradiction to the tracing

196 Pawet Klaczewski, Jacek Wytrebowicz

method. The advantage of tracing is the possibility to achieve very high accuracy but
when accuracy is higher — the execution time is more and more disturbed.

Extensions that make the execution flow controllable are included in the application
code by a programmer. Sampling can be performed without any modification of the
application code. Tracing can be achieved by altering the code or by modification of its
environment, or both. The Java Platform Debugger Architecture (JPDA), which is a
collection of APIs to debug Java code, is a good example of a tool for environment
modification. A disadvantage of JPDA is the limited set of low-level events that the
programmer can observe. The abstraction level of virtual Java machine is not suitable
for J2EE application analysis. The programmer gets too much low level data, which are
difficult to analyze. Altering of the application code can be done by hand, can be
processed by a compiler (e.g., as for gprof Unix tool), or after compilation. There are
Java libraries, e.g., BCEL!, ASM [3], which allow altering a Java bytecode during
loading. The programmer has to point where and how the automatic code altering
should be performed.

The amount of data collected during an application run is usually huge. Sometime
some compression or aggregation methods have to be used for their collection. A
programmer needs to have some tools for filtering the collected data and for their
visualization in an interactive manner. G. Ammons, T. Ball and J. R. Larus [1] have
proposed to build a structure called Calling Context Tree (CCT) — as an aggregation
method. Every tree node keeps some measurements of an executed function. Any path
in the tree represents a possible execution sequence of modules (the module can be a
method, a component, a layer, or a node belonging to a distributed system). Figure 1
depicts an exemplary execution path of a function X that executes 6 modules (AB
notation means that A module calls B module). A tree representation is more expressive.

A—B
B—C AT-BTC
B—D I L D—E
D—E F
A—F

(@ (b)

Fig. 1. Execution path visualization a) sequential, b) context tree

It helps to find bottlenecks related to different load of data or user connections. There
are more ways of execution path visualization as Fig 2 shows. Nowadays profilers
generate a layered representation of full tree of execution calls (Fig 2b). The width of
every rectangle may depict execution time of relating module. Complex applications
give very big trees. To make them more readable reduced graphs can be generated (Fig.
2c, 2d). Most profilers allow for simple filtering of presented data with predefined
set of views. However there are exceptions: a programmer using ejp? can implement
own filters. XDSE profiler [2] stores full execution trace in an XML database. Next a
programmer can define filtering by XQuery language and select a visualization form.

! http://jakarta.apache.org/bcel
2 http://ejp.sourceforge.net

J2eeprof — a tool for testing multitier applications 197

M(ABOCO)D(COABOCH)D(CO)ABOBOCHC)))
(a)

M
/™
M /D M
) A 7N
A D A D A A D
/N | /N | N /\ /N /N
B C A B C C B B C C B C B C A C
(b) (c) (d)
[B] [C] A BIC] [€ [B][B][C][]
[A J[D][A][D]] A |
\ M |

(O]

Fig. 2. Execution path visualization a) layered representation, b) full tree of execution calls, c)
reduced call graph, d) context call tree. e) trace graph

Profiling of a distributed system is difficult. Every distinct element has to be
observed independently. Next, a profiler has to correlate collected data before filtering
and presentation. A correlation method based on independent clocks is not accurate and
leads to interpretation errors. Much efficient is to include tracing into a communication
mechanism used by separate instances. Authors of [8] describe a tool that traces TCP
messages. For better efficiency, a profiler could use some marking of messages that
concern the analyzed application/purpose. Pinpoint project [6] is based on modification
of Jboss® application server — in this way a distributed application, which works on
Jboss servers, can be easily and efficiently traced. When a programmer uses CORBA,
then we can take advantage of built in interceptor mechanism for message marking. The
interceptor is a function written by the programmer and called during communication.

There are several commercial profilers addressed to J2EE environment, but we do
not know any such a tool from public domain. Profilers created for Java programmers,
not only for those who use J2EE, are more numerous. Let take a look on some of them
— the most interesting in our opinion. JFluid profiler [5], from Sun Microsystems,
works only with the NetBeans programmer framework. It provides some means for
analysis of: memory consumption, execution time and execution flow. Programmer can
point some Java methods for analysis. JFluid process the code statically to discover
all methods, which could be executed by those selected. Next it alters them to make
them traceable. It visualizes only the traces that belong to the execution context of
selected methods. The altered code has constant time overhead, that allows subtracting
it from measured values, and present more accurate data. Because JFluid co-works
with extended (tuned for it) virtual java machine it is a fast and efficient tool.

Iron Track Sql* is a free tool for performance monitoring of java applications that
interact with databases. It builds a log of every database query, its time and duration. It
allows for some filtering, e.g., to register only these queries whose duration overcomes

3 http://www.jboss.org
* http://www.irongrid.com/catalog/product_info.php?products_id=32

198 Pawet Klaczewski, Jacek Wytrebowicz

a defined threshold. It is based on a database proxy, which makes all required logs. The
programmer has to use the p6spy driver (an element of Iron Track Sql) in place of
standard jdbc driver.

Optimizelt Server Trace is a Borland profiler addressed to J2EE. It can gather
data using probing or tracing. It can monitor memory consumption. With this tool
the programmer can visualize execution paths as a context tree or as a full tree of
execution calls. Optimizelt presents j2ee services trace using sets of abstract words. In
example word “ejb load” stands for ejb load life cycle method. Tool hides application
server internal implementation of ejb load and presents it to user in simplified form.
Profiling statistics are then more readable and free of unnecessary information. This
feature makes Optimizelt much more effective tool for J2EE application tracing than
standard profiler. Optimizelt can point hot spots, can display execution time of every
layer, e.g.: JDBC 23,68%, JNDI 15.31%, servlets and jsp 57.84%, EJB 3,17%. It can
even register and visualize RMI communication.

JInspired company offers the JXInsight profiler. This tool is very similar to Optimizelt
Server Trace. The difference is that JXInsight has more functions for monitoring of
database queries. It can display correlations between distributed events using CORBA
interceptors. Both Optimizelt and JXInsight are very complex and powerful tools,
which allow multitier visualization of execution paths.

There are many other profilers but most of them suit only development of standard
Java programs running on a single machine. They are inefficient for development of
J2EE applications, which are distributed and use a server code. Usually the programmer
does not know the server code (it is a black box for him). And the server code is
a significant part of the application. The only corrections and optimizations, the
programmer can make, are inside his code. Hence only tools like Optimizelt and
JXInsight can really help to profile J2EE applications.

2 j2eeprof insides

J2eeprof is profiler designed for applications running in J2EE environment. J2EE
provides variety of services. Programs work in a container i.e., servlet container or
ejb container. Container provides services, can manage component life cycle and
enhance program behavior. The way program uses services can be specified in code or
configuration descriptor. When configuration is used it is impossible to inspect program
behavior only by reading its code. This makes testing more difficult to the programmer.
Another problem arises, when J2EE application is profiled using standard java profiler.
There is huge amount of container implementation code execution registered together
with program code. The performance impact is large and results contain plenty of
superfluous information.

In order to capture accurate view of execution flow, j2eeprof uses tracing. J2eeprof
comes with ability of selective program tracing. It registers J2EE services and program
execution at high level of detail. By inspecting trace programmer can find out all the
interactions of J2EE services with program. The tool has significant ability to shape
profiling scope. J2eeprof addresses also distributed nature of ejb components. It is able

J2eeprof — a tool for testing multitier applications 199

to track communication between remote ejb components and deliver distributed system
trace.

J2eeprof is designed for profiling applications that run in a distributed environment.
Thus tool itself is distributed as well. There are three major modules of j2eeprof: data
collection module, transport module and visualization module. The data collection is
installed on distributed system nodes and acts as client in the client-server j2eeprof
architecture. Visualization module is responsible for trace analysis and visualizations.
The data is transported from remote data collections modules to visualization module
by transport module.

2.1 Data collection

Data collection module uses tracing method to collect profile data. Its implementation
is based on the aspect oriented programming (AOP). Aspect is a program module that
implements some common functionality and has no dependencies on other program
modules. AOP consists of two elements: aspect weaver and composition language.
Aspect weaver is responsible for composition of aspects and other modules into final
application. Composition language controls the weaver. J2eeprof uses Aspectwerkz’,
open source AOP library, as a basis for data collection module. Aspectwerkz weaver is
capable of dynamic aspect insertion. This feature enables profiler to temporarily modify
tested code and change profiling scope on every program execution. Aspectwerkz uses
AspectJ® composition language. The point of program code, where aspect can be
inserted, is called join point. It can be i.e., a method or a construction invocation.
Pointcut is AspectJ definition that pick out a set of join points. AspectJ gives j2eeprof
capability to define profiling scope with detail. Important feature in J2EE environment
is that a join point can define interface and polymorphic execution. J2EE is specified by
a set of interfaces. J2eeprof can profile application server standard services by tracing
them at the interface level. This method provides the right level of abstraction. Tracing
implementation details of application server not only has negative performance impact,
but also has no value for the application developer, as he cannot modify server code. Still
the application code can be traced with much greater detail — up to every method call.

Data collection module implements a set of aspects. Data collection aspect is
responsible for registering information on program execution. AOP composition
language allows mixing of aspects in order to register traces on different detail level.
Data trace representation (see Fig. 3) in j2eeprof consists of 4 elements. PathNode
is a node of trace path. PathNode can contain other PathNode in the way it make
call tree. PathNode is a base class for a concrete node, which may represent method
execution or distributed call. Nodes belong to an execution thread, which is represented
by ThreadNode. SystemNode is a node of distributed system. System abstracts whole
observed system. The representation can describe nodes on different level of abstraction.

There are 2 generic aspects that trace method executions: MainAspect that registers
only method signatures and ParametersAspect that registers also parameter values. An
aspect collects information about several attributes: start and end time, information on

5 http://aspectwerkz.codehaus.org
% http://www.eclipse.org/aspectj

200 Pawet Klaczewski, Jacek Wytrebowicz

SystemNode ThreadNode
System id
1 0.7 | 1 0. | “hame

name -group

PathNode

Fig. 3. Trace model

exception, path node name (e.g. method signature) and execution thread. There is also
one additional attribute — category that is specified in aspect definition, and it is used
later for data analysis.

2.2 Data transport

Gathered data are transmitted by transport module. The module consists of three parts:
data sender, transport protocol and data receiver. Data transport module can write data
to file or send over TCP/IP. The most important element is the protocol. J2eeprof uses
binary protocol that is built in a way to keep network traffic low. We have executed several
tests to measure j2eeprof overhead. The results (Table 1) have shown that the most time
consuming is I/0. The more data is sent the more impact on performance is made (see
test 3 and 4 in Table 1). During execution of test 3 all gathered data been discarded,
during execution of test 4 the same data have been written into a file. I/O slow down
factor was about 6. Addition of a simple compression method resulted in better overall
performance. J2eeprof uses dictionary compression for most frequently sent data — event
labels. MainAspect sends approximately 30 bytes per start method event and 22 bytes
per exit method event. Executions with tracing turned off (test 1) and with AspectWerkz
(test 2) empty aspect have shown a difference of performance overhead. Encoding
overhead (test 3) is 3,232.98 ns but 509.68 ns (test 2) is the effect of using AspectWerkz
and cannot be avoided. Write to the file (test 4) slows down by 17,421.38 ns. J2eeprof
performs almost twice better as Log4J’ (test 7). The maximum time was taken from
J2eeprof statistics. It indicates that writing into a file gives more stable effects compared
to sending over TCP/IP, however the second choice is much more convenient for a user.

Tab. 1. Measured performance overhead

l no [test [mean time[ns/per call] [max time[ms/per call] ‘
1 no aspects 31.63
2 NullAspect 509.68
3 MainAspect (no 1/O) 3,232.98
4 MainAspect (file) 20,654.36 58
5 MainAspect (tcp local) 33,639.00 308
6 MainAspect (tcp) 36,767.00 949
7 Log4] (file) 41,199.31

2.3 Distributed tracing

J2eeprof can profile distributed J2EE systems. Execution path on each distinct node of
analyzed system is recorded. But it is also required to match right local paths and

7 http://logging.apache.org/log4i

J2eeprof — a tool for testing multitier applications 201

reconstruct distributed path. Tagging messages exchanged between nodes can do this.
This method has top accuracy over others, and is not affected by time differences of the
nodes. EJB protocol — RMI/IIOP supports sending additional information in protocol
tier, without changing interface on an application tier (Fig. 4). Corba Interceptor
documentation [4] describes this feature. J2eeprof tracing mechanism can be enabled
in the configuration file of application server, with no need to modify program or
server code. The method is protocol dependent; j2eeprof comes with implementation
for standard EJB protocol RMI/IIOP and Jboss RMI. But this solution is well suited
for J2EE environment. J2EE specification requires application servers to provide
transaction support and user authentication over remote calls. These services are defined
in application configuration descriptors. Thus communication protocols must be able do
support rpc-level communicates tagging. J2eeprof inject into EJB communication apart
of transaction id and user information his own data.

,,,,,,,,,,, ¢ pplication tier
client remote call server
EL protocol tier

[0 information passed by application
/A extra tracing information passed by protocol tier

Fig. 4. Protocol tracing

Distributed paths require trace model to be improved. Model is extended by addition
of two new nodes (PathNode subclasses). RPCCallNode (RC) represents an rpc call
on the client side. RPCReceiveNode (RR) represents an rpc call on the server side.
Figure 5 depicts reconstruction of a distributed path. On rpc call event — j2eeprof tags
outgoing message with rpcld — auto generated id, unique in jvm scope, and node
id(specified in configuration file). On rpc receive event — rpcld tag and node id are
added to RR event. Node id attribute is saved in RR.sourceNodeld field. Paths merging
is performed by matching RC-RR pairs. Match criteria is:

1. RC.rpcld=RR.rpcld
2. RC is registered on system node defined in RR.sourceNodeld

Client Server
A— B C \--RR—E—F AT BT C
L D—C I I = b—cC
RC---—————- ' HT— F RC - RRT-E— F
T I

H F
L

(a) (b) (©)

Fig. 5. Reconstruction of a distributed path a) local path on client side b) local path on server
side c¢) completed distributed path

202 Pawet Klaczewski, Jacek Wytrebowicz

2.4 Visualisations

J2eeprof supports several visualizations. Profiler provides data analysis on summarized
trace data as well as on raw trace. Many of these visualizations are found in other
tools, but distributed trace view is an original extension of them.

J2eeprof can summarize trace in form of CCT and flat list. Both views display total
number of invocations, total, mean, minimum and the maximum execution time. CTT
view provides “drill up” and “drill down” functions. ”Drill up” displays all contexts in
which selected node was called. ”Drill down” selects all possible executions rooted in a
selected node.

Raw trace can be visualized as a graph or tree. Figure 6a shows graph of a trace.
The Graph is similar to tree view but every node has a rectangle form. The length and
position represents execution time. For the purpose of more readable view, there is
an option for displaying only top-level trace nodes (Fig. 6b). Raw trace data can be
queried. The result is indicated in graph view (Fig. 6) by changing color of nodes. Raw
trace views are connected each other. When user selects node in the tree list, focus in
other view is set to this node.

[] [
[1] 7O CToOo0O

—T

a)

b)
mmm filtered node

Fig. 6. Trace visualization a) detail, b) summary

Ability to collect distributed trace is quite uncommon in profilers. Thus there are
not many ready to use solutions. Distributed trace requires special view. J2eeprof
comes with original solution to this problem.

Figure 7 depicts “rpc view”. The view captures distributed path on all nodes it
belongs to. Apart of the path itself, the view contains also context of path on each
distinct node. The view is horizontally divided in two zones. On the top, there is
distributed path. On the bottom, there is context of the fragment of graph view. The
view has also several vertical zones, each on every node along the distributed path.
Double vertical lines divide system nodes. Doted lines mark time margin zone. In
margin zone the top part of view is frozen on the contrary to the context shown in
bottom part of the view. Timeline in context view is wider than in distributed path
view. Thus in a case when distributed path execution of given system node is very
short, still the context view show some information.

The path on Fig. 7 starts on Node 1, paths a and b. Execution of ¢ is an rpc call.
That part is shown on left part of the figure. D path is executed on Node 2 - middle
part of the graph. Paths a,b,c are marked with grey color as they do not belong to Node
2. Last part of the figure, on the right, displays end of paths back on Node 1.

J2eeprof — a tool for testing multitier applications 203

System border
Time margin M

Node 1 Node 2 Node 1

— —
—— 1 g e/|]m /T —
— ——
—
—

Fig.7. Distributed trace view

3 j2eeprof in practice

J2eeprof was tested with Rubis® [9] — J2EE auction site benchmark. Rubis was created
to compare performance of several distinct implementations of the same program. Each
implementation uses different framework or technology. J2eeprof was tested with two
of them. First is BMP_EntityBean_ID_BMP that is based on Entity Beans and bean
managed persistence (denoted as bmp). The second EJB_CMP2 (denoted as cmp)
uses Entity Beans, Session Facade design pattern and container managed persistence.
Two of Rubis functions where choosen for the test. SearchltemsByCategory shows
list of auction items. The second RegisterUser registers new auction site user. These
functions are very different. First one is data intensive read only function, while the
second is transactional read and write function. Profiling scope included all Rubis code
method calls and tracing of JDBC and JTA services on interface level. Table 2 presents
performance overhead of j2eeprof in J2EE enviroment.

Test were performed on the open source application servers: Jboss 3.2 and JOnAS
4.5.3. JOnAS was configured to use iiop protocol, profiling scope included protocol
tracing (using CORBA interceptors). Rubis comes with dedicated load test tool. Load
tests were set to run for 5 minutes with 10 virtual users. Test where performed on
AMD Athlon XP 1600+, 756RAM, Linux Slackware 10 operating system.

Rubis tests contain random factor, thus test count varies between tests. It also depends
on test performance. Jonas bmp test with j2eeprof has very large overhead and test
count is much lower than test without profiling. J2eeprof performance overhead factor
varies from 1.1 in jboss cmp test to 56.77 in jonas bmp test. On Jboss server overhead
is related only to profiling scope. Since number of registered events is reasonably small,
overhead is up to 77%. IIOP protocol tracing adds overhead to JOnAS test results.
JOnAS tests performed slower than Jboss tests with exception of SearchItemsByCategory
test (jonas cmp). The reason is that Jboss optimizes local ejb calls, JOnAS not.

Table 3 presents some insights of Rubis implementation derived from trace data.
On JOnAS, bmp performed slower than cmp version but jboss cmp is slower than jboss

8 Rice University Bidding System (Rubis), http://rubis.objectweb.org

Pawet Ktaczewski, Jacek Wytrebowicz

204

Ly8'9 | YIE $6TT | 9 80'6 66L'S | €8T 0T | 9 duwq seuol
S6L9T | 9LT res'e | ¢ 140! L9T°C | LLT LSS SL dur> seuol
(sonsne)s soueurojrad siqny ‘Suroen; gD ou) joadoaz[
¥98°CT | #98°ST | ¥98°CI | I ¥0T°99 | 0TT'ST | L6ITY | 6 duq seuol
TST6I | €61 YOI’S | SI 0IL'Y | S91 8IL L dur> seuol
s 0¢ (4% S 66€ T 9p1 0S duq ssoql
143! S 0L 9 789 SL1 062 L8 dur> ssoqf
(sonsne)s soueurrojrad joxdoagl) joidooz[
LL9S SI¥'6l | SI¥F'6l | SIF'6l | 1 L8'TE 90L°L9 | 9T 9T | 1SO€E | 1 dwq seuol
08’8 €I18'61 | L6l 8¥I°S Sl €0'¢ ¥SS°S 11c 66S YL dwo seuol
(4! 10¢ 9¢ 9L S SI'1 0cs 001 9cC 43 duwq ssoql
or't 861 43 YL L LLT 62T | S€T S6¢ 68 durd ssoql
(sonsness doueurtojrad siqny) jordoag(
9vs VLI we S ¥81'€ 961 LEOT 8L duq seuof
£eeT 1Tl e8¢ 01 90¥ ST 861 98 duo seuol
24! LI 0S 8 69L L 961 601 duq ssoql
6LT 6C L9 LT 616 9¥1 €€ 68 dud ssoqf
(sonsneis soueurtojrad siqny) Surjyoid ou
peOyIoAO | Xew * urw * 3ae junod PBIYIaA0 | Xew * urw * 3ae Junoo
3ae [sw]owmn 189) 3ae [swr]otun 189)
I9SN19ISISY K103918 D) AgSWAYOILaS

PpeayIaA0 QUCNEHOMHQQ SIQY pRansed|N ¢ ‘qel,

J2eeprof — a tool for testing multitier applications 205

Tab. 3. Rubis tests results

jboss cmp | jonas cmp | jboss bmp | jonas bmp

concurrent threads 7 14 4 18
SearchltemsByCategory
jdbe (time percent) 51.72 67.84 27.43 3.93
jdbc/ejb.load 1 0.77 1 1
jdbc/ejb.find 1 0.00 1 1
rmi (time percent) 0 2.41 0 18.60
rmi/per client call 0 2 0 42
RegisterUser

jdbc (time percent) 23.64 42.58 9.05 34.25
jdbe calls/per client request 11 6.33 6 35
rmi (time percent) 0 0.39 0 2.88
rmi/per client call 0 2 0 8

bmp. Bmp Rubis implementation calls ejb entity components within web tier that results
in large number of remote calls. Such design is described as J2EE anti-pattern. Jboss
optimizes such calls but on JOnAS there is a remarkable average overhead of rmi call
— 108.975ms. Cmp version uses better design — Session Facade that minimizes remote
calls, there are only 2 rmi calls in SeachltemsByCategory compared to 42 in bmp test.

The most efficient jdbc use is done by jonas cmp version. Each pair of ejb.find and
ejb.load methods result at most one jdbc call. JOnAS probably makes use of cache
since jdbc calls are performed only in 77% of ejb.find calls in SearchItemsByCategory
test. Other Rubis versions does not perform jdbc optimization, every ejb.load and
ejb.find call results in jdbc.call. Despite of jonas cmp efficiency, the best performer is
jboss bmp. JOnAS and Jboss differ also in number of observed threads. Jboss delegates
one thread to a server client request so number of concurrent threads is equal to number
of concurrent requests. JOnAS passes control to different thread in every rmi call.
The protocol tracing mechanism is necessary to obtain complete paths in such case,
although significantly increases performance overhead.

4 Conclusions

The purpose of j2eeprof is to help in testing and profiling of J2EE distributed
applications. Using it a programmer can easily analyze interactions between his code
and other components or environment. Programmer does not have to modify his code to
gather data. J2eeprof uses RMI/IIOP to mark and trace communication messages — giving
accurate data about interactions between distributed components. The programmer
decides on which abstraction level he wish to analyze his code, then he controls the trace
information using aspectwerkz library. The advantage of the aspect approach is, that the
programmer can easily monitor the interactions between his code and a J2EE server
code. The strong features of j2eeprof are: flexibility in use, ability to fit gathered data to
programmer needs, and high accuracy of registered traces from distributed components.

A week feature of j2eeprof is remarkable and varied execution time overhead. All
profilers that work on tracing basis, in place of sampling basis, have this disadvantage.
Because j2eeprof gathers full execution trace with programmer-defined data, not just

206 Pawet Klaczewski, Jacek Wytrebowicz

execution statistic, the overhead is higher than other profilers put in. To obtain accurate
time characteristics, the programmer has to take other profiler that works on sampling
basis. J2eeprof is small and simple tool comparing with commercial Optimizelt and
JXInsight profilers. Although it is free, easy to use and we find it very useful.

References

1. G. Ammons, T. Ball and J. R. Larus: Exploiting hardware counters with flow and context
sensitive profiling. In Proceedings of the SIGPLAN "97 Conference on Programming Language
Design and Implementation,pages 85-96, Las Vegas, 1997.

2. C. Anslow, S. Marshall, R. Biddle, J. Noble and K. Jackson: Xml database support for program
trace visualization. In Australian Symposium on Information Visualization, volume 35, 2004.

3. E. Bruneton, R. Lenglet and T. Coupaye: Asm: a code manipulation tool to implement
adaptable systems. In Adaptable end extensible component systems, Grenoble, France, 2002.

4. Interceptors Published Draft with CORBA 2.4+ Core Chapters, Document Number
ptc/2001-03-04. http://www.omg.org/cgi-bin/doc?ptc/2001-03-04

5. M. Dmitriev: Design of jfluid: A profiling technology and tool based on dynamic bytecode
instrumentation. Technical report, Sun Microsystems, Nov. 2003.

6. E. Kiciman: Pinpoint: Status and future directions. 2003 www.stanford.edu/“emrek/pubs/
roc-retreat-2003-pinpoint.pdf

7. Pawet Klaczewski: Testability Issues of Multitier Applications (in polish). Master thesis,
Institute of Computer Science of Warsaw University of Technology, 2005.

8. Marcos K. Aguilerai, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds and Athicha
Muthitacharoen: Performance debugging for distributed systems of black boxes. In Proceedings
of SOSP, Bolton Landing, NY, Oct. 2003.

9. E. Cecchet and A. Chanda and S. Elnikety and J. Marguerite and W. Zwaenepoel: Performance
Comparison of Middleware Architectures for Generating Dynamic Web Content, 4th
ACM/IFIP/USENIX International Middleware Conference, Rio de Janeiro, Brazil, June, 2003.

