PLM XQuery:
Towardsa Standard PLM Querying Approach

Mohamed-Foued Sriti Philippe Boutinaut

Yimam Muhammad Ibn Saud Islamic University, Comp&teience Department, Riyadh,
Kingdom of Saudi Arabia
nfsriti @cis.inmanu. edu. sa
2CADeSIS, R&D Department, Courbevoie, France
pbout i naud@adesi s. com

Abstract. Experience with data exchange standards has slcowsiderable
limitations in their integration in commercial tgohnd their interoperability.
The current trend is to use XML as a mean of exgimandata. We present in
this paper a new standard approach for queryingeapdrting data from PLM
in XML format using XPath/XQuery languages. An aastion effort and an
adapter implementation were required to make PLiWeat as usable as XML
document. Afterward, the resulting XML content abdde directly reused or
converted to another format.

Keywords: PLM, Product Data Exchange, Data Semantics, XMQuXry.

1 Introduction

Early engineering systems were composed from afs@iols that didn't have a sig-
nificant impact in the market [1]. Over the yeazempanies have been increasingly
equipped with CAD systems, and, naturally, adogstems were different from a
company to another. Engineers, who are users sétheterogeneous systems, were
paralyzed by the inability of sharing and exchaggifata related to their products
because each system has a proprietary and incdrepdtita representation format.
To comply with this situation, the main proposetusons were in form of data ex-
change standards. First standards were intendegcttange bi-dimensional and tri-
dimensional geometric data. Then, the need to egshavent beyond this, since there
were several applications that manage and exchdatgethroughout product lifecy-
cle.

Besides, through several industrial experienceBLiM (Product Lifecycle Man-
agement) integration and customization, we fourad there is a considerable redun-
dant work from a project to another in particular the following applications:

* Reorganization of data and products
< Improvement of transfer and data exchange
« Automatic documentation generation



Usually, these applications need to export or charge data. In all cases, provided
solutions were specific every time and didn't alsvagclude exchange standards.
Surely, the best way is to use data exchange s@sdaut experience with them has
shown considerable limitations in their integrationcommercial tools and their in-
teroperability. Recently, several researches haea lurned to XML strategies, either
by exchanging data in a native XML format or byyding an XML representation
of the exchange standards.

In this paper, we define a new standard approachuerying and exporting data
from PLM in XML format. The paper is organized adldws. In Section 2, we pre-
sent data exchange technologies, their limitatenmd the new developed approaches.
In Section 3, we present our proposed PLMXQuery@ggh and we discuss its im-
plementation in Section 4. We conclude in Section 5

2 State of the art

To bring new products to the market faster, withrenprofit and lower cost, compa-
nies need to share and exchange data quickly, atitatly and safely [2]. Moreover,
according to [3], one of the main PLM goals is tm@ify communication and data
exchange between collaborators and industrial pestrin fact, data exchange is the
building block on which we can find various apptioas such as data sharing and
migration, applications integration, and much mkmewledge reuse.

Actually, PLM supports many distributed activitiasd different systems to create,
store and share data related to products. Thigrdiog to [4], requires robust mech-
anisms for data exchange and integration. Since EaM are handled by heteroge-
neous systems using proprietary formats, in orm@&xthange data, the first approach
that comes to mind is to implement translators betweach pair of systems. Consid-
ering the huge number of existing systems, it dllworth to find another way speci-
fying an open, common and neutral data representatixchange standard.

This principle has given rise to many exchangedsteds in engineering (i.e. IGES,
VDA, SET, STEP, etc.) These standards are supptsée independent from any
system or application providers. Naturally, firtarelards concerned geometric data
handled by CAD/CAM systems. According to [5], CAEaisdards had significantly
reduced translation costs and improved customedssappliers interactions. Then,
normalization was expanded to cover all produceetspthroughout its lifecycle [6].

On the one hand, data defined by the geometryihated number of basic con-
cepts (point, line, curve, surface, etc) which @enmon to physical product aspects.
Thus, international normalization efforts are feai®n this kind of data. But on the
other hand, it is less conceivable to standardate delated to the product lifecycle
because these data are represented using diffeveroépts from a system to another.
Some works like [7], [8], [9] and many others tri@dpropose standards for exchange
data related to product lifecycle. Neverthelesss istill difficult to specify an ex-
change standard common to all existing systemsnarthe product lifecycle. Even if
we try, standardization will be a long and compbeacess [10].



In general, some standards are mature, such as, ®UERey still suffer from:

« Slow integration in commercial tools [3].

» Lack of interoperability among standards [5], [11].

« Large exchange files and significant processing tjifj.

« Solutions are specific to their domains and comutesm[10], [12].

To overcome some of these limitations, there iengtfrtendency to use XML as a
mean to capture and transform data [11]. For exeympl represent STEP files in
XML [13], PDML (Product Data Markup Language) isoposed [12]. Another ex-
ample, PLMXML [9], is used to represent produdfetlycle related data.

Beside of data exchange based on translators andasts, we identify a third ap-
proach which is based on application integratiomis Bpproach defines a process on
which several autonomous, distributed and hetermges data sources are integrated
into one source and they are associated to a ghatema [14]. By using this ap-
proach, data can be exchanged smoothly througheuiredefined mappings between
every local schema of each source and the glolbainsa. Application integration can
be based on databases, data files [2] (in textdb(@SV) or standard format (STEP,
XML, etc.)), or semantic web ontologies [10], [1§]16]. Obviously, data integration
is almost implemented to integrate applicationsisljahe same data [12]. It should
be thought “a priori” and requires a significantéstment. Also, this approach is not
easily scalable since it's mandatory to re-integdifferent applications if we need to
exchange data other than defined at the initigigrtion.

A new approach has emerged based on remote semmicEstion. In this context,
the OMG has defined PDM Enablers [17], specifyinge& of interfaces providing
functionalities that give a simple access to PLNhda standard way. Few years af-
ter, the OMG has also developed PLM services [a8]advanced and extended ver-
sion of PDM Enablers based on Web Services tecigola fact, the current trend in
PLM market is that several software providers gieeess to all or a part of their API
functions through Web Services.

3 PLMXQuery approach

Regarding the different approaches previously eagposie can discern that there is
always need to a more standard and flexible styategexchanging data between
PLM applications. In fact, we can benefit from effee aspects of previous experi-
ences.
In this section, we present PLMXQuery, a new dgwetbapproach which defines

a standard way to access and explore PLM contentder to exchange data, without
resorting to a concise specification of limited eétconcepts (the case of exchange
standards) or a full integration of applications.



3.1 Déefinition

The idea of PLMXQuery approach is to make the Pldvitent seen as XML docu-
ment. Then, we can get benefit from XML relatechtemlogies, in particular XPath

and XQuery, to query (browse and export) PLM contana standard way. After-

ward, resulting (exported) XML content could beged directly or converted to an-
other format. We can easily use this approach thaxge data punctually (i.e. migra-
tion) or permanently (i.e. integration). Also, wancexport all the content of the PLM
or only a thoroughly selected part of its content.

However, to achieve this idea we are facing a hioglechallenge which is to
make an abstraction effort on PLM content to makexploitation possible as XML
document. Next, we will show how to overcome thialtenge using a standard map-
ping rules between PLM objects and XML elementsteAtthat, we will present
XPath and XQuery languages and the way they witkvito our context.

3.2 Mappingrules

In order to represent their products through déifersystems and lifecycle steps,
companies need to specify a methodical and funatistnuctures that reflecting data
organization depending to each company. For thipqae, every PLM system should
implement a data model. The later usually defiresdcomponents: types of objects
managed by the PLM system, their properties aratioglships. Therefore, a product
can be represented inside a PLM system as a sgeofonnected objects.

Table 1. Standard mapping rules between PLM objects and Xbftles.

PLM object XML node

object type node name

object attributes node attributes

object relations children nodes

relation type child node name + direction attréout
relation attributes child node attributes

linked objects (by relation) child node children

Within the PLMXQuery approach, every PLM componisnnapped to a correspond-
ing XML element according to the standard mapping rules, sumnmhiizdable 1,
which are applicable to any PLM system. The follegvexample is an illustration:

<ltemid="00013" nane="wel dpoi nt">
<I MAN_reference direction="forward">
<Text id="00017" nane="specs"/>
</ | MAN_r ef erence>
</ltenw

1 The following concepts are used alternatively: X&ement and XML node.



This is an XML representation of a PLM object gbéytem, its attributes with asso-
ciated values, and a directional relatidMAN_reference) from this first object to
another object of typ@ext.

3.3  Querying using XPath and XQuery

XPath and XQueRare two standard languages working on XML striestiand we'll
use them to extract data from a PLM system. XPathfiltering language based on a
context node to designate a portion of an XML doentnin reference to the previous
XML example, the following one shows how to acctss attributeid of element of
type Text related to context node (not always the root).

./ I MAN referencel/ Text/ @d

XPath could be incorporated inside other XML larges especially XQuery. The
later is an XML query language in which we can deelfunctions and use condition-
al and loop statements. The following is an exangilea query that uses an XPath
expression (text between “(:” and “:)” specifies@mment).

xquery version "1.0";

(: Get a reference to the context object :)

decl are variable $root := .;

(: Get a set of itens associated to the context :)

decl are variable $related := $root/ | MAN ref erence/ Text;
(: Beginning of the resulting XM :)
<r oot >{

(: Process related itens one by one :)
for $itemin $rel ated

return <text>{$item @d}</text>}
</root >

By applying this query on the XML example, it wiliowse the XML content starting
from the context node, then filter and list alllpabf interest using XPath expression
and then, returns the following XML:

<r oot >
<t ext >0017</t ext >
</ root >

However, XPath and XQuery operate on an abstraet miadel named XDR This
feature allows the underlying model to be anythattger than a structured XML con-
tent; PLM content in our case study. Thus, we shauplement PLM to XML map-
ping rules to make the mentioned languages worRlod through this abstraction.
This is what we’ll undertake in the following sexti

http://www.w3.org/TR/xpath/ and http://www.w3.oFg/xquery/

3 http://www.w3.0rg/TR/xpath-datamodel/



4 PLMXQuery implementation

For the implementation of PLMXQuery, we proposeaatapter for exporting data
from PLM system in XML format. PLMXQuery adapterositd be able to consider
the PLM content as an XML document and to quengibg an XQuery engine.

Usually, when working with XML document the quenygine tries to browse the
whole document to ensure its conformity (a wellrfied XML document). This is
inconceivable when XML document will be substituted a PLM database. This
situation leads to an important technical challengpch is to have reasonable per-
formances; filtering PLM content and limiting theokwsing to only objects of inter-
est.

Next, we present a standard architecture for ttaptad including the solution for
the raised challenge and the selected XML platfarhen, we present a specific im-
plementation of the adapter for Teamcenter PLMesyist

4.1  Architecture

Since our approach considers PLM content as XMLudwnt queryable using
XQuery language, the adapter should be able toeimeht defined mapping rules and
incorporate an XQuery engine. A standard architector the adapter is proposed in
Error! Reference source not found.. When we need to query the PLM content ac-
cording to this architecture, we edit a query dmehtthe adapter will: 1) load and
compile the query, 2) execute the query on the Riokitent, and 3) return the query
results in XML format. In order to perform thesdfalient steps, the adapter will
translate the PLM browsing and access functionsl)(A® those expected by the
XQuery engine.

XQUERY
ENGINE
XQUERY XML
file ADAPTER B

PLM



Fig. 1. PLMXQuery architecture.

Browsing limitation. One of the major selection criteria of the XML ffidam on
which we will build the PLMXQuery adapter is to nést the scope of visited PLM
objects. To make this possible, we should be abldefine the following functions
through the selected platform:

» Access function: allows for quickly finding and eefing PLM objects using some
of their properties. Then, a selected object cdnddused as a context node in the
query.

« Filter function: limits browsing only on PLM objetypes, relation types and at-
tribute names that we are interested in.

Selected platform. There are several existing XML platforms endowetth WQuery
engine. To build the adapter, we need to reusentbst appropriate platform that fits
the different PLMXQuery requirements expressedhgyfollowing major criteria:

« Adaptability: clear/documented implementation &f %DM abstraction model.
» Performance: restriction and limitation of the tgsi objects' number.

» Extensibility: definition of additional functionglapted to the underlying model.
» Cost: license, free, etc.

The Table 2 illustrates a summary of the compatatiggms against these criteria.

Table 2. Comparison of existing XQuery platforms.

Plateform Adaptability Performance Extensibility <€o
Altova XML suite x ? x x
DataDirect XQuery v ? x x
Jaxen v x x v
Jaxp v x x v
Xalan v X x v
QtXmlPatterns v v x x
Saxon v v v v

In this table, we mention if a platform include tboncerned feature (™) or not
(“x™), and if there were difficulties to test or totgaformation on the feature (“?").
So, it is clear from this comparison table that@uais the most appropriate platform.

4.2  Teamcenter XQuery Adapter

Teamcenter XQuery is an implementation of PLMXQuAdapter for Teamcenter
PLM system (edited by Siemens PLM Software). Infdllewing we define the map-
ping rules for this implementation and query exi@ms$unctionalities.



Mappings. Mapping rules defined earlier are standard andncomto all PLM sys-
tems. If needed, these rules could be completeadiitional mapping rules specific
for every PLM system. Table 3 shows additional suier Teamcenter PLM system
needed to map its content with XML.

Table 3. Teamcenter mapping rules.

PLM object XML node

Revisions (relation) children nodes + directiomilitite
Bill-Of-Material (relation) children nodes

constraints, conditions, BOM variants child nodatisibutes

Extension functionalities. Standard functions provided by XPath/XQuery coloéd
limited to answer specify some queries. The seleelL platform, Saxofy allows
to define new extension functions that can be usside the query allowing more
flexibility in query expression. The developed @siens are (with examples):

1. Direct access functions to Teamcenter objects:

(: determ ne where the extensions are defined :)

decl are namespace tc= "j a-

va: com cadesi s. pl mxquery. t eantent er. TeanCent er XQuer yExt en
sion";

(: get TC object to use as a context node :)

declare variable $item:= tc:getbject("itenDO001");

2. Filtering functions (types, relations, attributétefs):

<root typeFilter="{tc:setTypeFilter("ltent)}"
rel Filter="{tc:setRel ationFilter("Revision,view)}"
attFilter="{tc:setAttributeFilter("current _id,
current _name, obj ect _type, constraint, ")}" >

{.}

</ root >
3. Downloading files function

(: Get set of docunents associated to the item:)

decl are variable $docs := $item | MAN_reference/ Text;
(: Beginning of the resulting XM :)
<root> {

(: Examine all docunents :)
for $doc in $docs
(: W try to get the file using the extension :)

4 http://www.saxonica.com



if (tc:getFile($c, "Text")) then <a>File downl oaded</ a>
el se <error>Cannot get file from source</error>
} </root>

The first and the second extensions are developpédcally to enhance the adapter
performance by limiting the number of visited nadBsit the third function is just
developed to download files from PLM into a tempygrialder.

All of the adapter implementation for Teamcentac)uding extension functions, is
based on a common package that defines all of camabstract classes and func-
tions. This package makes easy to implement anéthir adapter.

5 Conclusion

In this paper we presented the PLMXQuery approachew way to extract data
from PLM in XML format. The proposed approach cadess the PLM content as an
XML resource than queries this content using the L XMandard query language
XQuery. Throughout the implementation of this agmto (Teamcenter XQuery
adapter) we faced two challenges: 1) defining magpiles between PLM and XML
and 2) restricting number of PLM browsed objectse Teveloped adapter was based
on an XML platform named Saxon, equipped with anu¥fy engine. This platform
was extensible enough to overcome the raised clygte and to define additional
functions used to refine more elaborated queries.

The PLMXQuery approach is very flexible since itedn’t define a limited set of
concepts to avoid exchange standards drawbacki dodsn’t recourse to full, com-
plex and slow integration of applications. Usings tapproach, when we need to have
an interface with a PLM system we reuse the stahpackage to develop its specific
adapter. But, for a specific PLM system, only odagter is developed for several
purposes (data export, data exchange, integratiggration, etc) and, for each differ-
ent application, we just need to write the quedrd to configure the query engine
(without any maodification of the source code).

Teamcenter XQuery adapter is currently under test ieal industrial context and
until now we don’t have enough results to discagthis paper.

We believe that we proposed an interesting standlagdto access and query PLM
content. Using an XML-based approach in a PLM cdnite very suitable and more
advisable since XML is widely used especially irtad&ansfer and communication
among heterogeneous applications.

References

1. Goldstein, B., Kemmerer, S., Parks, C.: A Brief Higtof Early Product Data Exchange
Standards, National Institute of Standards and fi@cgy, NISTIR 6221, Gaithersburg,
MD, USA (1998)

2. Saaksvuori, A. and Immoen, A.: Product Lifecyclerddgement, Berlin, Springer-Verlag
(2004)



10.

11.

12.

13.

14.

15.

16.

17.

18.

Eynard, B.: Gestion du cycle de vie des produigyeamique des connaissances industri-
elles en conception intégrée. Report of Habilitatttrmanage researches. Troyes Univer-
sity of Technology, France (2005)

. Fenves, S.J., Sriram, R.D., Subrahmanian, E., RacdurProduct Information Exchange:

Practices and Standards. ASME Journal of Computimblaformation Science in Engi-
neering 5(3): 238-246 (2005)

. Rachuri, S., Subrahmanian, E., Bouras, A., Fenvgs, Boufou, S., & Sriram., D.R.: The

Role of Standards in Product Lifecycle Managememup8tt. In proceedings of the Inter-
national Conference on Product Lifecycle Manager2®o6: 122-136 (2006)

Srinivasan, V.: Open Standards for PLM. PLM Emegginlutions and challenges, Bouras
A. Gurumorthy B., Sudarsan R.. Interscience Entezgrid, pp. 475-484. (2005)

Szykman, S., Fenves, S., Keirouz, W., & ShooterAS-oundation for Interoperability in
Next-Generation Product Development Systems. Comyutied Design 33 (7): 545-559
(2001)

Lee, C,, Lau, H., Yu, K.M., & Ip, W.H.: A generic mel to support rapid product devel-
opment: an XML schema approach. International Jauofi Product Development 1(3):
323-340 (2005)

. Siemens PLM Software: Open product lifecycle ddtarieg using XML. White Paper

(2011)

Lin, H.K., & Harding, J.A.: A Manufacturing SysteBEngineering Web Ontology Model
on the Semantic Web for Inter-enterprise CollaboratComputers in Industry 58(5): 428-
437 (2007)

Pratt, M.J.: Introduction to 1SO 10303-the STEPn8tad for Product Data Exchange.
Journal of Computing and Information Science in Begring 1(1): 102-103 (2001)
Burkett, W.C.: Product data markup language: a neadigm for product data exchange
and integration. Computer-Aided Design 33 (7): 489-8001)

Peak, R., Lubell, J., Srinivasan, V. & Waterburry, STEP, XML, and UML: Comple-
mentary Technologies, ASME Journal of Computing laficrmation Science in Engineer-
ing 4(4): 379-390 (2004)

Bellatreche, L., Xuan, D.N., Pierra, G. & Dehainsdda Contribution of Ontology-based
Data Modeling to Automatic Integration of ElectrorGatalogues within Engineering Da-
tabases, Computers in Industry Journal 57 (8-9):7241(2006)

Hefke, M., Szulman, P. & Trifu, A.: A MethodologicApproach for Constructing Ontol-
ogy-Based Reference Models in Digital Production Begiing. Proceedings of the 6th
International Conference on Knowledge Managemergz GAustria (2005)

Sriti, M-F, Eynard, B., Boutinaud, P., Matta, N., Kia, M.: Towards a semantic-based
platform to improve knowledge management in coltabive product development. Inter-
national Product Development Management Conferévidan, Italy: 1381-1394 (2006)
OMG: Product Data Management Enablers. Object Memagt Group standard specifica-
tion (2000)

OMG: Product Lifecycle Management Services. Objdéahagement Group standard spec-
ification (2005)



