) AN INTELLIGENT AGENT VALIDATION
ARCHITECTURE FOR DISTRIBUTED
MANUFACTURING ORGANIZATIONS

Francisco P. Maturana
Raymond Staron
Kenwood Hall

Rockwell Automation, Mayfield Heights, OH, USA
{fpmaturana, rjstaron, khhall}@ra.rockwell.com

Pavel Tichy

Petr Slechta

Vladimir Matik

Rockwell Automation Research Center, Prague, CZECH REPUBLIC
{ptichy, pslechta, vmarik})@ra.rockwell.com

In this paper, we focus on validation of Multi-Agent System (MAS) behavior.
We describe the simulation architecture and the system design methodology to
accomplish the appropriate agent behavior for controlling a real-life
automation system. The architecture is explained in the context of an
industrial-sized water cooling system. Nevertheless, it is intended to operate in
a wide spectrum of control domains. In general, after the design of the control
system is accomplished, a set of validation procedures takes place. The current
needs are to validate both the control and the agent levels as integrated parts.
Hence there is a need to establish a general architecture and methodology for
easing the commissioning process of the control solution.

1. INTRODUCTION

Distributed systems such as manufacturing, supply chains, service industry, and
information infrastructures require a flexible structure for the integration of their
components to fulfill the market requirements of this century. Solutions to such
requirements can be found in Intelligent Agent technology which provides an
appropriate framework to integrate knowledge with efficient production ‘actions
(Brooks, 1986) (Wooldridge and Jennings, 1995) (Shen, et. al., 2001).

The validation of agent behavior is not only a local to-the-agent issue but a
global issue, where the interaction of the agents and associated latencies should also
be modeled as part of the system. This requirement introduces an interesting
complexity into the design of the architecture.

82 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

Distributed organizations emerges as a result of the dynamic interactions of its
intelligent components, which can be human or artificial (intelligent agents or
holons), or a hybrid (Christensen, 1994) (Mafik, et. al., 2001). To validate the task
sequences and interactions of the agents, it is required to understand the agent
context from multiple views. We describe the gluing technology to integrate the
pieces of the organization from the device level into upper enterprise levels. We
focus on the validation infrastructure which is based on a Simulation Development
Environment (SDE). The SDE is merged with the agent and control systems. The
validation sy stem allows the designer of the agents to verify the feasibility of the
agents’ actions prior to final commissioning of the system. This is a contribution to
the system architecture to improve the design and performance of the future agent-
based organization. The agent behavior can be refined exhaustively prior to its final
deployment, without ad-hoc investments or complicated equipment in-the-loop. This
infrastructure is synchronized with controllers to mimic the real-time operations in
order to obtain good representations of the events occurring in the real world. We
demonstrate the new infrastructure on an industrial-sized cooling system.

2. AGENT ARCHITECTURE FOR CONTROL

In the past, development of Agent architectures was focused on experimental
systems of reduced scale (Maturana, et. al., 2002) (Chiu, et. al., 2001) (Tichy, et. al.,
2002). In those experiments, the foundation architecture for highly distributed
control agents was established. Step by step, the new requirements were introduced
into the extensions of the automation controllers to enable the creation of distributed
intelligence in control.

We anticipate that agents will be distributed among multiple automation devices
or Programmable Logic Controllers (PLCs) and therefore an agent infrastructure is
needed to fit well the manufacturing environment, information networks, and
enterprises in general. Each agent represents a physical process or machine or device
and coordinates its operations with other agents. The MAS architecture is organized
according to the following characteristics:

e Autonomy: Each agent makes its own decisions and is responsible for

carrying out its decisions toward successful completion.

e Cooperation: Agents combine their capabilities into collaboration groups

(clusters) to adapt and respond to diverse events and goals.

Communication: Agents share a common language to enable interoperation.
Fault tolerance: A gents possess the capability to detect equipment failures
and to isolate failures.

2.1 Automation Architecture

In agent-based control, the controllers have an agent infrastructure for enabling the
component-level intelligence. With this, it is possible to distribute the intelligence
among multiple controllers using different agent sizes and populations. In this
architecture, controllers of various sizes and capacities can be deployed. Different
network connectivity can be used to exploit the distributed intelligence dimension
that is added by the agents.

An intelligent agent validation for distributed manufacturing 83

Regardless of the network topology (e.g., backbone or ring), the relationship
among the agents is kept loosely coupled. There are dynamic interactions among the
agents occurring during the decision-making process. These dynamic interactions
establish logical relationships among the agents temporarily. The agents are
designed based on FIPA specifications (http:\\'www.fipa.org) and ContractNet
protocol (Smith, 1980) to create and c oordinate their a ctivities throughout 1 ogical
links. To enable the agent-based automation architecture, it was required to modify
the c ontroller’s firmware. A common s oftware infrastructure is sh ared among the
different controllers.

The application s oftware represents the p hysical c omponents and processes of
the facility under control by the agents. Each agent represents a physical device such
as a valve, water service, heat load, etc. After the agent is created, it is ready to
begin operations by carrying out initialization procedures (capability registration)
and waiting for external messages or events from the control systems.

The agents contact each other within and outside the controllers via Job
Description Language (FIPA/JDL) messages. FIPA/JDL is used by the agents to
represent planning, commitment, and execution phases during the task negotiation.
Information is encoded as a sequence of hierarchical actions with precedence
constraints. JDL is also used to encode plan templates. A plan template is a
representation of the agent behavior as parametric scripts. A parametric script has
entry variables whose values are set during the planning process. Moreover, the
script has associations with internal-to-agent functions which are executed to fulfill
local decisions.

When an a gent accepts a request, an instance ofa plan template is created to
record values emerging during the planning process. Requests are propagated
throughout the organization using the Contract Net protocol. The requests visit
multiple agents and negotiation clusters are formed.

For inter-organization conversations, the agents emit messages outside their
organization via wrapping JDL messages inside FIPA envelops. This
implementation includes Directory Facilitators (DFs) functionality to be FIPA
compliant. A DF performs capability registration and matchmaking. For each
capability request, a DF provides a list of agents that coincide with the requested
capability. For instance, an overheating component requests cold water from its
water service. This is a cooling process capability.

2.2 Intelligent Agent Architecture

The agents are goal-oriented entities. They organize the system capabilities around
system missions. There are agents exclusively programmed to emit missions. Other
agents are programmed to handle the mission requirements and the execution
control. This type of distributed responsibility is easily handled using the agent
programming methodology. Information is fractioned into small pieces and each of
these is associated with separate agents. Importantly, agents are divided according to
class types. Thus, information is encapsulated under a class type as a template to be
used by the derived instances of that class type.

Goals emerge dynamically and these are agreed upon by the agents throughout
negotiation. For instance, an agent that detects a water leakage in a pipe of the
cooling system establishes a goal to isolate the problem. The agent then informs

84 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

adjacent agents to evaluate the problem according to their views and borrowed data.
This is the origin of a group based goal, which is to isolate the leaking pipes, in spite
of the cost of operation. This action exceeds the pre-assigned priorities. Isolation is
the highest possible priority.

The architecture of an agent has four components (Tichy, et. al., 2002); planner,
execution control, diagnostics, and equipment model. Important part is the execution
control component that acts as control proxy, which translates committed plans into
execution control actions. These actions are synchronized with the control logic
programs. It also monitors events from the control logic and translate them into
response-context events to be processed by the planner component.

Both the controller infrastructure and agent architecture facilitate the creation of
agents for c ontrolling the p hysical system. Thus, the c ontrol e ngineer and sy stem
engineer can experiment with distributed intelligence and control in a flexible
manner. However, the puzzle is incomplete from the solution validation point of
view. In general, a fter the automation sy stem has been modeled in software, itis
tested on physical pilot systems until a fine tuning of the control system is achieved.
But with the introduction of the agent software, this operation becomes more
difficult because the system has a larger number of control variables to be tested and
stabilized. Therefore, physical testing of such a system becomes impractical. Hence,
there is a need to incorporate a validation system to help the solution modeling
process, with a minimum of manual operation and pre configuration cycles.

3. SIMULATION ARCHITECTURE

The general tendency in validation systems for automation control is to build
physical prototypes or scaled down models of the real system. This practice is ideal
from the accuracy of the observations that are extracted from the operations of the
system during validation. Nevertheless, it is also practical to develop simulated
models to enable extensive validation process.

Information is organized under the agent scope. This information relates to the
transactions that occur during the planning process and during the execution of the
plans. Agents enable the construction of more advanced strategies for controlling the
system (according to the emergent behavior perspective). Advanced control
strategies imply physical changes into the pilot facility, which adds cost and process
uncertainty. From the predictive side of the spectrum, more advanced strategies
allow for proactive diagnostics. But this requires the equipment to produce specific
signatures that are generally obtained after a certain number of service hours. In
simulation this can be done efficiently. Therefore, the obvious conclusion is to
pursue an integrated architecture that includes all three elements: (1) control, (2)
agents, and (3) simulation.

The main components of the validation system are: (1) agent/control software,
(2) SDE, (3) soft controller, and (4) simulation. Figure 1 shows these components.

e Agent/control software: This component represents the agent and control
software creation. Other publications describe more details about this
component. This component produces three files types: (a) Agent object
code (Agents.0): executable agent code to be placed in RAM of the
controller; (b) Ladder logic code (.L5k): control programs written in ladder

An intelligent agent validation for distributed manufacturing 85

logic; and (c) Tag symbol topology (.xml): This represents the inputs and
output variables of the field devices.

e SDE: This component takes the tag symbol topology and the simulation library
to help the user match the control and simulation variables. The variable
matching is a critical task that is generally performed manually in very
separate contexts and by different people. Commonly, the tag symbols from
control do not match the symbols from the simulation models. Another
component of this architecture is a tool for importing the symbols from
either source (control or simulation) into the other. In this manner, symbols
from one source can be made available into the other for ensuring 100%
correspondence among the symbols. This component produces an
association file which is used to create a proxy. The proxy synchronizes the
controllers and simulator clocks and also does data exchange.

o Soft controller: This component is an exact emulation of a hardware based
controller. It allows for the creation of multiple controllers inside a single
chassis as well as communication cards such as Ethernet/IP and ControlNet.
This component is intended to contain agents and control programs, i.e., the
behavior of the real multi-agent system is emulated in this environment
(Marik, et. al., 2004).

e Simulation: This component represents the simulation environment. In this, the
application-domain process is modeled using user-preferred techniques and
languages. The fundamental idea is to deploy Commercial-Off-The-Shelf
(COTS) simulation packages (e.g., Matlab, SolidWorks, Arena, etc.). COTS
simulations are more practical from the industrial world point of view.
Based on the majority of the cases observed, the usage of commercial
simulators is more constructive than writing ad-hoc simulations.

AGENUCONtrO! | sty (*AgETtS

Software 1 2
Ve ——

Tag L Data
topology Synchronization || gxchange
xml 6

imulati
V Symbol 7 Simulation
5/ associatio
Simulation
Development 4 ;
Environment \ Model
—

Figure 1 — Simulation system architecture

The simulation architecture adds many degrees of freedom to the design and
validation of the agent-based automation system. With this, multiple strategies can
be treated as equal and tested using a single computer without incurring into
additional investment. Reusability of the infrastructure is a very relevant attribute.
The following sections focus on the system design methodology.

86 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

—eeeee— >

User adjusts Contained
the behavior of
agents, control,
and simulation

® @ Contained
@ \ Hardware controller

\ \ Agent.b'ri;'a'ﬁi;ation ggg% g!gg

[Common Inputs/Outputs Interface |

)

Soft controller,

R

Simulation

Pant

Functional
equivalence

Figure 2 — Software equivalence

The design and validation process is as follows:

1) Users create a first prototype of the agent and control code to suit the
characteristics of the physical plant;

2) A simulation engineer creates a simulation model of the physical plant;

3) Users create some desired agent strategies for fulfilling advanced control;

4) Agents and control software are downloaded into the soft controller;

5) Users match the tag topologies and create the synchronization proxy;

6) The integrated system is executed and observed to verify if the desired
behavior is fulfilled correctly by the agents and control programs;

7) Users modify the behaviors by changing simulation, control, or agents;

8) Repeat Step (6). If users add more components or if users change the
input/output configuration of the initial components, then repeat Step (5);

9) All the desired behaviors have been fulfilled to complete satisfaction; and

10) Software is transported into the physical plant and industrial controllers for
final commissioning.

Another important aspect of this methodology is the common input/output (I/O)
interface. Both the simulation and the physical plant expose the same set of I/O
signals. Therefore, the agent software that interacted with the simulation will see no
difference when connected to the physical equipment, because the interconnection
has been done through a common I/O set. Nevertheless, at the hardware level, it is
expected that some changes will occur regarding the characteristics of the
equipment. It is understood that simulation can be very accurate in some cases, but it
is still an idealization of the real situation. Nonetheless, these proposed changes are
considerably lower than those occurring in a conventional commissioning process,
yet from the lab into the pilot facilities.

4. SYSTEM MODELING

Figure 3 shows the cooling system under study. This cooling system is water based
and it is currently used at a Navy site to mimic the cooling system of the DDG-51

An intelligent agent validation for distributed manufacturing 87

destroyer class ship of the US Navy. This system is used for evaluation of advanced
auxiliary machinery concepts. The cooling system is a reconfigurable fluid system
platform with component-level intelligence. It includes the plumbing, controls and
communications, and electrical components that mimic the real-life operations.

!

voos | | vie3
— o

(0 vi27 PLANT1

a £0 V603

Vvoos

PLANT 2
BT vaos
2

Figure 3 — Cooling system

Immersion heaters provide stimuli for each service (SVC boxes in Figure 3) so as to
model actual heat transfer. Essentially, there are 3 subsystems, plants, mains and
services. There is one plant per zone (i.e., currently 2 plants: ACP boxes). There
are two types of services, vital (14) and non-vital (2). While in operation, under
normal c onditions, the c ooling sy stem is segregated in two zones to maintain the
cold water from each source separate. These two zones increase the survivability of
the system in case of damage occurring on one side.

The water from the cooling plants (named ACP plants) should never be mixed.
Cooling flow is controlled by each service using a local flow circuit. As more
services demand cooling the relative demand on the plants is increased. Under low
load conditions, it is possible for one ACP to handle all the loads. However, high
loading conditions will require that non-vital or low priority loads be shed from the
cooling loop until a future time at which time the heat load and water distribution
could be balanced again.

The ACP plants were modeled as a single agent each, which included pipes,
valves, pumps, an expansion tank, and water-level, pressure, flow and temperature
sensors. The main circulation piping is partitioned among ‘T’ pipe sections, i.e.,
passive agents. Load agents include a heat generator and a temperature sensor.
Water Services agents include valves and flow sensors. There are standalone valves
in the main circulation loop for the supply and return lines. This partitioning gives
us a total of 68 agents.

5. RESULTS

The results will be presented in terms of the specific models (control, tags, and
simulation) of the cooling system. There is no specific target result that can be easily

88 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

pinpointed from this work but the capability to integrate agent control and
simulation for validation purposes.

The following describes the system’s topology. In Figure 4, the mapping of the
physical I/O tags as a fragment of the tag symbol topology. The symbol information
was automatically extracted from the agent/control models in XML format (refer to
Section 3).

<Component name="SVC03">

<Tags>

<TAG name="SVC03allReqClose" host="sIx1"
access="r" type="boolean" value="0" />

<TAG name="SVCO03allReqOpen" host="sIx1"
access="r" type="boolean" value="0" />

<TAG name="SVC03anyFailedToOpen" host="sIx1"
access="r" type="boolean" value="0" />

<TAG name="SVC03anylslsolatingLeak" host="sIx1"
access="r" type="boolean" value="0" />

<TAG name="SVCO03reqClose" host="sIx1" access="r"
type="boolean" value="0" />

<TAG name="SVCO03valveOK" host="sIx1" access="r"
type="boolean" value="0" />

<TAG name="SVCO03waitingForRepair" host="sIx1"
access="r" type="boolean" value="0" />

</Tags>

<Component/>

Figure 4 — Cooling service I/O topology

An agent is a component (e.g., SVC03) with a set of tag elements. Each element
identifies the name of the tag (e.g., ‘SVC03allReqClose’), the name of the controller
that contains the tag (e.g., ‘slx1’), an access attribute which is ‘r’ for reading or ‘w’
for writing, depending on whether the simulation reads or writes into the variable,
and a value type and an initial value. Figure 4 only shows a fragment of the tag
topology for one service, we have approximately 2000 tags for the whole system.

Next, we explain a use case that was based on a Matlab/Simulink simulation of
the cooling system. The simulation is a qualitative model, which includes water flow
dynamics and heat transfer simulation for each of the components. Figure 5 shows a
partial model of one of the cooling regions. It has five loads (SVC05, SVCO06,
SVC13, SVC14, and SVC15). Each simulation sub-model has I/O symbols that are
imported to the SDE for subsequent matching.

1

H

g8
]

TIEE

i
T
I
{iis

Figure 5 — Simulation sub-model (Simulink view)

An intelligent agent validation for distributed manufacturing 89

After completing the matching of the symbols and proxy configuration, the system
was executed to observe its behavior. The experiment shown in Figure 6 consists of
emitting a system mission request into the cooling system. The request is to provide
cooling under cruise conditions. The cooling system agents tried a configuration by
emitting a series of sub-requests to different sections of the cooling system. The
initial attempt (see the left part of Figure 6) failed because there was a problem in
the water route discovery process. This experiment also failed for other missions
such as cooling in ‘battle’ and ‘in-port’ modes.

In this experiment, we demonstrated the capability to observe and debug the
system’s behaviors using a simulation system, real agents and formal control
algorithms. After deducing the probable causes of the error, the agent and control
code was modified and next e xperiment was executed. The right part of Figure 6
shows the results. Now, the mission request went through some additional layers
marking a successful completion.

Figure 6 — Results of the first execution (left) and improved performance (right)

This experiment showed that the modification of the code eliminated the
problem partially, since there were some failing conditions for the other missions.
Without the tool to experiment with partial changes, this troubleshooting process
would have been extremely hard and tedious using the real equipment.
Progressively, as we continued debugging the system more errors appeared until the
system was completely cleaned out to operate as expected.

We think that it is important to remark that the troubleshooting procedure
described above does not replace the commissioning phase. On the contrary, it
complements the final delivery of the solution by accelerating the process of
eliminating errors from the system ahead of time and in arbitrary locations chosen
by the designers of the system.

7. CONCLUSION

The above results give explanation of what could be done with the agent/control
validation system. In this work, we presented a set of prototype tools and procedures

90 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

well aligned with industrial automation. Other more complex interactions have been
experimented with excellent results. One immediate observation is the reduction of
the design time from the beginning of the modeling until obtaining a good working
model. It has been also observed that the number of modification cycles increased
but these were processed faster. This technique prevented our team from
experimenting with real expensive equipment. The debugging and validation tasks
were partitioned among multiple users. Each user pinpointed specific advantages
and deficiencies of the system. Current research efforts are on the improvement of
the new tools and on the establishment of a general methodology to create agents
and agent validation environments.

7. REFERENCES

1. Brooks A.: “A Robust Layered Control System for a Mobile Robot”, IEEE Journal of
Robotics and Automation, 2(1), 14-23, 1986.

2. Chiu S, Provan G., Yi-Liang C., Maturana F., Balasubramanian S., Staron R., and Vasko D.:
“Shipboard System Diagnostics and Reconfiguration using Model-based Autonomous
Cooperative Agents”, ASNE/NAVSEA Intelligent Ship Symposium IV, Philadelphia, PA,
April 2001.

3. Christensen J.H.: “Holonic Manufacturing Systems: Initial architecture and standards
direction”, First European Conference on Holonic Manufacturing Systems, Hanover,
Germany, 20pp, 1994.

4. IEC (International Electrotechnical Commission), TC65/WG6, 61131-3, 2™ Ed.,
Programmable Controllers - Programming Languages, April 16, 2001.

5. Matik V., P&chouek M., and St¥pankové O.: “Social Knowledge in Multi-Agent Systems”.
In: Multi-Agent Systems and Applications (Luck M., Matik V., Stépankova O., Trappl R.
eds.) LNAI 2086, Springer-Verlag, Heidelberg, pp. 211-245, 2001.

6. Mafik V., Vrba P., and Fletcher M.: “Agent-based Simulation: MAST Case Study”. Accepted
by the 6™ IFIP International Conference on Information Technology for Balanced Automation
Systems in Manufacturing and Services (BASYS'04), Vienna, Austria, 2004.

7. Maturana F., Staron R., Tichy P., and Slechta P.: “Autonomous Agent Architecture for
Industrial Distributed Control”. 56th Meeting of the Society for Machinery Failure Prevention
Technology, Section 1A, Virginia Beach, April 15-19, 2002.

8. Maturana F.P., Tichy P., Slechta P., and Staron R.: “Using Dynamically Created Decision-
Making Organizations (Holarchies) to Plan, Commit, and Execute Control Tasks in a Chilled
Water System”. In Proceedings of the 13" International Workshop on Database and Expert
Systems Applications DEXA 2002, HoloMAS 2002, Aix-en-Provence, France, pp. 613-622,
2002.

9. Shen W., Norrie D., and Barthés J.P.: “Multi-Agent Systems for Concurrent Intelligent Design
and Manufacturing”. Taylor & Francis, London, 2001.

10. Smith R. G.: “The Contract Net Protocol”, High-level Communication and Control in a
Distributed Problem Solver. In IEEE Transactions on Computers, C-29(12), pp. 1104-1113,
1980.

11. Tichy P., Slechta P., Maturana F.P., and Balasubramanian S.: “Industrial MAS for Planning
and Control”. In (Matik V., §tépénkové 0., Krautwurmova H., Luck M., eds.) Proceedings of
Multi-Agent Systems and Applications II: 9th ECCAI-ACAI/EASSS 2001, AEMAS 2001,
HoloMAS 2001, LNAI 2322, Springer-Verlag, Berlin, pp. 280-295, 2002.

12. Wooldridge M. and Jennings N.: “Intelligent agents: theory and practice”, Knowledge
Engineering Review, 10(2), pp. 115-152, 1995.

