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Current research in multi-agent heterarchical control for holonic systems is
usually focused in real-time scheduling algorithms, where agents explore the
routing or process sequencing flexibility in real-time. In this paper we
investigate the impact of the dynamic job routing and job sequencing decisions
on the overall optimization of the system’s performance. An approach to the
optimization of local decisions to assure global optimization is developed
within the framework of a Neural Collective Intelligence (NECOIN).
Reinforcement learning (RL) algorithms are used at the local level, while
generalization of Q-neural algorithm is used to optimize the global behaviour.
A simulation test bed for the evaluation of such types of multi-agent control
architectures for holonic manufacturing systems integrating discrete-event
simulation facilities is implemented over JADE agent platform. Performance
results of the simulation experiments are presented and discussed.

1. INTRODUCTION

The worldwide competition and the highly specified customers' requirements
towards product quality, delivery time, and services force the industry to a
permanent optimization of the production. As a consequence, logistics gets a new
focus on optimization of the production process in a very dynamic environment.
Current research in multi-agent heterarchical control for holonic systems is usually
focused in real-time scheduling algorithms, where agents explore the routing or
process sequencing flexibility in real-time (Denkena et al., 2002, Heragu et al.,
2002, Sheremetov et al., 2003, Usher, 2001). Though there are a lot of results on
scheduling heuristics and dispatching rules, few researchers have studied the
influence of these approaches on the overall optimization of the production system
performance. Since most of these solutions and techniques are based on local
optimization criteria, these decisions do not assure the overall business optimization
at the global level because of the conflicts between the local goals (Julka et al.,
2002). Traditional centralized techniques usually cannot assure global optimization
either due to the inherent complexity of the problem.
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In this paper, the problem of job routing (JR) is addressed within the context of
the NEural COllective INtelligence (NECOIN) theory (Wolpert & Kagan, 1999) and
the adaptation of the Q-neural algorithm (Rocha-Mier, 2002). According to our
approach, agents construct previously unknown model of the environment through
learning and interaction between them in a distributed fashion. The approach looks
for balancing the agents’ efforts to achieve the short-term or local goal (shortest path
selection) and a long-term or global goal — overall production optimization (Shimbo
& Ishida, 2003). According to our definitions, a production system within the
NECOIN framework is a large multi-agent system where:

e Its objective is the decentralization of control and communication.

e  Each entity of the system is represented as an agent with autonomous behaviour
and a local utility function.

o The learning process consists of adapting the local behaviour of each entity
(agent) with the aim of optimizing a given global behaviour.

e The agents execute Reinforcement Learning algorithms at the local level while
generalization of Q-neural algorithm is used to optimize the global behaviour.

In this paper we investigate the impact of the dynamic job routing on the overall
optimization of the system’s performance. A simulation test-bed for the evaluation
of such types of multi-agent control architectures for holonic manufacturing systems
integrating discrete-event simulation facilities and implemented over JADE agent
platform (AP) is described. This test-bed can be also used to compare different
approaches to job routing on a common basis (Brennan & O, 2000). The case study
deals with production of hypothetic products on the shop-floor level. Performance
results of the simulation experiments are presented and discussed.

2. NECOIN framework for the JR problem

This work proposes a model of the production system (PS) within the framework of
the NECOIN theory. In our approach, an agent can represent any entity of the PS. In
contrary to the model described in (Sheremetov et al., 2003), the materials in the PS
are represented as objects forming part of the environment. Therefore, every agent
can c hange or influence these environment objects. T he details of the objects are
stored as attributes. We define the following elements within the NECOIN
framework for the JR problem:

e Order-agent that has the knowledge on final products orders: PO

o  Setof n machine-agents (MA): M ={M,M,,...,M,}

o Setof s operations executed by machine ;: OP, = {0,,...,O; }

e Vector of non-negative values of 7 features for each operation
0, :V, =<v|,..,v >, e.g.v/= average time. These features vary from one machine to

another.
e Set of »n storage-agents (SA) denoting raw material providers:

S ={5,8,,..8,}
e Setof s objects corresponding to a type of raw material: MP = {MP, ,...,MPS}
e Setof »n final product storage agents (FPSA): FpP = {FPI soes FP, }



Optimization algorithm for dynamic multi-agent job routing 185

» Setof n objects corresponding to a type of final product: P={B,...,P,}

e Vector of non-negative values of 7 features for each product
P, :PV, =< pv,..,pv' >, e.g. pvi - product priority.

In this work, each agent has the following features:

e The set of environment states X ={x,x,,x,,.}. Knowledge (usually

incomplete) about other agents is considered to be part of the environment state.
For example, in some cases a MA might make decisions without knowledge
that a supplier has frequently failed on due dates.

e The capacity of agent to act is represented as a set of actions: 4, = {al Jly e @ }

o  The relationships between the agents in the PS are defined by: R = {r, R r3,...}.

For each neighbour agent, the following parameters are considered: a) its
relationship to the current agent (customer, supplier), b) the nature of the
agreement that governs the interaction (production guarantees), and c) the inter-
agent information access rights (the agent's local state to be considered during
the decision-making process).

e The priorities of every agent are represented by: Q= {ql,qz,q3,,,,} These

priorities can help in sequencing incoming messages for processing.
e  The local utility function (LUF) is represented as follows:
Q(X(t),a,(z))(t + 1) = Q(x(')‘ax(.))(t)'l' al.r (t + 1)+ 4 minax(m) Q(X(Hl)»ax(m))(t + 1)_ Q("(‘)’“x(l))(t)] >
where: a is learning rate, 7y is reduction rate.

This equation represents the Q-learning (Sutton et al., 1998) equation used in RL. The
Q-values Q(x(l)a()) give an estimation of the PS. The way in which the Q-

values are updated can be considered as one of the most important problems to
solve in our framework. The reinforcement for the performed action is
represented by r(¢+1). This function of reinforcement represents the partial

time of product production and is composed of: a) transition time, b) waiting
time, and c) operation time.
e The set of control elements: C = {C1>cz’c3:"'}' A control element is invoked

when there is a decision to be made while processing a message. For example,
in order to determine each destination of materials, a routing-control algorithm
would be utilized.

e Every agent has a message handler responsible for communication.

3. Q-Neural Algorithm for Job Routing Task

To address the JR problem, the adaptation of the Q-neural algorithm (Rocha-Mier,
2002) is proposed and described. The behaviour of the Q-neural was inspired by the
Q-routing algorithm (Littman & Boyan, 1993), the theory of NECOIN and the
algorithms based on the behaviour of the colonies of ants. Learning is done at two
levels: initially, at the agent’s level locally updating the Q-values by using a RL rule,
then, globally at system level by the utility function’s adjustment. The control
messages allow updating knowledge of the PS by updating the Q-values, which are
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approximated by using a function approximator (look-up table, neural network, etc.).

In Q-neural, there are 5 types of control messages:

e An 'environment-message' (flag_ret=1) generated by an intermediate MA after
the reception of a raw material if the interval of time o has already passed.

o An 'ant-message’ (flag_ret=2) generated by the FPSA according to the interval
of time w_ants when a final product arrives at the final product storage.

e An 'update-message’ (flag ret=3) generated in the planning phase every
& _update seconds to ask the neighbouring MA for their estimates about the
operations of the FP.

e  An 'update-back-message' (flag_ret=4) generated after the reception of an
update-message in order to accelerate learning of the environment.

o A 'punishment-message' (flag_ret=5) used to punish a MA using a congested
resource.

The Q-neural algorithm includes 3 parts: planning, ant-message and punishment
algorithms working as follows. Exploration can involve significant loss of time. In
Q-neural, a mechanism of planning (within the meaning of this term in RL) was
developed at the local level of each agent. This mechanism consists of sending an
update-message every ¢ ypdate seconds. This update-message will ask for the Q-

values estimates of all the products, which are known at that moment by the
neighbours.

When an environment-message arrives at the FPSA, an ant is sent in return if the
period of time @_ants has already passed. This ant exchanges the statistics obtained
on its way. When it arrives to the SA, it dies. The ant updates the Q-value of each
MA through which the raw material passed before arriving at the FPSA.

In some cases, different MAs from the same tier can have the same best estimate
(prefer the same route). If they act in a greedy way, congestion occurs in the queue.
To avoid congestions, a MA must sacrifice its individual utility and use another
route. In order to address this problem a punishment algorithm is developed forcing
an agent who receives a punishment message to calculate the second best estimate.

Finally, the Q-neural algorithm is defined as follows:

Initialize at t =0 : All the Q-values with high values, the RL parameters:
x()ayn)

a,y,exploration,w,w _ants
REPEAT
Update the instant t

if a raw material is received by machine M,

Read the input vector X from the raw material header and environment variables
Send the message to the agent M . where the raw material arrives with the value of the
reinforcement function y(t +1) and the estimation Q(;(r),ax(,))(t)

Execute the operation Q' and choose the action a,,=M"in function of the input

Q]
vector X by using the strategy ¢ greedy derived from Q( o ))(t)
_ XU ) ax(e

Send the raw material = M'
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At the next time step, receive the message from the machine M' with the value of the
reinforcement function r(t +1) and the estimation Qx(l+1),ax(.+.) (t + 1)

Apply the Q-learning update rule:
Q(x('),ﬂx(,))(t + 1) = Q(,,(,),ax(,))(t)‘*' @ '.r(t + ])+ ¥ min (i) Q(x(""l),ax(!ﬂ))(t + 1)_ Q(x(‘),ax(:))(t).l
REPEAT

Algorithm of planning & _ypdate

Algorithm of punishment
Algorithm of ants

Planning, ant-message and punishment algorithms are described in more details in
(Rocha-Mier et al., 2004).

4. Implementation of the Q-neural Algorithm in the Multi-agent
Framework

The above-described model has been implemented using JADE AP in order to test
the performance of the developed algorithms. A generic layout of the simulated PS
is shown in figure 1. The first tier consists of suppliers of raw materials and is
represented by the central storage. Raw materials are distributed among the
machines organized into several different tiers. For simplicity, we consider that the
operation lists corresponding to each machine of the tier are identical. Finally, all the
processed parts are stored at the storage of the final products.

Raw Haterials

Final Product
storage

Transition;

Figure 1 — A generic shop-floor layout scheme

An agent represents each entity in the model; there are » MAs at each layer, one
SA and one FPSA. Also, there is a Scheduler Agent (SCHA) whose role is that of a
synchronization ticker for the discrete event simulator organizing events during the
simulation. Nevertheless, the event queue behaviour (currently owned only by this
agent) can be transferred to the bulk of agents for an actual implementation in a
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physical environment. A User Interface Agent (UIA) is used to define experiments,
start, resume, and finish system’s operation.

The simulation begins when the SCHA broadcasts a startUp message to the
whole group. This way, agents can perform internal initialization tasks mainly
related to the tables (known as Q-tables) and variables to be used by the Q
algorithms. In the case of the SA, it will load the Technological Processes and
Orders lists that will be processed. Also, it will reply to the SCHA with the initial
Raw Materials list to be released.

Raw materials, intermediate products and final products are not physically
present. The information concerning each of them is passed via message interchange
between the SA and MA. A raw material becomes a final product after having
travelled along the machine network. Initially, it is created with an operation vector
that decreases at each step, until it gets empty and an FP is located at the
corresponding storage.

Fig. 2 shows a Collaboration Diagram illustrating the planning phase of the Q-
neural algorithm, which involves the SCHA and three M As. A lso, a sample raw-
material transfer and the corresponding arrival to the FPSA are shown.

1: No'bilfy(E_Update 2: Request(estimates Messages:

essage) . 1,2,3,4,5,6 belong
operations, Known Products) to Q-Planning Al
:SCHA —> :MA4 —> :MA6 9 Alg-
< <—

. Messages:

6: Schedule(next E_Update 4: Response(estimates 7,8,9,10 belong to
Message) operations list) raw material
routing

R: Request(estimates operations, FPSA

X: Notify(Dequeue) \ Known Products)

5: Response(estimates operations list)

4
10: Incr_Stock(Product)
8: Transfer(Product)
MA1 > iMA7
<—
9: Response(Environment Message)

Figure 2 — Collaboration Diagram: planning phase of the Q-neural algorithm

As it can be noticed, both events are first dispatched by the SCHA. The SCHA
warns MA each time they must take some product from their internal queue and get
it processed. Before forwarding the modified product, an MA will c onsult the Q -
tables in order to decide the best route to follow. Also, there is a ping-like operation
that ensures the selected machine is still alive. Otherwise, the second best alternative
will be chosen and the corresponding MA will be notified to queue the product for
further processing. In consequence, the Q-tables are changed since a new product
has been set in the link between the current machine and its neighbour.

Data back-propagation to the previous stage is achieved after a MA commits to
queue a product. This mechanism helps ensuring that each machine has information
to optimize product routing. Routing algorithms are embedded in MA’s body. This
results in information updating aimed in optimizing the decision making process on
the best route selection for each stage.
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It must be noticed that the SA works partially as a MA for the following reason:
the SA also keeps a Q-table for making decisions on where to send the raw material
after this is released. If the MA detects that there are no pending operations to
accomplish for the processed product, it will notify the FPSA. In turn, this agent will
modify the stock numbers for such product.

Under a centralized approach, a single entity evaluates continuously the best
alternative for every agent’s strategy within the system. However, computing the
numbers for a large group could be unfeasible under time and resources constraints.
Under our distributed approach, each agent shares its local estimates with the
neighbours, thereby laying the ground for a collective solution with fewer resources
than those required by a centralized entity.

The optimization is reached by informing the neighbourhood status; this
information is used by reinforcement rules and conjoined with the collective
algorithms. This way, the Q-tables are continuously updated to reflect the agent’s
perception of the world. They improve their decision-making as more raw materials
flow through the system. Agents only have to activate the corresponding behaviour
according to a schedule that gets adjusted during the system execution.

S. Case study description and performance results

In the previous section, we have shown how the different agents can interact with
each other to carry out the control of the production processes. We distribute agents
and product objects over the network, and have them interact with each other to
simulate the communication and cooperation of the actual controllers distributed in a
production plant. In this section, we will present an example to demonstrate the
interaction model of the agents and the resulting optimization of the production
processes. We present an example of some of the performance analysis that has
resulted from the model described in this paper to investigate the impact of the
dynamic JR decisions on the overall systems performance.

For the experiment configuration, we used one SA, 3-tier production scheme and
a FPSA. Tier A is composed of MA, and MA, performing operations O1 and O2
taking 18 and 34 time units and 19 and 20 time units at different machines
respectively. Tier B is composed of MA; performing operations O3 (36) and O5
(19), MA, with O4 (30) and MA; with O5 (14) and O6 (29). Finally, tier C is
composed of MAg with O7 (30) and O8 (18) and MA; with O8 (19). During the
initialization stage, MAs search their local Directory Facilitator. They receive a list
of partners from the next tier of the PS. Also, MA asks next-tier neighbours about
their capabilities. This information is used to initialize the Q-tables.

There are three different products over which, three operations must be
accomplished: P1, operations O1, O4 and OS5; P2, operations 02, O4 and O7; P3,
operations 02, O5 and O7. The corresponding demand for each of them is: between
time units 1 - 50, P1-type raw materials for 30 products must be released from the
SA. Between 21 - 60, P2-type raw material for 40 products and between 31 - 70, P3-
type raw material for 60 products must be released from the SA. All of them travel
through the PS until they reach the FPSA at the other side of the network.

Starting simulation, the SA sends message indicating the MA,; to add a new
product to the buffer’s queue. However, this is only a notification; the actual
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processing will not take place until the SCHA informs the MA, to do so. After the
operation is completed, the agent is responsible for routing the product to the next
tier where two events are triggered: a neighbour’s request to add the intermediate
product and a SCHA'’s request to add a new event for the corresponding machine to
check its buffer for pending jobs.

For communication purposes, domain ontology is used. This encodes different
types of events that agents must be aware of. The ontology consists of a set of
numerical constants for events such as: “raw material release” (RELEASE_MP),
“final product report” (INCR_STOCK) and “product leaves machine buffer”
(DEQUEUE). Message structure between MA and SA is slightly different from
conversations with the S CHA. T his latter manages only events notifications from
and to the group of agents. MA and SA, on the other hand, implement action
requests for operations. As shown in fig. 3, MA,; requests MA, to add a product to
MA,’s queue. That is the way products travel from tier to tier. In the last
conversation, MA; requests MA, and MA; to inform their capabilities in order to
update MA;’s Q-tables. Each MA responds to the query with the list of operations it
is able to perform and associated processing time using FIPA-request protocol.
These operations are specified as “operations concept” using domain ontology.

192 AgentPlalfarms
-3 ThisPlatform

Figure 3 - Message interchange among a set of MAs (Sniffer Agent screenshot).

As shown in fig. 3, MAs are distributed along the JADE containers according to
the production tier they belong to. Also, container facilities work as a bridge for
experimenting with distributed locations. There is an option to connect physically
distant machines that resembles the common layout of a real PS (as shown in
Sheremetov et al., 2003). In other words, presented implementation is two-folded. It
canbeused as a test-bed for trying different c onfigurations, and ifrequired, itis
intended to function as an implementation in a real scenario.

Planning and punishment sub algorithms were applied each second of simulation
time and ant sub-algorithm was applied each 0.5 sec. The general parameters were:
learning rate = 0.8 and exploration rate = 0.08.
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At the second stage of the experiments, an adaptation of the Q-routing algorithm
(Littman et al., 1993) within the framework of the JR problem was compared with
the Q-neural algorithm, described in this paper. The comparison of these two
algorithms can be found in Fig. 4. This figure shows the number of products
produced (arrived at the FPSA) vs. the average production time.

45 . -
T : Q-routing

/ ~~~~~~~~~~ b l?-neurul
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Figure 4 - Comparison of the results of the Q-routing and Q-neural algorithms

Fig. 4 shows the adaptability and better performance of the Q-neural algorithm
due to the following. MAs based in Q-routing, make their decisions in a greedy way
to optimize their local utility functions. This conduces to a buffer's saturation and a
decrement of the global utility function as a result of this greedy behaviour.
However, the MAs based in Q-neural, make their decisions taking into account both
local utility and the global PS performance. As a result, the performance of the
scenario is improved thanks to the adaptation to the changes of the PS environment.

6. DISCUSSION AND CONCLUSIONS

Today's challenge is to optimize the overall business performance of the modern
enterprise. In general, the limitations of traditional approaches to solving the JR
problem are due to the fact that these models do not correspond to the reality
because of incomplete information, complex dynamic interactions between the
elements, or the need for centralization of control and information. Most of heuristic
techniques on the other hand, do not guarantee the overall system optimization.

In this paper, JR problem is addressed within the framework of NECOIN theory.
In order to optimize the global behaviour of PS on the shop-floor level, learning
process using RL algorithms to adapt agent’s local behaviour is used. This model is
implemented in the agent-based parallel modelling and simulation environment over
the JADE platform. Being the agglutinating centre of the enterprise information
infrastructure, an AP also serves as an experimental test-bed for the implementation
of the models developed in this paper. By means of this, we can easily implement
the algorithms tested in the simulated environment into the real-world applications.
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The experiments on the comparison of this approach with that reported in
(Sheremetov et al., 2003) on a common platform is under development. The tested
control systems will have varying production volumes (to model the production
system with looser/tighter schedules) and disturbance frequencies, so that the impact
of the JR and sequencing decisions in various manufacturing environments can be
evaluated. The communication protocol’s behaviour between agents is under
investigation using communication network simulation tools like Network Simulator
(NS-2). We also pretend to compare our algorithms with other classic optimization
methods using the developed multiagent test-bed.

Though we do not have yet the results of these experiments, we conclude that the
JR problem is well situated for the application of the NECOIN theory. In addition,
the adaptive Q-neural algorithm provides better throughput and reliability than other
algorithms. In future work, an adapted model of the CMAC Neural Network will be
used for the Q-values approximation. More complicated punishment algorithm will
be developed to adjust the local utility functions.
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