33 A FORMAL THEORY OF BM VIRTUAL
ENTERPRISES STRUCTURES

Rui Sousa; Goran Putnik

Production and Systems Engineering Department
University of Minho, School of Engineering
Guimardes, PORTUGAL

Email: rms@dps.uminho.pt

Email: putnikgd@dps.uminho.pt

Formalisms are a tool commonly used in many engineering areas and, as
expected, are also being used on virtual enterprises research. However the use
of formalisms is not enough to ensure correctness and ambiguities absence on
the developed projects. Only with a background formal theory is possible to
achieve that goal. This paper presents a formal theory of the structural aspect
of virtual enterprises according to the BM Virtual Enterprise Architecture
Reference Model (BM_VEARM) developed at University of Minho — Portugal.
The theory is generated and represented by an attributed context-free formal
grammar accepting some pre-requisites as input and producing as output
canonical structures of virtual enterprises compliant to those pre-requisites.
The formal theory of BM_VEARM virtual enterprises structures is in fact the
Jformal language generated by the defined grammar.

1. INTRODUCTION

Contrarily to some speculations the use of formalisms doesn’t mean that a formal
theory is behind. For the case of first-order theories this claim is proved in (Sousa,
2003), using mathematical first-order logic concepts, and implies that formalisms by
their own are not enough to ensure correctness and to avoid ambiguities.

It is commonly accepted that only with solid theories it is possible to achieve the
desired rigour on developing projects. Research on virtual enterprises (VEs) is an
area of investigation whose importance is rapidly increasing as VEs are seen,
especially by the scientific community, as the new paradigm for the
factories/enterprises of the future. It is obvious that a formal theory of VEs would be
of extreme importance for the investigation on this area.

This paper introduces a formal theory, generated by an attributed context-free
formal grammar, of the structural aspects of VEs according to BM_Virtual
Enterprise Architecture Reference Model (BM_VEARM).

The concept of theory is rigorously defined by mathematical logic as a set of
some formulas with some special characteristics (Mendelson, 1987; Ebbinghaus et
al., 1996; Keisler, 1996). Those formulas are obtained from a given alphabet of
symbols, using some derivation rules (calculus of formulas) and they constitute a
language. Thus a theory is a language but, obviously, a special language. The formal



316 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

grammar presented in this paper was specially developed to synthesize strings of
symbols which are formulas compliant to the theory definition coming from
mathematical logic. Hence, this grammar generates a language which is in fact a
theory. The theory concept has as background other formal concepts from
mathematical logic involving not only the syntactical viewpoint, but also the
semantic perspective (e.g. structure, interpretation and model). With the developed
grammar, and given some pre-requisites, it is possible to generate canonical
structures of VEs compliant to BM_VEARM reference architecture.

The paper is intended to be introductory and self-contained regarding the
grammatical principles involved, and its structure is as follows. Section 2 provides
the basics of formal grammars, arising from theory of languages. A generic
definition of formal grammar and the Chomsky’s classification for formal grammars
are presented. Attributed grammars are also referred as they are the truly powerful
grammars. A simple example, already interpretable in the manufacturing systems
structural aspects area, is provided. The fundamentals of BM_VEARM developed at
the Production and System Engineering Department, University of Minho, Portugal
(Putnik, 2000), are provided on section 3. Comprehensively more emphasis is
dedicated on the structural aspects of VEs. On section 4 it is introduced the
attributed context-free formal grammar Ggy, responsible for the generation of the
formal language Lp,, which is a formal theory of BM_Virtual Enterprises structures.
On section 5 some conclusions are outlined along with some perspectives of future
work.

2. FORMAL GRAMMARS

A grammar is usually known as a set of rules allowing the creation of words and
sentences over a given alphabet. The formal grammar concept goes a bit further by
including the alphabet itself on the definition. Many similar definitions can be
found in literature (Salomaa, 1973; Denning et al., 1978; Hopcroft and Ullman,
1979; Lewis and Papadimitriou, 1981; Mikolajczak, 1991; Révész, 1991; Pittman
and Peters, 1992), all based on Chomsky’s definition (Chomsky, 1959). Adapted to
the notation used in this paper we have:

Definition 1: A formal grammar G is a four-tuple G=(V1,Vy,S,R) where Vr is a
finite set of terminal symbols, Vy a finite set of non-terminal symbols (VyWVy=9), S
is the initial symbol (Sc¥Vy) and R is a finite set of rewriting rules.

Each rewriting rule, or production, is an ordered pair (¢, ) usually denoted as a—/f
showing how the word ae(V7¥y)" can be rewrite as Be(Vr¥y)". The word «
must contain at least one non-terminal symbol. Recall that if ¥ is an alphabet then V"
represents the set of all the words, including the empty word A, that can be
constructed with the symbols of ¥ and V'=V*\{A}.

Example 1: Consider a grammar G=(VpVyS,R) where Vi={m,—,/,),(},
Va={S}and R={S—>m, S-S S, S—S//S, S—>(S)}.



A formal theory of BM virtual enterprises structures 317
Two possible words of terminal symbols generated by this grammar are:

S=8 Somis Somis (S) =>m (S//S) >ms (mllS) =>mi— (m//m) )
S=8 S=(8) 1> S=(S//S) = S =((S)/S) -5 S =((S+ S)/IS) > S =

=((m- S)/1S) > S =((m—> m)//S) > S =>((m—> m)//m) - S =

=((m— m)//m)i>m 2)

Each symbol = represents a derivation step and corresponds to the application of
one of the available productions. A derivation process ends when all the symbols of
the word are terminal symbols. From the manufacturing systems structures
perspective, words obtained by derivations (1) and (2) can de interpreted as different
machine compositions (see Figure 1).

m > (m/l m) ((mr—)m)//m)l—zom

Figure 1 - Machine compositions generated by G grammar

Based on their productions type, formal grammars are classified in four classes:
unrestricted (type 0), context-sensitive (type 1), context-free (type 2) and regular
(type 3). This classification is known as Chomsky’s hierarchy. To overcome some
limitations of formal grammars the concept of attributed grammar was introduced by
(Knuth, 1968). In an attributed grammar each symbol may have none, one or more
attributes, addressing thus, besides syntactical aspects, the semantic viewpoint.
Consequently the definition of each production must be extended with assertions or
predicates about the involved attributes. To illustrate this concept the grammar G
from example 1 will be transformed into an attributed grammar G’. The distinction
between different machines can be accomplished using a finite number i of m;
symbols, instead of a single symbol m. Each machine can be characterized by its
production rate p, in parts/h. Thus p, will be an attribute of each m; symbol and also
of symbol S which represents the entire system (see Table 1). This attribute is not
applicable to the remaining alphabet symbols.

Table 1 - Symbols with attributes for grammar G’

Symbol | Description | Attribute Description
m; machine i pr machine production rate
S system pr system production rate

Now the productions of the new grammar G’ are completed with assertions about
the p, attribute (see Table 2). Note that superscript identifiers are introduced
whenever symbol instance distinction is necessary.



318 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

Table 2 - Productions and assertions for grammar G’

Production Assertion
SV—m, pASVy=p m;)
SV—5% 157 pASPy=min(p(5?), pAS?))
SV>8) 87 PASV)=pAS?)+ pAS?)
5P—(5%) PASV)=p5?)

Example 2: Consider the attributed grammar G'=(V;VySR) where
Vi={my,...my—,/1,),(}, Va={S}and R contains the productions of Table 2.

Recalling the derivation (1) of example 1, but including now instance identifiers and
distinct m; symbols we may have:

SV=82 15 8V=m; 1> SO=m; 1> (SP)=m > (SOVSD)=m; 1 (mof1S®)
=m; > (myl/ms) 3)

Besides the showed generation of machine compositions, G’ can also determine the
production rate p, of the generated system, based obviously on the individual
machines production rates which in this case are set, for instance, to 20, 18 and 16
parts/h for m;, m; and m;, respectively. Formally system p, calculation is done using
the assertions associated to the applied productions, starting from the last derivation
step because system p, is an synthesized attribute (Pittman and Peters, 1992; Sousa,
2003). Thus in the last derivation step it is used the production S“—m; implying
that p,(S®)=p,(m;)=16 parts/h. The previous derivation step applies production
S¥—m, and thus p(S™)=p.m;)=18 parts/h. The fourth derivation step uses
production S®¥—5%// 5 leading to p(S™“)=p,(S”)+ p,(S@)=18+16=34 parts/h. The
third derivation step applies S”—( $%) and thus p(S@)=p(S®)=34 parts/h. The
second derivation step uses the production S”—m; implying that p,(S™)=p,(m;)=20
parts/h. Finally the first derivation step applies S”/—8? 1+ S and consequently the
production rate of the generated system is  p(S™)=min(p,(S?),
pr(S(3)))=min(20,34)=20 parts/h. Although simple this example illustrates the high
potential of attributed grammars when compared with traditional grammars.

The language generated by a grammar is the set of all the words of terminal
symbols generated by that grammar.

Definition 2: The language generated by a formal grammar G=(VpVyS,R) is
1G)={per; |52 p)
Symbol = denotes derivation in many steps according to the productions of G.

Mathematical logic defines language as the set of all the formulas obtained from a
given alphabet according to a set of rules (calculus of formulas). From all those
formulas some, under certain circumstances, may constitute a theory (Mendelson,



A formal theory of BM virtual enterprises structures 319

1987; Ebbinghaus er al., 1996; Keisler, 1996). Thus, and without further
justification, we can say that a mathematical logic language may potentially include
one or more theories. Hence if a formal grammar generates words that can be
considered as formulas, then that grammar is a potential theory generator. This
subject is deeply investigated in (Sousa, 2003).

3. FUNDAMENTALS OF BM_VEARM ARCHITECTURE

The BM_Virtual Enterprise Architecture Reference Model (Putnik, 2000) is based
on a multilevel hierarchical model (Mesarovic et al., 1970) and supports four crucial
characteristics for VEs: integrability, distributivity, agility and virtuality. To achieve
the first characteristic BM_VEARM includes an integration mechanism concept.
The use of wide area networks supports the distribution of the VE resources. Agility
and virtuality are provided in BM_VEARM through the broker concept. Figure 2(a)
represents the elementary hierarchical BM_VEARM structure which works as a
building unit in the synthesis process of VEs. Figure 2(b) shows an example of a VE
structure synthesized according to BM_VEARM. Both diagrams on Figure 2 are
logical representations with a high abstraction level. From the implementation
viewpoint, integration mechanisms are usually embedded in the adjacent blocks (i.e.
control level and resources management).

4
C IE U]

Sz

X | Controllevel i | Y

[g™) w,

e
i i+l

[oaf® P

RMyui: yiv,  |Resources Management),  y™,, X A ¢ Yo
? level i+1 ?

IMig, 122

i+, i+2

Suz: Xuz Yuy
—

@ (b)
Figure 2 - BM_VEARM (a) elementary structure (Putnik, 2000) (b) VE instance

Based on this perception the incoming grammar for VE synthesis may include only

two types of basic blocks: ¢; - control level and r; resources management. The
complete description of BM_VEARM can be found in (Putnik, 2000).

4. AFORMAL THEORY OF BM_VEARM VIRTUAL
ENTERPRISES

This section presents a context-free attributed grammar, denoted as Ggy, able to



320 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

generate VEs structures according to BM_VEARM. As seen before two
fundamental terminal symbols are necessary: ¢; — to represent control level blocks
and r; — for resources management blocks (see Figure 3). Due to space limitations is
not possible to include here all the symbols, attributes and assertions of Ggy,. This is
the reason why definition 3 and derivation 4 only refer to the syntactical aspects of
Gpyr. However the entire development process can be found in (Sousa, 2003).

cr, l T wo,, a, l T wo,
et Yo X Y
—— ——p —»

.‘ .
[ 4 X, Y,

X,

[N

7 :

| F—— —> —»
Co, lT lT Wi Co, liT lTWI ,
el W g Tjs erj’l Cor,,q' 4

el COc,,q

Cpym Iyt U

Figure 3 - Basic blocks for Ggy, (Sousa, 2003)

Definition 3: Gp~(V7,Vy,S,R) is an attributed context-free grammar where
VT={c,,...,cnc Tyeees by 5Segs=s )., Vw={S.4,B} and R={S—c (1 4)=S,,

A-r{ITB), A>A44, B—~>c(1TA), B->BB, B—c;} dedicated to the synthesis of
virtual enterprises according to BM_VEARM.

Figure 4(a) represents the so-called “BM_VEARM minimal system”. The VE
instance of Figure 2 (b), now with embedded integration mechanisms, is shown in
Figure 4(b) and can be synthesized from the following Gg,, derivation:

S=¢ (Wd)=s, = (dd)=s,, = (M (11B)d) =5, = ¢, (1 (41c,) 4) = 5,
= ¢, (Ut (Mc,)r, (lTB)) =5, = ¢ (17 (Mc,)n, (lTBB)) =5, =
= (lTrl (Me,)r, (Meye, )) =s,, “)

> 5 > i >~
)
v Y

- ¢, - ¢ c -
a (¥ (¥c,))=s, e (37 (Me,)r, (Mese,)) =,
@ ®

Figure 4 - BM_VEARM (a) minimal system (b) VE instance

As seen before the set of all the words generated by a grammar is a language.
Definition 4: Lg),=L(Gg)) is a formal language for VEs structures compliant to
BM_VEARM.



A formal theory of BM virtual enterprises structures 321

Every word generated by Ggy, ends with ‘=S,,” being thus a formula. Therefore the
language Lgy, is a set of formulas. According to mathematical logic if those formulas
are satisfiable by a given interpretation (and closed under consequence) then they
will constitute a theory (Ebbinghaus et al., 1996). The structural interpretation of
Gy terminal symbols as control level blocks, resources management blocks,
hierarchical connection, etc., satisfies all the formulas of Lg),. Thus we can claim
that Lp, is a formal theory of VEs structures compliant to BM_VEARM.

S. CONCLUSIONS

The importance of the virtual enterprise (VE) paradigm at present and near future
seems to be obvious. It seems also consensual that investigation on this area must
have a solid theoretical background otherwise sustainable research won’t be
possible. Following this line of thought this paper presents an important contribution
to the establishment of the referred theoretical base.

It is shown how formal grammars, and specially attributed grammars, can be
used to deal with some aspects of VEs — structural aspects in this case - in a
completely rigorous manner.

It is presented the attributed context-free formal grammar Gpy, responsible for
the generation of the formal language Lpi. Lgy is not just another formal
representation language used, in this case, in the VEs area. Due to the development
process of Ggy, the language Lp, can be used to represent VEs structures but it is
also a theory of VEs structures compliant to the BM_Virtual Enterprise Architecture
Reference Model (BM_VEARM), providing other potentialities. Although not
detailed here, due to space limitations, the inclusion of attributes associated to the
symbols of Gg, grammar constitutes the true power of this approach. For example
we can define how many blocks (control level and resources management) are
available and how many inputs and outputs each one of them has, and let Ggy
synthesize VEs instances compliant to those predefined requisites. Furthermore with
simple modifications Gy, can be used not only to synthesize VEs structures but also
to recognize that kind of structures.

The exploitation of the equivalence grammars-automata will lead to the
specification of a pushdown automaton equivalent to the context-free attributed
grammar Gpy, allowing thus the development of application tools. This work is
already running and a very simple prototype tool (not yet based on Gg,,) was already
developed by two computer science students.

The Formal Theory (FT) presented in this paper is not a general FT of VEs, but
only the FT of a specific aspect of VEs - the structural aspect - compliant to
BM_VEARM. BM_VEARM is a reference model and others may exist. The
grammatical approach proposed could be applied to other reference models,
implying that a specific grammar should be constructed for each model. What to do
with these FT of particular VE models and aspects? Unify them in a more general
FT or leave them as they are resolving only specific problems? These, and other
related issues, are open questions. This paper is also a contribution to these
questions.



322 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

6. REFERENCES

1. Chomsky, N. (1959). "On Certain Properties of Grammars." Information and control 2: 137-167.

2. Denning, P. J., Dennis, J. B. and Qualitz, J. E. (1978). Machines, Languages and Computation,
Prentice-Hall, Inc.

3. Ebbinghaus, H. D., Flum, J. and Thomas, W. (1996). Mathematical Logic, Springer.

4. Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Automata Theory, Languages and
Computation, Addison-Wesley Publishing Company.

5. Keisler, H. J. (1996). Mathematical Logic and Computability, McGraw-Hill International Editions.

6. Knuth, D. E. (1968). "Semantics of Context-free Languages." Mathematical Systems Theory 2: 127-
14s.

7. Lewis, H. R. and Papadimitriou, C. H. (1981). Elements of the Theory of Computation, Prentice-Hall
International Editions.

8. Mendelson, E. (1987). Introduction to Mathematical Logic, Chapman & Hall.

9. Mesarovic, M. D., Macko, D. and Takahara, Y. (1970). Theory of Hierarchical, Multilevel, Systems,
Academic.

10. Mikolajczak, B., Ed. (1991). Algebraic and Structural Automata Theory, North-Holland.

11. Pittman, T. and Peters, J. (1992). The Art of Compiler Design - Theory and Practice, Prentice-Hall
International, Inc.

12. Putnik, G. (2000). BM_Virtual Enterprise Architecture Reference Model, in Agile Manufacturing:
21st Century Manufacturing Strategy (A. Gunasekaran), Elsevier science Publ: 73-93.

13. Révész, G. E. (1991). Introduction to Formal Languages, Dover Publications, Inc.

14. Salomaa, A. (1973). Formal Languages, Academic Press, Inc.

15. Sousa, R. (2003). Contribuigdo para uma Teoria Formal de Sistemas de Produgdo. Tese PhD.
Departamento de Produgfo e Sistemas, Universidade do Minho.



