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A Suitable learning and classification mechanism is a crucial premise for
Human-Robot Interaction. To this purpose, several one-class classification
methods have been investigated using wavelet features (parameters of Hidden
Markov Tree model) in this paper. Only target class patterns are used to
train class models. Good discrimination over outlier (never seen non-target)
patterns is still kept based on their distances to class model. Face and non-
face classification is used as an example and some promising results are re-

ported.

1. INTRODUCTION

Robots are expected to exist extensively in many areas of our future daily life. So, a
basic requirement arises: they must understand what people mean, e.g., instructions
from us. To this end, our work focuses on basic natural language concept learning
mainly through visual information in the context of Human-Robot interaction (HRI).
Let’s consider the task of teaching a robot to recognize an object, say, “apple”,
through its camera in the context of HRI. How can the teaching be conducted? To
investigate some state of the art statistical approaches in literature, e.g., Hidden
Markov models (Meng, 2000; Zhu & Schwartz 2002), Bayesian networks (Pham et
al, 2002), naive Bayes classifier (Schneiderman & Kanade, 2000), PCA based classi-
fier (Turk & Pentland, 1994), and other state of the art methods described in (Yang
et al, 2002), basically quite a lot of apples and enough non-apples, which is itself an
ambiguous concept, must be collected to estimate the class distributions precisely.
One might wonder whether these requirements are realistic in the context of HRI.
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Different from other learning tasks, the learning of object recognition suitable for
HRI has several constraints such as supervised, online, real-time and interactive. To
learn a new object (concept), there may be only quite a limited number of samples
available. Moreover, the conventional learning mechanisms mentioned above require
the preparation of both target and non-target training data in order to learn the cor-
rect decision boundary between these two classes. However, in a HRI scenario, typi-
cally only positive samples are available. Thus, a so-called one-class classifier might
be useful in this situation. These classifiers can learn target class models based on
only target patterns, keeping good discrimination for never seen non-target patterns.

Following this idea, an approach based on the combination of the wavelet domain
Hidden Markov Tree (HMT) and Kullback-Leibler Distance (KLD) was presented in
(Wang & Seabra Lopes, 2004). In this approach, only target samples are used to
train an object model in terms of parameters of HMTs. After that, for each sample to
be recognized, its KLD to this model is computed. If its KLD is smaller than a cer-
tain threshold, obtained during the training session, it is recognized as an instance of
the target class; otherwise, it is rejected. This approach has some similarity to the
face detection method presented in (Yang et al, 2001). There, multimodal density
models were used to capture the class (face) distribution only from target patterns.
Based on these models, a probability for certain new patterns to be classified as
target or non-target class can be computed. The problem of this HMT/KLD based
approach is that it can’t derive robust object models if there are big in-class varia-
tions among the training patterns.

In this paper, some methods described in (Tax, 2001) are investigated to solve
this problem. The rest of the paper is organized as follows. The background and
motivation to find suitable learning and classification mechanisms for natural lan-
guage concept grounding for HRI is presented in section 2. In section 3, a brief de-
scription of HMTs and one-class learning is provided. The experimental setup and
results are given in section 4. Conclusion is provided in section 5 with some discus-
sion and future work.

2. BACKGROUND

Carl, a prototype of an intelligent service robot, designed having in mind such tasks
as serving food in a reception or acting as a host in an organization, was developed
by our group (Seabra Lopes, 2002) ‘. One of the long-term research goals of this
project is to assign robots a capacity for self-development, based on rich sensory and
motor capabilities. The idea is to start with minimal initial knowledge, rather than to
assign robots rich knowledge in advance (Seabra Lopes & Wang, 2002). After this,
robots can learn new skills, explore their environments themselves or under the hu-
man guidance.

As a basic requirement of HRI, Carl is able to enter a spoken language conversa-
tion with a person. Speech recognition is currently based on IBM NUANCE (Seabra
Lopes, 2002). The recognition grammar being used can accept over 12000 different
sentences. Carl is able to learn facts about the world through dialog with humans.
For instance, Carl can learn that "Peter is in France". Later, hearing the question
"Where is Peter?” Carl can provide an appropriate reply “France”. However, Carl
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has no idea of what/who France or Peter are. The words (symbols) used in communi-
cation to refer to objects still have to be grounded in the robot's own sensory data.

Generally, every word in a conversation should be grounded but, currently, our
focus is on grounding of symbols (nouns) that might be a cornerstone to this end,
particularly symbols that refer to physical objects in the environment. Therefore,
Carl's learning capabilities are being extended to visually recognize objects in a
normal office environment. Thus, one can think that we ground the corresponding
concepts using visual information or features extracted from visual information. In a
learning phase, human tutors teach Carl these concepts. The first stage of grounding
turns out to be supervised object learning.

3. LEARNING APPROACH

3.1 One-Class Learning

The design of one-class classifiers is motivated by the fact that patterns from a same
class usually cluster regularly together, while patterns from other classes scatter in
feature space. One-class learning and classification was first presented in (Moya et
al, 1993), but similar ideas also already appeared, including outlier detection (Ritter
& Gallegos, 1997), novelty detection (Bishop, 1994), concept learning in the ab-
sence of counter-examples (Japkowicz, 1999) and positive-only learning (Muggleton
& Firth, 2001). In two-class approaches, information of both target class and non-
target class is available. Generally, in multi-class approaches, samples are provided
for all classes. Based upon this information, one can precisely capture class descrip-
tions, and therefore find effective decision boundaries between the classes. In con-
trast, in one-class approaches, only samples of the target class are required. A very
natural method for decision-making under this condition is to use some distance-
based criterion. If the measurement of an unknown pattern x is smaller than the
learned threshold, it can be accepted as the target class pattern; otherwise, it should
be rejected. This can be formulated as follows.

Class(x) = {target , if Measurement(x) < threshold; 3

non—target, otherwise.

In some sense, this is similar to the famous Bayesian decision rule. The only dif-
ference is that, here, the threshold is learned only from target class patterns, while in
Bayesian decision rule it’s determined based both on target and non-target class
patterns. If an appropriate model of the target class (and thus a proper threshold) is
found, one can find that most patterns from this target class are accepted and most
non-target class patterns are rejected. Of course, the ideal model is one that can
accept all target patterns and reject all non-target patterns. But this is usually not
easy to find under realistic conditions.

Several methods were proposed to construct models for one-class classification. A
very natural method is to generate artificial outlier data (Roberts & Penny, 1996),
and thus conventional two-class approaches can be applied. This method severely
depends on the quality of artificial data and often works not well.
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Some statistical methods were also proposed. One can estimate the density or dis-
tribution of the target class, e.g., using Parzen density estimator (Bishop, 1994),
Gausian (Parra et al, 1996), multimodal density models (Yang et al, 2001) or wave-
let-domain HMTs (Wang & Seabra Lopes, 2004). The requirement of well-sampled
training data to precisely capture the density distribution makes this type of methods
problematic. In (Moya et al, 1993; Tax, 2001) some boundary-based methods were
proposed to avoid density estimation of small or not well-sampled training data. But
a well-chosen distance or threshold is needed. Tax provides a systematic description
of one-class classification in (Tax, 2001), where the decision criteria are mostly
based on the Euclidean distance. The work reported in this paper is based mainly on
these methods.

The best results were obtained with SV-DD (Support Vector Data Description
(Tax, 2001)), a one-class classification method inspired by Vapnik’s Support Vector
Machines. SV-DD tries to find a sphere boundary with minimal volume, not a hy-
perplane as in SVM, containing all or most of objects in a data set. The sphere deci-
sion boundary is defined by the so-called support objects or support vectors (Tax,
2001). For classification, objects outside this sphere decision boundary are regarded
as outliers (objects from other classes). To obtain a good and compact data descrip-
tion, some remote data points may be discarded although they are not real outliers.

For comparison we also investigate some other one-class classifiers, namely PCA-
DD, NN-DD, KMEANS-DD, KNN-DD and GAUSS-DD. The PCA-DD uses subspace
composed by Principal Components as data description. The NN-DD and KNN-DD
use simple nearest neighbor and k-nearest neighbor data description. The KMEANS-
DD uses k-clusters as data description. In each of these k clusters the average dis-
tance to its cluster center is minimized. The GAUSS-DD assumes data follows simple
Gaussian distribution. For more details please refer to (Tax, 2001).

3.2 Hidden Markov Trees

Much work has shown that class distributions can be modeled by modeling the dis-
tributions of their wavelet coefficients. Hidden Markov Trees (HMTs) were pro-
posed in (Crouse et al, 1998) to precisely characterize these wavelet coefficient
distributions, especially the key inter-scale dependencies among parent and children
coefficients. In a HMT model, after applying a wavelet transform on an image, any
coefficient of it arises from a 2-state zero-mean Gaussian mixture model (Crouse et
al, 1998). It means the magnitude of a wavelet coefficient is either “large” or
“small”. Given its state, it is conditionally independent from all other random vari-
ables (states of other coefficients).

More specifically, an HMT model for one of three subbands LH, HL, and HH
can be fully characterized by the following parameters:

® The pmf (probability mass function) for the root S;, ® = {m,}, m € {1,2}. &, is
defined as

7, = P(S, = m) 0
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¢ The state transition probability matrix A = { a,.', 'Z(i) }, i€ {2, ...,n},r,me {1,

2}. Each a; ;) is the probability when the node i is in state m and it parent p(i) in
state r. Thus it’s defined as
Aipy = P(S; =m1S, =1) @

® The parameters of the zero-mean Gaussian mixture, ()',.2 (m) , for the state m of

eachw;,Vie {1, 2, .., n}. Here, n is the number of coefficients.

To make the HMT model practical, it's assumed that coefficients in each wavelet
subband have the same variances (Crouse et al, 1998). This assumption, called “ty-
ing”, reduces HMT parameters to 6 for each subband of each wavelet transform
level: 2 for variances and 4 for state transitions. These parameters can be learned
using EM algorithm in the sense of maximum likelihood and grouped together as a

parametric model, denoted as ® = {ﬂ ,A o O'j.'") }, j=1,..., Land m=1], 2. Here L is

the wavelet transform level. For a whole image, three independent HMTsS, corre-
sponding to subbands LH, HL and HH respectively, can be used to fully characterize
it. For further information on HMTs please see (Choi & Baraniuk, 2001; Crouse et
al, 1998; Do, 2002; Durand & Gongalves, 2002; Fan, 2001; Romberg et al, 1999).

4. EXPERIMENTS

4.1 Evaluation approach

The purpose of this paper is to investigate some one-class classifiers available from
(Tax, 2001) on HMT features (parameters). The whole evaluation procedure is
depicted below in Figure 1 where the specific classifier varies. In a training session,
the EM algorithm is applied on target patterns to estimate HMT parameters. Then
these HMT parameters are used to train one-class classifiers. For a new pattern, its
corresponding HMTs are first estimated and the parameters of these HMT's are fed to
learned classifiers for classification.
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Figure 1-the evaluation scheme

4.2. Experimental Results

All the six one-class classifiers are investigated on the dataset used in (Wang & Sea-
bra Lopes, 2004). This dataset contains two parts. There are 400 pictures from
AT&T/ORL face database (AT&T, 2002) and 402 non-face pictures from (Seabra
Lopes & Wang, 2002). There are some examples from each part shown in Figure 2
and 3 respectively. It should be noted that all patterns were resized as 32x32. The
wavelet transform used in the following experiments is Daub4 (Wang & Seabra
Lopes, 2004). Currently, experiments are run into a simulation environment which is
based on PRTOOLS (Duin, 2004) and DDTOOLS (Tax, 2001).

Figure 2- Sample images from ORL face database

5

Figure 3-Some samples in our data set

A series of experiments are conducted in which face is the target class and face
patterns are used for training. Only a part of face data is used for training, and then
the rest of face data and all non-face data is used for independent testing. There is no
non-face data introduced into training session. To know how well the amount of
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training patterns affects the final classification for each classification method, the
number of training patterns is increased from 10% of the face data (40 faces ran-
domly chosen) gradually up to 90% of the face database (360 faces randomly cho-
sen). For a certain amount of face data (10% to 90% of the whole face database),
experiments are repeated ten times and the average error rate is used as the final
classification score. Thus, a total of 540 experiments were run (6 algorithms, 9 data
configurations and 10 trials).

0,9
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2 0:6 —#— svdd
g 0,5 g A
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0,1
0

training samples used (n*10%)

Figure 4-Error rate evaluation of all six one-class classifiers

As one can find from Figure 4, SV-DD always outperforms the other 6 methods in
each of those 9 data configurations. The best error rate it can obtain is 8.8% (91.2%
accuracy) when 90% faces are used into training. The worst score it achieves is
around 30% in error rate when only 10% faces are involved into training. Appar-
ently, for SV-DD can attain good results when more target patterns are involved into
training.

The other five one-class classifiers don’t show this characteristic. In fact, with
more faces used in training, their error rates increase! This looks very unreasonable.
With further analysis, some clues are found to explain this behavior. As shown in
Table 1, these five classifiers generally work well with face patterns, but they don’t
work well with non-face patterns. They generally recognize around 80% of non-face
patterns as face patterns. Thus, as the number of target patterns used for training
increases, the proportion of non-target patterns in the test set also increases, resulting
in higher error rates. It can be expected that with some lager data set, with more
target class patterns, this might not happen again.

In some sense, several hundreds of training patterns are not easy to prepare in
HRI. For the SV-DD method, it shows it can achieve reasonable performances
(around 80%) with a small training set (40 to 120 training patterns, 10% to 30%).
Since robot learning should be treated as a life-long learning process (Seabra Lopes
& Wang, 2002), this moderate performance may form a not so bad starting point.

Finally, a brief comparison is made between the HMT/SV-DD approach and the
HMT/KLD based approach described in (Wang & Seabra Lopes, 2004). Applying
on the same data set used in this paper, it obtained an average accuracy about 80%
on face data. At the same time, it could reject 99% non-face patterns on average
although it never sees them before. The main problem of this HMT/KLD based ap-
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proach is being very data dependent. Over some part of the ATT&ORL face data-
base, its accuracies were as good as 100%; but over some other part, its accuracies
were as low as some 45%. The main cause was the simple average method used to
compute the overall class model. When there were great in-class variations, it usually
failed since the simple average over parameters of individual HMT's smeared the true
class model. When the number of training patterns increased, this problem was more
serious. This method only worked well when training patterns were very much simi-
lar in pose and scale, as under this assumption the parameters of individual HMTs
tended to be similar too, thus the average was closer to the true class model.

Table 1- False Negatives (FN) and False Positives (FP) when 40, 120, 240 and
360 faces were used in training

40 faces 120 faces 240 faces 360 faces

PCA-DD FN 0,11 0,02 0,01 0,03
FP 0,66 0,86 0,86 T 0,84

SV-DD EN 0,59 0,39 0,26 0,33
FP 0,09 0,19 0,23 0,16

NN-DD EN 0,02 0,02 0,02 0,04
FP 0,89 0,88 0,84 0,77

KMEANS-DD | EN 0,05 0,01 0,01 0,01
FP 0,86 0,92 0,92 0,92

KNN-DD FN 0,02 0,01 0,01 0,00
FP 0,92 0,91 0,86 0,81

GAUSS-DD | EN 1,00 0,17 0,03 0,04
FP 0,00 0,40 0,66 0,69

In contrast, the SV-DD based approach tries to find a sphere boundary with
minimal volume containing all or most of objects in a data set (Tax, 2001). Basi-
cally, when more training patterns are involved into training, this sphere decision
boundary is more precise. Experiments have demonstrated this. In all experiments,
SV-DD shows very steady performances, deviating in the range of +5% to the aver-
age that is used as the final scores. This feature shows that the SV-DD based ap-
proach is less data dependent and more robust than KLD based approach.

5. CONCLUDING REMARKS

In this paper, several one-class classification methods were investigated on HMT
features. Some of these classifiers can be further integrated into the context of HRI
for natural language concept learning (grounding). Constraints such as only limited
(target) training patterns available, interactive and flexible learning (several targets
to learn simultaneously) require fast one-class classification methods. This is a very
crucial step towards flexible concept learning for robots since it can relieve us from
data preparation, especially outlier data. Therefore one may focus more on target
class representation. In the reported experiments, only target patterns were used to
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train target class models. And the learned models still have good discrimination with
respect to outlier (never seen non-target) patterns.

Six one-class classification methods were evaluated on HMT features. Face and
non-face classification is used as an example to demonstrate their effectiveness. It
can be found from the experiments that some of such one-class classifiers, particu-
larly SV-DD, can attain very nice performance (>90%), at least on the used data. It
also provides a kind of fast learning capacity. For example, when 40 faces were used
for training and all the other 762 patterns were used for test, the whole process could
be done in less than 1 minute in current MATLAB implementation with a laptop
having P4 1.6 GHZ CPU and 256 MB RAM. It still has room to improve, e.g., to
implement the algorithm in C. All other five one-classifiers performs not well or very
badly on our data. It can be concluded that SV-DD forms a promising foundation
for developing a learning and classification method suitable for HRI, since not only
can it obtain reasonable performance with a (relative) small amount of training pat-
terns, but also it can achieve very good results when a larger amount of training
patterns are available. From a viewpoint of lifelong learning in robotics, this poten-
tial of SV-DD can be further utilized.

Obviously it’s necessary to further study these one-class learning and classifica-
tion methods, for example, using other data set and/or feature extraction methods.
More importantly, it’s interesting to integrate some of these methods into a real ro-
bot, Carl (Seabra Lopes, 2002). How to precisely connect this kind of SV-DD to
certain target class representation, i.e., natural language concept grounding, should
be also further studied. Furthermore, the relation between the class representation for
certain target class and specific object representation of that class in terms of such
SV-DD should also be considered.
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