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The rotor system of the small power unit used in ball pen tip production machine, 
is discussed in detail. Meanwhile, nonlinear model of the rotor system is 
established and the related research method is introduced. Furthermore, the 
stability bifurcation of nonlinear periodic solution is obtained preliminarily. 
Characteristic comparisons between pseudo-periodic solution and chaotic one 
are put forward in the paper, which will be of benefit to further engineering 
applications. 

 
 
1.  INTRODUCTION 
 
The production quality of ball pen tip is directly influenced by the rotating precision 
of the small power shaft system of its producing equipment. How to improve its 
rotating precision is therefore a key problem in the pen manufacturing industry. 
However, due to the fact that the rotating shaft system is unstable during production, 
the perturbed rotor will deviate from its normal motion orbit more and more as time 
goes on so that there is no favorable and satisfactory method for the stability 
analysis of the rotor. According to the linear theory, the amplitude of the perturbed 
rotor center will increase indefinitely with time, but the actual fact is that the 
amplitude will be held after reaching a certain limited value, and then the rotor 
center will more in a closed orbit (as shown in Fig. 1). Obviously, this is a kind of 
common nonlinear phenomenon in bearing-rotor system.  

This paper is attempting to analyze the stability of the restrained rotor by 
nonlinear method, and provide a better theoretical foundation for the design and 
manufacture of multi-station machine tool with small power unit for ball pen tip 
production. 

 
Fig. 1 Equilibrium point deviating from the limit cycle due to destabilization 
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2.  NONLINEAR FORMULATION OF ROTOR SYSTEM 
 
Bearing-rotor system, a nonlinear dynamic system, can be described by a set of 
finite-dimensional, second-order and ordinary differential equations with multi-
parameters. Since the rotating frequency ω  is the main influencing parameter, so 
the system that can be described only as sets of finite-dimensional, second-order and 
ordinary differential equations with single-parameter, is studied here. The typical 
form of its formulations is 

),(),,,( exin ωω tftqqfqM =+ &&&    ( )mRRqt ×∈),(                              (1) 
where M is the mass matrix; t is the time (t≥0); frequency ω is a parameter on the 
real number axis in the system; the m-dimensional vector q(t) is unknown; 

),,,(in ωtqqf &  is the internal force vector which results from rigidity of the 
uncoupled axis, force of the bearing film, etc. in the system; ),(ex ωtf  represents the 
external excitation force vector acting on the system. 
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If there is no time variable t in F, and satisfying 0),(
def

),,( ≠uFutF ωω , 
then Eq. (2) can be simplified as follows,  
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d
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u ω= ，   )(),( 2mRRut ×∈                                              （3） 

Now, the nonlinear bearing-rotor dynamic system, corresponding to Eq. (3), 
will then be autonomous. 

If F is a periodic function of time t, namely satisfying 
),,(),,( uTtFutF ωω += , and 0)0,,( ≠ωtF , then Eq. (2) can be simplified as 

follows,  
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d uTtFutF

t
u ωω +== ，  )(),( 2mRRut ×∈                （4） 

The nonlinear bearing-rotor dynamic system is then nonautonomous. 
 

3.  STABILITY ANALYSIS OF THE NONLINEAR SYSTEM 
 
3.1  Mapping 
 
The physical model of bearing-rotor system can be expressed in the forms of Eqs. 
(1), (2). It is therefore of great significance to study the problems of stability 
bifurcations of steady-state solutions for this type of system. 
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If the problems, such as the stability, bifurcations and regions of attraction of 
the steady-state periodic solutions, are studied directly through the nonlinear 
dynamic system Eq. (2), it will be quite difficult to obtain the analytic expression of 
the periodic solution )(tu  in phase space, while the using of closed orbit comprised 
of infinite number of points will also bring comparative difficulties to numerical 
analysis. Therefore, it is necessary to find a much better way to express )(tu . As the 
nonlinear mapping expression, based on Eq. (1) of the nonlinear dynamic system 
and its manifold tϕ , can be given as follows, 

  )( )()1( nn uGu =+   or   )(uGu →                                           （5） 
where n=2m, G= tϕ  is a vector field, and we here are concerned only about the 
characteristics of the steady-state periodic solutions )()( Ttutu += , so a point 
mapping system, converted from the nonlinear dynamic system, will thus be put 
forward for more convenient studied as follows. 

For the autonomous system Eq. (3) deduced from the Eq. (2), i. e., 

tϕ ：   ),(
d
d uF

t
u ω= ， )(),( nRRut ×∈ ,  

assume that )(tu  is a periodic orbit of the manifold field tϕ  defined in nR , namely 
)(tu  is a periodic solution of the above equation. Taking a global cross sectional 

hypersurface ∑ ⊂ nR  with n-1 dimensions in the n-dimensional state space, this 
hypersurface ∑  doesn’t have to be a hyperplane but it should intersect the manifold 
field tϕ  everywhere. 

Thus, the number of intersections, formed by the periodic solution )(tu  and ∑  
from the same direction ( )(tu  goes across ∑  on its same side and forms the 
intersections) is finite. If the number of intersections is K, then )(tu  is the KT 
periodic solution of the system. 

Therefore, the mapping P of point ∑⊆q  can be defined as: 
)()( qqP τϕ=                                                                                  （6） 

where )(qττ =  is the time used by manifolds )(
0

qtϕ  when first return to ∑  in the 

same direction with q as the starting point. Note that some other manifolds )(
0

Atϕ , 

with certain point A on ∑  as their corresponding starting point may never return to 
∑  in the same direction, which represents the corresponding orbits of the divergent 
transient state. These points and their corresponding orbits in transient state will be 
disregarded and defined only as puzzled points on ∑  without further study 
anymore. 
 
 
 

 
 

Fig. 2 Mapping of an autonomous system 
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For the autonomous system Eq. (4) as deduced from Eq. (2), 

tϕ ：  ),,(),,(
d
d uTtFutF

t
u ωω +==      )(),( nRRut ×∈ , 

if now taking the time t as a state variable, the above equation can then be converted 
into the form of autonomous system Eq. (3) by adding one more dimension, 
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nRS ×1 is the form of manifolds in phase space, and the circle component 
)(modTRS =  shows the periodic dependence of vector field F on the variable θ . 

Then a global cross section can be defined as follows, 
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1, θθθ nRSu                                                  （8） 

Now, all solutions ),( uθ  will intersect with ∑ . The mapping P: ∑→∑ of 
point ∑∈q  can therefore be defined as: 

),()( 0 qTuqP += θ                                                           （9） 
where ),( qtu  is a solution of a nonautonomous system, (as shown in Fig. 3) with 

00 ),( uqu =θ  as its starting point. Note that it differs from the autonomous system, 
and there will be no more puzzled point A on the cross sectional surface ∑  now. 

 
Fig. 3 Mapping of a nonautonomous system 

 
Although the methods adopted to set up a point-mapping system, are somehow 

different between autonomous system Eq. (3) and nonautonomous system Eq. (4), 
yet a completely same point-mapping system in form can be obtained finally as 
follows, without any distinction 

)( )()1( kk uPu =+         Zk ∈  or )(uPu →                            （10） 
It is obvious that the intersections kppp ,,, 21 Λ , formed by KT periodic 

solutions )()( kTtutu += , Zk ∈  with the cross section supersurface ∑ , are all 
the P-K periodic points of mapping P, according to the definition mentioned above. 

ii
k ppP =)( ，     ki ,,2,1 Λ=                                       （11） 
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The domain of attraction of these P-K periodic points ),,2,1( kipi Λ=  on the 
supersurface ∑ , is just that part of the attraction domain of the solutions 

)()( kTtutu +=  in the state space intersected by the supersurface ∑ , whose 
stability with respect to the mappings P reflects the stability of the solutions 

)()( kTtutu +=  with respect to the manifold tϕ . 
Only the points on the supersurface ∑  and their mapping rules are concerned in 

the mapping system established on the dynamic system, while the characteristics of 
all other points on the solution orbits in the entire global state space are not 
concerned. The study of the problem concerned is thus much simplified, which is 
advantageous for the further application of numerical methods. 
3.2 Stability analysis 
It can be seen from the above discussion that a discrete dynamic system can be 
transformed from the continuous dynamic system by means of mapping. 

)( )(1 k)(k uPu =+     Zk ∈  or )(uPu →                                （12） 
Consequently, the analysis of continuous dynamic system of Eq. (2) can be 

obtained through analyzing the discrete dynamic system of Eq. (12). 
Assuming there is a stable solution )(tue  of the dynamic system Eq. (3), then 

)(tue  will be unstable if the initial perturbations )(tue  increase with time; or )(tue  
is stable during perturbations if it is gradually damped. The stability theory related to 
the infinitely small perturbations is actually a linear theory, since the high-order 
terms can be ignored in comparison with the linear terms in a perturbation equation. 
Assuming that ),( ωtue  is a stable solution of dynamic system Eq. (2), and vδ is a 
randomly given constant perturbation of u, then we shall obtain: 

                 ),,(),,(
d
d utFvutF

t
v ωδωδ −+=                                               （13） 

When 0→δ , the perturbation tends to be infinitely small, then we can get 

δ
ωδω
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where ),,( eutA ω = e
u utF ,,( ω′ )• , is a linear operator of the variable v after the 

vertical line. It is an n×n matrix function for the n-dimensional problems. For 
nonlinear autonomous system Eq. (3), Eq. (14) can be simplified as, 

=
t
v

d
d ),( vuF e

u ω′ ),( euA ω= •v                        （15） 

For the fixed point *u of the discrete dynamic system in Eq. (12), we obtain, 
                )(* )(

1 k
k

k vuPvu δδ +=+ +                                                            （16） 

where         ),(),(* ωω Ttutuu k
e

k
e +==  

)( kk tvv = ;  )(1 Ttvv kk +=+  
We can therefore obtain the following results with respect to the perturbation 

when 0→δ : 

kuk vPuPvu δδ •′+=+ + *)(* 1  
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so               kuk vPv •′=+1       Zk ∈                                                                 （17） 

uP′ , the linear form of the fixed point *u  of the mapping, is a constant matrix 
here. 

It can be proven that Eqs. (14), (17), completely equivalent to each other, are 
perturbation equations in continuous and discrete forms respectively. The stability of 
the stable solution ),( ωtue  in the system can be evaluated through discussing the 
perturbation equations. 

For the autonomous system Eq. (3), when the outer parameter ω  is a certain 
value of mω , these following condition can be satisfied, 

F ),( s
m uω =0         su nR∈                                                  （18） 

where su  is the equilibrium point of the system, so it is considered that the stability 
of the equilibrium point solutions can be judged by the eigenvalues of the matrix 

),(),( •′= s
mu

s
m uFuA ωω  which is obtained when the linear system is at su . 

Here the matrix is an n×n constant one. 

vuAvuF
t
v ss

u •=′= ),(),(
d
d ωω                                     （19） 

The loss of stability of system Eq. (3), as a result from the destabilization of the 
equilibrium point with the changing of outer parameter ω , will cause bifurcation 
phenomenon with multifarious forms. Since destabilization of the equilibrium point 
solutions is one of the main forms of bifurcation in bearing-rotor system, so we 
study only this form of bifurcation of equilibrium points here. The distinguishing 
criteria are as follows. 

Assuming cωω = , the equilibrium point solution su  of the autonomous 
system Eq. (3) satisfies that: 

 (1) ),( uF ω  is differentiable in the domains of ))(,( c
s

c u ωω ; 
 (2) There is a pair of pure imaginary nonzero eigenvalues )0(i 00 >± ββ  in 

the matrix ))(,( •′ c
s

cu uF ωω  obtained when ),( uF ω is at the stable solution 

)( c
su ω , while the other n-2 eigenvalues all have negative real parts. 

 (3) 0
d
d

≠= cωωω
α , where )(i)( ωβωα ±  is the continuous unfolding 

eigenvalues obtained by cuF ωω =′  with respect to 0iβ± . In this case, the 

equilibrium point solutions are destabilized. A non-constant periodic solution Hu , 
corresponding to the self-exited limit cycle of the system, will be bifurcated from 
steady-state equilibrium point solutions of )( c

su ω at ))(,())(,( c
s

c uu ωωωω =  in 
the autonomous system. 

According to the different periodic solutions due to bifurcation, it can be 
further classified into two different cases: supercritical condition and bifurcation, to 
be described as follows,  
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   (1) If cωω > , a stable periodic solution Hu  is bifurcated from the equilibrium 

point solution )( c
su ω  of the system. The periodic solution )( c

sH uu ω→  is a 

supercritical bifurcation obtained when )( c
sH uu ω→ . Its bifurcation is 

characterized by the gradually varying periodic solution with the changing of ω , 
and there is no phenomenon of “jump and decay” in this system, as shown in Fig. 
4(a).      
                                       Amplitude                                        Amplitude 
 
 
 
 
 
                                    ωr                       ω                           ωr                  ω          

 (a) Supercritical bifurcation               (b) Subcritical bifurcation 
 Fig. 4 Bifurcations on equilibrium point solutions 

   (2) If cωω < , an unstable periodic solution Hu  (with )( c
sH uu ω→  

when cωω → ) is bifurcated from the equilibrium solution )( c
su ω  in the system. Its 

bifurcation is characterized by the abrupt change of periodic solution with the 
changing of ω , with the phenomenon of “jump and decay” because there often 
exists a stable periodic solution besides the unstable periodic ones, as shown in Fig. 
4(b). 

The matrices in the corresponding perturbation Eq. (14) are constant ones, 
according to the above results. Therefore the perturbation of the stable equilibrium 
point solutions in the autonomous system Eq. (3) can be directly confirmed by 
analyzing the Eq. (14). 

 
3.3 Stable perturbation of the nonlinear steady-state periodic solutions 
 
For a given outer parameter ω  and its corresponding steady-state periodic solution 

pu  with period T, (i. e., )( Ttuu pp += ), its perturbation equation is as follows, 

vtAvutF
t
v

pu ⋅=′= )(),,(
d
d ω ,                                           （20） 

where )()( TtAtA +=  is a matrix function with period T. The perturbation 
equation related both to steady-state periodic solutions in an autonomous system and 
to a periodic nonautonomous one can be represented by Eq. (20) 

If )(tV  is a fundamental solution matrix of Eq. (20), there must exist a 
nonsingular matrix )()( TtΦtΦ +=  with period T and a constant matrix D, so that  

tDetΦtV ⋅= )()(                                                            （21） 
Meanwhile, according to the periodic property of )(tA  in Eq. (20), we should 

have 

)()()()(
d

)(d TtVtATtVTtA
t

TtV
+=++=

+ ⋅⋅               （22） 



 
 
 
 
 
 
 
450  Information Technology for Balanced Manufacturing Systems 

 

consequently, )( TtV +  is also the fundamental solution matrix of Eq. (20).  From 
Eq. (20) we can have  

( )DeTtΦTtV Dt+⋅+=+ )()( TDetDetΦ ⋅⋅= )( TDetV ⋅= )(         （23） 
The above equation can also be simplified as 

CtVTtV ⋅=+ )()(                                                              （24） 

where TDeC =  is a constant matrix. 
Take any two fundamental solution matrices )(1 tV  and )(2 tV  in Eq. (20), then 

the constant matrices C1 and C2  can be obtained correspondingly, so that 





=+
=+

⋅
⋅

222

111

)()(
)()(

CtVTtV
CtVTtV                                                       （25） 

Meanwhile, there must exist nonsingular constant matrix S, which satisfies: 
StVtV ⋅= )()( 12                                                                 （26） 

Therefore 
STtVTtV ⋅+=+ )()( 12 SCtV 11 )( ⋅= SCStV 1

1
2 )( −⋅=         （27） 

That is:  
SCSC 1

1
2

−=                                                                     （28） 
Consequently, C as well as D, is a group of similar constant matrices. Namely 

their eigenvalues are independent of the choice of given initial conditions and 
fundamental solution matrices, but are determined only by )(tA  in Eq. (20). C and 
D, for discrete and for continuous conditions respectively, are the transfer matrices 
of Eq. (20). Their eigenvalues λ  and δ  are respectively the multiplier and the 
exponent index. From Eqs. (21), (22) we can see that they will determine the 
stability of Eq. (20) with respect to the origin. 

From the relations between C and D, we can obtain 
       [ ]))sin(Im(i))cos(Im()Re( TTee TT σσλ σσ

•• +==              （29） 
and 
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ln1)Re(
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T

T                                                        （30） 

Note that σ has multiple values, and should be taken in the region 

0≤ )Im(σ ≤
T
π2  for practical applications. 

Furthermore, the stability of any solutions of Eq. (20) with respect to the origin 
can be judged by λ  and σ. The stability criteria and bifurcation conditions of the 
steady-state periodic solutions can also be obtained then in the dynamic system of 
Eq. (2). 

Assume that the basic solution matrix )(tV  is a unit matrix at the initial 

time 0t , that is 

ItV =)( 0                                                                             （31） 
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so            CCtVTtV ==+ •)()( 00                                                          （32） 
Assume that )(tv  is a perturbation at the time t, and )( Ttv + is another 

perturbation after a period of T, then:  
              iitVtv ϕϕ == •)()( 00           n

i R∈ϕ                                             （33） 

iTtVTtv ϕ•+=+ )()( 00 iCtV ϕ••= )( 0 iC ϕ•=     n
i R∈ϕ            （34） 

so 

)(
)(

0

0

tv
Ttv

Si

+
= ≤ C                                          （35） 

Assume maxS is the maximum of iS , and thus 

ni
iCS

,,1
max )max(

Λ=

== λ                                           （36） 

Then we can get the following conclusions: 
 (1) The sufficient condition for the stability of the periodic solution pu  in the 

dynamic system of Eq. (2), is that its maximum multiplier modulus is less than 1, 
namely all multipliers are within the unit circle on complex plane.  

(2) pu  is unstable when the maximum multiplier modulus is greater than 1. 

(3) pu is critical steady state when the maximum multiplier modulus is equal to 1. 
Meanwhile, similar to the equilibrium point solution, there may be 

destabilization with multifarious bifurcation in the periodic solutions of the dynamic 
system of Eq. (2). Further study shows that the forms of the destabilization and 
bifurcation of the periodic solution pu , according to different positions where the 
maximum multipliers of the modulus pass through the unit circle, can be classified 
into three kinds as follows: 
 

                                                                    Pseudo-periodic bifurcation  
 

Period-doubling bifurcation                                    Saddle-type bifurcation 
 

   (-1,0)                                     （1，0）    Re(λ) 
 
 
                                                                      Pseudo-periodic bifurcation 

Fig. 5 Three ways of destabilization of periodic solutions 
with indications of multipliers 

 
 (1) When the maximum multiplier of modulus passes through the unit circle on 

the point of (1,0), the possible ways of destabilization and bifurcation of periodic 
solutions may involve saddle-type, fork-type, symmetrical breakage- type and so on, 
depending on different systems. 

 (2) When the maximum multiplier of the modulus passes through the unit 
circle on the point of (1, 0), the periodic solution will be destabilized via a period-
doubling bifurcation. After passing through the bifurcated point, its period will split 
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from T into 2T, and then 4T on the orbits. This kind of period-doubling bifurcation 
will result in the chaotic motion in the system finally. 

 (3) When the maximum multipliers of a pair of moduli pass through the unit 
circle in a form of conjugate complex numbers (the imaginary part is nonzero), the 
pseudo-periodic solutions will be periodically bifurcated and obtained on the basis 
of period solutions.  
3.4 Nonlinear pseudo-periodic and chaotic solutions 
Besides the equilibrium points and periodic solutions, the pseudo-periodic and 
chaotic solutions are two other kinds of steady-state motion forms in the nonlinear 
dynamic system of Eq. (2), and are comparatively more complex. It should be 
pointed out that there is a direct relation between the periodic solution and these two 
kinds of steady-state motion in pseudo-periodic and chaotic solutions. Pseudo-
periodic solution in general is periodically bifurcated from the basis of periodic 
solution, and so also are the three ways of occurrences of chaotic solutions. The 
period-doubling bifurcation is actually a processing of continuous solution-cracking 
and period-doubling, and finally becoming chaotic. On the other hand, the pseudo-
periodic bifurcated ways can result from such course as: firstly being bifurcated to 
pseudo-periodic solutions and then generating chaotic ways on the basis of period 
solutions, while the intermittent form behaves as the alternate appearances of 
periodic and chaotic solutions. Table 1 is the comparison between the characteristics 
of periodic, pseudo-periodic and chaotic solutions. 
 
4.  CONCLUSION 
 
The bifurcation and regularities of stability variation with the changing of rotating 
speed ω , are obtained based on the detailed partial analysis on the stability 
problems of both stable and unstable bearing-rotor system. There will be more than 
a single periodic solution with the same rotating speed ω  in practice. Which 
solution the system is carrying out will depend on initial conditions. Therefore, it is 
necessary to study the influence on system solutions due to initial conditions, 
namely by finding the domains of attraction of every solution in the system. In 
addition, the study shows that no matter whether the nonlinear bearing-rotor system 
is, a stable one or not, there are definite relations between destabilized attenuation 
and the orbits of periodic motion of the system, whenever there exists a certain orbit 
of the rotor center. Different attenuation rates can be obtained when the system is 
destabilized at different positions. 
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