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In this paper, a novel Particle Swarm Optimization (PSO) identification 
algorithm for time-varying systems with a colored noise is presented. Presented 
criterion function can show not only outside system output error but also inside 
parameters error in order to explain more difference between actual and 
estimative system. Identification algorithm may consist of many different PSO 
algorithms that are named the combinatorial PSO. The estimating and tracking 
of parameters make use of characteristics of different PSO algorithms. The 
simulation and result show that the identification algorithm for time-varying 
systems with noise was indeed more efficient and robust in combinatorial PSO 
comparing with the original particle swarm optimization. 

 
 
1.  INTRODUCTION 
 
For time-varying system identification and parameter tracking is still a very active 
research field in the recent years [1]. Most of identification algorithms are still the 
Recursive Least Squares (RLS) or gradient algorithms, which search along the 
direction of parameters change slowly. If the search space is not differentiable or the 
parameters are nonlinear, usually the optimal global solutions would not be found. In 
the algorithms the selection of the gain or forgetting factor becomes very important. 
In general, a large gain or a small forgetting factor makes the RLS or gradient 
algorithms to have a better ability for tracking the variation of parameters, but also 
makes them sensitive to white noise. On the other hand, a small gain or a big 
forgetting factor makes the algorithms less sensitive to white noise, but at the same 
time results in a poor tracking ability for slowly time-varying systems. There are 
many new identification algorithms such as identification using Genetic Algorithms 
(GA) in order to have good tracking ability and be not sensitive to white noise [2] [3]. 
GA can define search direction and scopes only based on the fitness function 
converted from the object function and doesn’t need to know the differential of 
object function and other auxiliary information. This will be very convenient for the 
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functions whose differentials are difficult to find or are not existent. Above 
algorithms use all models with white noise to study. 

The particle swarm optimization (PSO) is similar to GA where the system is 
initialized with a population of random solutions. It is unlike GA, however, where 
every potential solution is also assigned a randomized velocity and the potential 
solutions called particles are "flown" through the search space. In this paper a novel 
PSO identification algorithm for time-varying systems with a colored noise is 
presented. Because PSO algorithm is a stochastic optimization algorithm as same as 
GA, it should be above advantages of GA. 
 
 
2.  OVER VIEW OF PARTICLES SWARM OPTIMIZATION  
 
2.1  Features of Particle Swarm Algorithm 
 
In 1995, Kennedy and Eberhart first introduced PSO method [4]. The PSO is a 
stochastic optimization technique that can be likened to the behavior of a flock of 
birds and that is derived from the social-psychological theory. The method has been 
found to be robust in solving problems featuring nonlinearity and no differentiability, 
multiple optimization, and high dimensionality through adaptation.  

The PSO is a swarm based optimization technique. A simple explanation of the 
PSO’s operation is as follows. Every particle represents a possible solution to the 
optimization task at hand. During iterations every particle accelerates in the direction 
of its own personal best solution found so far, as well as in the direction of the global 
best position discovered by the particles in swarm so far. This means that if a particle 
discovers a promising new solution, all the other particles will move closer to it, 
exploring the region more thoroughly in the process.  

In PSO every particle has the following attributes and is treated as a volume-less 
point in the D -dimensional search space. The ith  particle can be described by a 
vector T

iDiii xtxtxX (t)])(),([ 21 Λ= . The personal best position of the ith  particle 

in the search space is recorded and represented as T
iDiii tptptpP )]()...(),([ 21= . The 

global best position found by any particle during previous steps is represented by the 
symbol Pg, i.e. T

gDggg tptptpP )]()...(),([ 21= . The flying velocity of particle i  is 

represented as T
iDiii tvtvtvV )]()...(),([ 21= . The maximum velocity of particles 

is T
DvvvV )...,( max2max1maxmax = , and the range of the particles 

is T
Dxxx )...,( max2max1maxmax =Χ . Assuming that the function Jh is to be minimized, 

the velocity and position of every particle can be modified respectively by the 
following equations 
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Where 121 N,i Λ= , D,d Λ21= . 1N  is the number of particles. 1C  and 2C  are 
acceleration coefficients that are positive constants. Acceleration coefficients control 
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how far a particle will move in a single iteration. Typically, these are both set to 2.0, 
although assigning different values to and sometimes leads to improved performance 
[5]. )1,0(~1 Urand  and )1,0(~2 Urand are two uniform random sequences in the 
range (0,1). The component value in every vector Vi can be clamped to the range 

],[ maxmax dd vv−  to reduce the likelihood of particles leaving the search space. The 
value of vmax d is usually chosen to be maxXk × , with 0.11.0 ≤≤ k  [6]. The formula 
of clamped velocity may show as 
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The new position of a particle is calculated using 
)1()()1( ++=+ tvtxtx ididid                      (3) 

The personal best position of each particle is updated using 
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and the global best position found by any particle during previous steps, is defined as 

11))1((minarg)1( NitPJtP ihPg
i

≤≤+=+                         (5) 

The first item of (1) is the momentum term and w is its inertia weight.  
The inertia weight w is employed to control the impact of previous velocity on 

the current velocity in order to influence global and local exploration abilities of the 
“flying points”. A larger inertia weight facilitates global exploration while a smaller 
inertia weight tends to facilitate local exploration to the current search area. Suitable 
selection of the inertia weight can provide a balance between global and local 
exploration abilities and require less iteration on average to find the optimum. There 
is a kind of simple way the value w  is linearly decreased with the iteration going. 
By means of the mathematics, the description is [8] 

iter
iter

wwww
max

minmax
max

--=                                     (6) 

Where maxw is the initial weight， minw is terminative weight， itermax is the 
biggest iteration times，iter is the current iteration times.  

Usually, we define the inertia weight w  to linearly decrease from 0.9 to 0.4 
during the iterations. Every particle is updated according to its own flying experience 
and the group’s flying experience. From simulation we know the particle maybe loss 
its optimum when the inertia weight w too large, thus the algorithm will be failed to 
converge. So far we do not know the best and accurate changing regulation of the 
inertia weight. To overcome this shortage, we induce fuzzy logic rules algorithm into 
PSO. The algorithm is the PSO with fuzzy self-adapting inertia weights (FSPSO). 
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Considering fuzzy logic rules and the last results of particle’s searching, it modifies 
dynamically the values of inertia weight in order to promote the convergent 
capability of the particle swarm [7]. 

If we establish the variable Jh of the square sum of output residual reflected 
directly, the opposite quantity δ∆  related directly with the square sum of the output 

residual is described. The mathematics formula may show as 
minmax

min

-
-

hh

hh

JJ
JJ

=∆δ , 

where Jhmax and Jhmin is the top and bottom limit that Jh may take the value 
respectively. In the formula we get the value δ∆  placed in [0, 1] interval, which is 
more fit than Jh to be the input of the fuzzy reasoning machine. Two inputs of the 
fuzzy reasoning are defined as three fuzzy sets respectively. It is named as small, 
medium and big. Nine kinds of different combinations of inputs correspond with 
nine outputs to decide the next iteration's value w . We set the fuzzy self-adapting 
rule and mainly consider two points. One is that when Jh is big, the increment of the 
next iteration w  is big so that particles can be in the big range searching, vice versa. 
The other one is that when the value of the current iteration w  is big, the minus 
quantity of the next iteration w  is big so that particles can accelerate the 
convergence. The rule table of fuzzy self-adapting algorithm is showed in Table 1. 
The simulation result shows that the strategy adjusting w  can obtain the more 
satisfied result. 

Recently, work by Clerc [9]–[11] indicated that a constriction factor may help to 
ensure convergence. Application of the constriction factor results in (7). 
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 If you compare (7) with (1) you will find that '
11, KCCKw ==  and '

22 KCC = . For 

example: if 2'
2

'
1 == CC , (7) is the same as (1) in w=1. It is seen that the values of 

w, C1 and C2 are important in PSO. 
 

2.2  Combinatorial PSO 
 
Eberhart and Shi [12] have shown that the constriction factor alone does not 
necessarily result in the best performance. Combining more approaches could result 
in the fastest convergence overall. These improvements appear to be effective on a 
large collection of problems. 

Kennedy has taken this LBEST version of the particle swarm and applied to it a 
technique referred to as “social stereotyping” [13] [14]. A clustering algorithm is used to 
group individual particles into “stereotypical groups”. The cluster center G i (t) is 
computed for every group and then substituted into (1), yielding three strategies to  
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Table 1 - The Rule table of The Fuzzy Self-adapting Algorithm 
The opposite quantity directly related with the square 
sum of the output residual δ∆ ，[0，1] 

 
Inertial weight of the  
next iteration [0.4,0.9] Small 

[0,0.35] 
Medium 
[0.35,0.7] 

Big 
[0.7,1] 

Small, [0.4,0.6) 0.4 w +0.08; w +0.15 
Medium, [0.6,0.75) w -0.05 w  w +0.10 

Inertial weight 
of the current 
iteration w  Big, [0.75.0.9] w -0.10 w -0.08 w +0.05 

 
calculate the new velocity
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The results presented indicate that only the method in (8) performs better than 
the standard PSO of (1). This improvement comes at increased processing cost, as 
the clustering algorithm needs a nonnegligible amount of time to form the 
stereotypical groups. In a time-varying system we define: 
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Where h is a width of window.  
Moreover, following simulations have shown. We are able to make use of the 

advantage of more approaches in the time-varying system. For example we take two 
approaches of PSO. We can divide particles of swarm into two types crossly. The 
first type is used for FSPSO. Another type is used for the PSO of inertia weights in 
(1). The particles of swarm are two times more than number of parameters in 
identification. The particles of each type are more than parameters in identification. 
 
 
3.  IDENTIFICATION FOR ARMAX MODEL WITH TIME-

VARYING PARAMETERS 
 
The considered stochastic ARMAX model with time-varying parameters is given 
by[15]  
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estimation of the parameters at k time. The error between the actual and the 
estimated system output is defined by 
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When the identification model is different from the actual system, 0≠ε . We define 
the performance criterion function is as follows 

{ +−−−λ=θ ∑
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Where h is a width of window. The faster parameters of time-varying change, the 

smaller choice h is to have batter result.
∧

)(ky  is the estimated output in system.λ  is 
the forgetting factor. Typically, 10 ≤< λ  is the range of λ .Actually we use a value 
of λ  from 0.90 to 0.98. The much smaller iλ is, the more i increase in order to track 
the dynamic system and forget older data. µ shows coefficient in square error of 
parameters. Its value may balance the ratio of error of parameters and system output. 
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Actually we use a value of µ  from 0.3 to 0.5. In (15) the first part shows error of 
system output and second part shows error of parameters in order to explain more 
difference between actual and estimative system. 

A flow chart for such an algorithm, referred to here as combinatorial PSO, is 
given in Figure 1. This algorithm is capable of providing desirable performance and 
convergence properties in most any context.  

In (12) all parameters of model are given: a1 (k) =-1.5, a2 (k) =0.7, b2 (k) =0.5, c1 
(k) =1.0, c2 (k) =0.41, d (k) =2. Where the time-varying parameter is 





≥+
<

=
200)(k200)]-[0.2(ksin *0.41
200)(k1.0

)(1 kb  

The noise e(k) is the white noise whose mean is null and 1.0=2σ . The input 
signal )(ku  is the white noise whose mean is null and amplitude is 1.  

 

 
Figure 1 - A flow chart for such an algorithm based on combinatorial PSO 
 
In following figures horizontal coordinate is iteration times and vertical 

coordinate is value of parameters. In figures green line is actual value of parameters 
and red stippling is estimated value of parameters. In order to show clearly in figures 
we only give out the result of a1 (k) and b1 (k). a1 (k) represents time invariant 
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parameter. b1 (k) represents time-varying parameter. In order to avoid bad 
convenience and velocity too fast to control range of velocity we set the maximum 
velocity into 1 ( 1max =dV ). The number of particles N1 takes 30. Acceleration 
coefficients 1C  and 2C  take 2 equally. The forgetting factor λ takes 0.95. µ takes 
0.4. 

 
 

4. DIGITAL SIMULATION 
 
4.1  Identification with PSO of Inertia Weights  

 
Figure 2 shows the result in the PSO of inertia weights when h is 3. Its inertia 
weights changes from 0.9 to 0.4 with (6). Similarly Figure 3 and Figure 4 are results 
when h is 5 and 10 respectively. From results we may find that the better result of 
tracking parameter is, the smaller h is. The later tracking of parameters is batter than 
forward convenience in PSO of inertia weights. Before 200 iteration times result is 
not good.  
 
4.2  Identification with FSPSO 
 
Figure5 shows the result in FSPSO when h is 3. Its inertia weights changes from 0.9 
to 0.4 with fuzzy logic rules in Table 1. Similarly Figure 6 and Figure 7 are results 
of h=5 and 10 respectively. From results we may find that forward convenience of 
parameters is batter than the later tracking of parameters in FSPSO. Its convenience 
(about 70 iteration times) is faster than the PSO of inertia weights (about 200 
iteration times). The result with h=3 (Figure 5) is batter than other (Figure 6 or 
Figure 7). 
 

Figure 2 - PSO of inertia weights with 
h=3 

Figure3 - PSO of inertia weights with 
h=5 
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   Figure 4 - PSO of inertia weights with 
h=10 

 Figure 5 - FSPSO with h=3 

 
We may compare FSPSO and the PSO of inertia weights with above results. 

Then we can discover that FSPSO combines the combinatorial PSO with the PSO of 
inertia a weights to take thire advantages and to make up another degradation. 

 
4.3 Identification with combinatorial PSO  
 
If we use combinatorial PSO we meet the allocation of swarms. According to lots of 
simulation we select an half particles (15 particles) for FSPSO and other particles 
(15 particles) for PSO of inertia weights. Figure 8 shows the result in combinatorial 
PSO when h is 3. Similarly Figure 9 and Figure 10 are results when h is 5 and 10 
respectively. It is seen that in the combinatorial PSO tracking of parameters and 
convenience is much batter than that one in FSPSO or the PSO of inertia weights. 
The better result of tracking parameter is, the smaller h is when h is more than 2. Or 
the convenience is imperfect.  

 

 Figure 6 - FSPSO with h=5  Figure 7 - FSPSO with h=10 
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 Figure 8 - Combinatorial PSO with h=3  Figure 9 - Combinatorial PSO with 
h=5 

 
A lots of simulations show that the more particles for the PSO of inertia weights 

are, the batter dynamic tracing is and that the more particles for FSPSO are the batter 
the convergence of time invariant systems is. 

 
4.4 The robustness with colored noise in system 
 
In the above results h=3 is good selection. When the ratio of colored noise to signal 
is 10 percentages simulation result is shown in Figure 11. Similarly Figure 12 and 
Figure 13 are shown respectively when the ratios of colored noise to signal are 20 
and 30 percentages. Results of tracking and robustness are more satisfied. 
 

  
Figure 10 - Combinatorial PSO with h=10 

 
Figure 11 - Combinatorial PSO with 

noise 10% 
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Figure 12 - Combinatorial PSO with noise 

20% 

 
Figure 13 - Combinatorial PSO with 

noise 30% 

5. CONCLUSIONS  
 
In this paper, parameter estimation of the time varying for process models is 
converted to an optimization problem. Presented (15) can show not only outside 
system output error but also inside parameters error in order to explain more 
difference between actual and estimative system. We are able to make use of 
advantages of more approaches in the time-varying system. We take the 
combinatorial PSO that FSPSO combines PSO of inertia weights in simulation.  

The identification algorithm for time-varying systems with colored noise was 
indeed more efficient and robust in combinatorial PSO comparing with FSPSO or 
PSO of inertia weights. 
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