
PARAMETER ESTIMATION FOR
TIME-VARYING SYSTEM BASED

ON COMBINATORIAL PSO

Weixing Lin1, 2, Peter X. Liu2

1) Faculty of Information Science and Technology, Ningbo
University, Ningbo, Zhejiang Province, China 315211

2) Department of System and Computer Engineering,
Carleton University, Ottawa, Ontario, Canada K1S 5B6

wlin@sce.carleton.ca

In this paper, a novel Particle Swarm Optimization (PSO) identification
algorithm for time-varying systems with a colored noise is presented. Presented
criterion function can show not only outside system output error but also inside
parameters error in order to explain more difference between actual and
estimative system. Identification algorithm may consist of many different PSO
algorithms that are named the combinatorial PSO. The estimating and tracking
of parameters make use of characteristics of different PSO algorithms. The
simulation and result show that the identification algorithm for time-varying
systems with noise was indeed more efficient and robust in combinatorial PSO
comparing with the original particle swarm optimization.

1. INTRODUCTION

For time-varying system identification and parameter tracking is still a very active
research field in the recent years [1]. Most of identification algorithms are still the
Recursive Least Squares (RLS) or gradient algorithms, which search along the
direction of parameters change slowly. If the search space is not differentiable or the
parameters are nonlinear, usually the optimal global solutions would not be found. In
the algorithms the selection of the gain or forgetting factor becomes very important.
In general, a large gain or a small forgetting factor makes the RLS or gradient
algorithms to have a better ability for tracking the variation of parameters, but also
makes them sensitive to white noise. On the other hand, a small gain or a big
forgetting factor makes the algorithms less sensitive to white noise, but at the same
time results in a poor tracking ability for slowly time-varying systems. There are
many new identification algorithms such as identification using Genetic Algorithms
(GA) in order to have good tracking ability and be not sensitive to white noise [2] [3].
GA can define search direction and scopes only based on the fitness function
converted from the object function and doesn’t need to know the differential of
object function and other auxiliary information. This will be very convenient for the

38

358 Information Technology for Balanced Manufacturing Systems

functions whose differentials are difficult to find or are not existent. Above
algorithms use all models with white noise to study.

The particle swarm optimization (PSO) is similar to GA where the system is
initialized with a population of random solutions. It is unlike GA, however, where
every potential solution is also assigned a randomized velocity and the potential
solutions called particles are "flown" through the search space. In this paper a novel
PSO identification algorithm for time-varying systems with a colored noise is
presented. Because PSO algorithm is a stochastic optimization algorithm as same as
GA, it should be above advantages of GA.

2. OVER VIEW OF PARTICLES SWARM OPTIMIZATION

2.1 Features of Particle Swarm Algorithm

In 1995, Kennedy and Eberhart first introduced PSO method [4]. The PSO is a
stochastic optimization technique that can be likened to the behavior of a flock of
birds and that is derived from the social-psychological theory. The method has been
found to be robust in solving problems featuring nonlinearity and no differentiability,
multiple optimization, and high dimensionality through adaptation.

The PSO is a swarm based optimization technique. A simple explanation of the
PSO’s operation is as follows. Every particle represents a possible solution to the
optimization task at hand. During iterations every particle accelerates in the direction
of its own personal best solution found so far, as well as in the direction of the global
best position discovered by the particles in swarm so far. This means that if a particle
discovers a promising new solution, all the other particles will move closer to it,
exploring the region more thoroughly in the process.

In PSO every particle has the following attributes and is treated as a volume-less
point in the D -dimensional search space. The ith particle can be described by a
vector T

iDiii xtxtxX (t)])(),([21 Λ= . The personal best position of the ith particle

in the search space is recorded and represented as T
iDiii tptptpP)]()...(),([21= . The

global best position found by any particle during previous steps is represented by the
symbol Pg, i.e. T

gDggg tptptpP)]()...(),([21= . The flying velocity of particle i is

represented as T
iDiii tvtvtvV)]()...(),([21= . The maximum velocity of particles

is T
DvvvV)...,(max2max1maxmax = , and the range of the particles

is T
Dxxx)...,(max2max1maxmax =Χ . Assuming that the function Jh is to be minimized,

the velocity and position of every particle can be modified respectively by the
following equations

(t)])([(t)]
)([)()1(

22

11
'

idgdid

ididid

xtprandCx
tprandCtvwtv

−××+−
××+×=+

(1)

Where 121 N,i Λ= , D,d Λ21= . 1N is the number of particles. 1C and 2C are
acceleration coefficients that are positive constants. Acceleration coefficients control

Parameter estimation for time-varying system 359

how far a particle will move in a single iteration. Typically, these are both set to 2.0,
although assigning different values to and sometimes leads to improved performance
[5].)1,0(~1 Urand and)1,0(~2 Urand are two uniform random sequences in the
range (0,1). The component value in every vector Vi can be clamped to the range

],[maxmax dd vv− to reduce the likelihood of particles leaving the search space. The
value of vmax d is usually chosen to be maxXk × , with 0.11.0 ≤≤ k [6]. The formula
of clamped velocity may show as









−<+−
≤+≤−+

>+
=+

didd

diddid

didd

id

vtvv
vtvvtv

vtvv
tv

max
'

max

max
'

max
'

max
'

max

)1(
)1()1(

)1(
)1((2)

The new position of a particle is calculated using
)1()()1(++=+ tvtxtx ididid (3)

The personal best position of each particle is updated using





<++
≥+

=+
))(()1((),1(

))(()1((),(
)1(

tPJtXJtX
tPJtXJtP

tP
ihihi

ihihi
i (4)

and the global best position found by any particle during previous steps, is defined as

11))1((minarg)1(NitPJtP ihPg
i

≤≤+=+ (5)

The first item of (1) is the momentum term and w is its inertia weight.
The inertia weight w is employed to control the impact of previous velocity on

the current velocity in order to influence global and local exploration abilities of the
“flying points”. A larger inertia weight facilitates global exploration while a smaller
inertia weight tends to facilitate local exploration to the current search area. Suitable
selection of the inertia weight can provide a balance between global and local
exploration abilities and require less iteration on average to find the optimum. There
is a kind of simple way the value w is linearly decreased with the iteration going.
By means of the mathematics, the description is [8]

iter
iter

wwww
max

minmax
max

--= (6)

Where maxw is the initial weight， minw is terminative weight， itermax is the
biggest iteration times，iter is the current iteration times.

Usually, we define the inertia weight w to linearly decrease from 0.9 to 0.4
during the iterations. Every particle is updated according to its own flying experience
and the group’s flying experience. From simulation we know the particle maybe loss
its optimum when the inertia weight w too large, thus the algorithm will be failed to
converge. So far we do not know the best and accurate changing regulation of the
inertia weight. To overcome this shortage, we induce fuzzy logic rules algorithm into
PSO. The algorithm is the PSO with fuzzy self-adapting inertia weights (FSPSO).

360 Information Technology for Balanced Manufacturing Systems

Considering fuzzy logic rules and the last results of particle’s searching, it modifies
dynamically the values of inertia weight in order to promote the convergent
capability of the particle swarm [7].

If we establish the variable Jh of the square sum of output residual reflected
directly, the opposite quantity δ∆ related directly with the square sum of the output

residual is described. The mathematics formula may show as
minmax

min

-
-

hh

hh

JJ
JJ

=∆δ ,

where Jhmax and Jhmin is the top and bottom limit that Jh may take the value
respectively. In the formula we get the value δ∆ placed in [0, 1] interval, which is
more fit than Jh to be the input of the fuzzy reasoning machine. Two inputs of the
fuzzy reasoning are defined as three fuzzy sets respectively. It is named as small,
medium and big. Nine kinds of different combinations of inputs correspond with
nine outputs to decide the next iteration's value w . We set the fuzzy self-adapting
rule and mainly consider two points. One is that when Jh is big, the increment of the
next iteration w is big so that particles can be in the big range searching, vice versa.
The other one is that when the value of the current iteration w is big, the minus
quantity of the next iteration w is big so that particles can accelerate the
convergence. The rule table of fuzzy self-adapting algorithm is showed in Table 1.
The simulation result shows that the strategy adjusting w can obtain the more
satisfied result.

Recently, work by Clerc [9]–[11] indicated that a constriction factor may help to
ensure convergence. Application of the constriction factor results in (7).

(t)]])([(t)]

)([)([1

2
'
2

1
'
1

idgdid

idid
'

id

xtprandCx

tprandCtvK)(tv

−××+−

××+=+
 (7)

where
ϕϕϕ 42

2
2 −−−

=K and '
2

'
1 C C +=ϕ , 4≥ϕ .

 If you compare (7) with (1) you will find that '
11, KCCKw == and '

22 KCC = . For

example: if 2'
2

'
1 == CC , (7) is the same as (1) in w=1. It is seen that the values of

w, C1 and C2 are important in PSO.

2.2 Combinatorial PSO

Eberhart and Shi [12] have shown that the constriction factor alone does not
necessarily result in the best performance. Combining more approaches could result
in the fastest convergence overall. These improvements appear to be effective on a
large collection of problems.

Kennedy has taken this LBEST version of the particle swarm and applied to it a
technique referred to as “social stereotyping” [13] [14]. A clustering algorithm is used to
group individual particles into “stereotypical groups”. The cluster center G i (t) is
computed for every group and then substituted into (1), yielding three strategies to

Parameter estimation for time-varying system 361

Table 1 - The Rule table of The Fuzzy Self-adapting Algorithm
The opposite quantity directly related with the square
sum of the output residual δ∆ ，[0，1]

Inertial weight of the
next iteration [0.4,0.9] Small

[0,0.35]
Medium
[0.35,0.7]

Big
[0.7,1]

Small, [0.4,0.6) 0.4 w +0.08; w +0.15
Medium, [0.6,0.75) w -0.05 w w +0.10

Inertial weight
of the current
iteration w Big, [0.75.0.9] w -0.10 w -0.08 w +0.05

calculate the new velocity

(t)])([(t)]

)([)()1(

22

11
'

igi

iii

XtPrandCX
tGrandCtVwtV

−××+−
××+×=+ (8)

(t)])([(t)]
)([)()1(

22

11
'

iii

iii

XtGrandCX
tPrandCtVwtV

−××+−
××+×=+ (9)

(t)])([(t)]
)([)()1(

22

11
'

iii

iii

XtGrandCX
tGrandCtVwtV

−××+−
××+×=+ (10)

The results presented indicate that only the method in (8) performs better than
the standard PSO of (1). This improvement comes at increased processing cost, as
the clustering algorithm needs a nonnegligible amount of time to form the
stereotypical groups. In a time-varying system we define:

∑
=

−=
h

l
ii ltP

h
tG

0
)(1)((11)

Where h is a width of window.
Moreover, following simulations have shown. We are able to make use of the

advantage of more approaches in the time-varying system. For example we take two
approaches of PSO. We can divide particles of swarm into two types crossly. The
first type is used for FSPSO. Another type is used for the PSO of inertia weights in
(1). The particles of swarm are two times more than number of parameters in
identification. The particles of each type are more than parameters in identification.

3. IDENTIFICATION FOR ARMAX MODEL WITH TIME-

VARYING PARAMETERS

The considered stochastic ARMAX model with time-varying parameters is given
by[15]

)(
),(

1)(),(

)(),(

1
1)(

1

ke
kqC

kukqBq

kykqA

kd
−

−−

−

+=
 (12)

where

362 Information Technology for Balanced Manufacturing Systems

na
na qkaqkaqkakqA −−−− ++++=)()()(1),(2

2
1

1
1 Λ ,

nb
nb qkbqkbqkbkqB −−−− +++=)()()(),(2

2
1

1
1 Λ ,

nc
nc qkcqkcqkckqC −−−− ++++=)()()(1),(2

2
1

1
1 Λ .

)(,),(),(),(
,),(),(),(,),(),(

21

2121

kckckckb
kbkbkakaka

ncnb

na

Λ
ΛΛ are the time-varying parameters of the

system. maxmin)(dkdd ≤≤ is the time-varying delay. u (k), y(k) and e(k) are system

input, output and white noise serial respectively. If
),(

)(,1),(1
1

kqC
kekqC
−

− ≠ shows a

type of colored noise in (12). Suppose the model of the system is

)(
),(ˆ

1)(),(ˆ)(ˆ),(ˆ
1

1)(ˆ1 ke
kqC

kukqBqkykqA kd
−

−−− += (13)

where
na

n qkaqkaqkakqA −−−− ++++=)(ˆ)(ˆ)(ˆ1),(ˆ 2
2

1
1

1 Λ ,
nb

nb qkbqkbqkbkqB −−−− +++=)(ˆ)(ˆ)(ˆ),(ˆ 2
2

1
1

1 Λ ,
nc

nc qkcqkcqkckqC −−−− ++++=)(ˆ)(ˆ)(ˆ1),(ˆ 2
2

1
1

1 Λ
)]k(ĉ,),k(ĉ),k(b̂,),k(b̂),k(b̂),k(â,),k(â),k(â),k(d̂[)k(ˆ

ncnbna
T ΛΛΛ 12121=θ

is
)]k(c,),k(c),k(b,),k(b),k(b),k(a,),k(a),k(a),k(d[)k(ncnbna

T ΛΛΛ 12121=θ
estimation of the parameters at k time. The error between the actual and the
estimated system output is defined by

)k(e]
)k,q(Ĉ)k,q(Â)k,q(C)k,q(A

[

)k(u]q
)k,q(Â
)k,q(B̂q

)k,q(A
)k,q(B[)k(ŷ)k(y)k(d̂)k(d

1111

1

1

1

1

11
−−−−

−
−

−
−

−

−

−+

−=−=ε
 (14)

When the identification model is different from the actual system, 0≠ε . We define
the performance criterion function is as follows

{ +−−−λ=θ ∑
=

h

i

i
h)]ik(ŷ)ik(y[))k((J

0

2

})]ik(ˆ)ik([)]ik(ˆ)ik([best
T

best −θ−−θ−θ−−θµ (15)

Where h is a width of window. The faster parameters of time-varying change, the

smaller choice h is to have batter result.
∧

)(ky is the estimated output in system.λ is
the forgetting factor. Typically, 10 ≤< λ is the range of λ .Actually we use a value
of λ from 0.90 to 0.98. The much smaller iλ is, the more i increase in order to track
the dynamic system and forget older data. µ shows coefficient in square error of
parameters. Its value may balance the ratio of error of parameters and system output.

Parameter estimation for time-varying system 363

Actually we use a value of µ from 0.3 to 0.5. In (15) the first part shows error of
system output and second part shows error of parameters in order to explain more
difference between actual and estimative system.

A flow chart for such an algorithm, referred to here as combinatorial PSO, is
given in Figure 1. This algorithm is capable of providing desirable performance and
convergence properties in most any context.

In (12) all parameters of model are given: a1 (k) =-1.5, a2 (k) =0.7, b2 (k) =0.5, c1
(k) =1.0, c2 (k) =0.41, d (k) =2. Where the time-varying parameter is





≥+
<

=
200)(k200)]-[0.2(ksin *0.41
200)(k1.0

)(1 kb

The noise e(k) is the white noise whose mean is null and 1.0=2σ . The input
signal)(ku is the white noise whose mean is null and amplitude is 1.

Figure 1 - A flow chart for such an algorithm based on combinatorial PSO

In following figures horizontal coordinate is iteration times and vertical

coordinate is value of parameters. In figures green line is actual value of parameters
and red stippling is estimated value of parameters. In order to show clearly in figures
we only give out the result of a1 (k) and b1 (k). a1 (k) represents time invariant

364 Information Technology for Balanced Manufacturing Systems

parameter. b1 (k) represents time-varying parameter. In order to avoid bad
convenience and velocity too fast to control range of velocity we set the maximum
velocity into 1 (1max =dV). The number of particles N1 takes 30. Acceleration
coefficients 1C and 2C take 2 equally. The forgetting factor λ takes 0.95. µ takes
0.4.

4. DIGITAL SIMULATION

4.1 Identification with PSO of Inertia Weights

Figure 2 shows the result in the PSO of inertia weights when h is 3. Its inertia
weights changes from 0.9 to 0.4 with (6). Similarly Figure 3 and Figure 4 are results
when h is 5 and 10 respectively. From results we may find that the better result of
tracking parameter is, the smaller h is. The later tracking of parameters is batter than
forward convenience in PSO of inertia weights. Before 200 iteration times result is
not good.

4.2 Identification with FSPSO

Figure5 shows the result in FSPSO when h is 3. Its inertia weights changes from 0.9
to 0.4 with fuzzy logic rules in Table 1. Similarly Figure 6 and Figure 7 are results
of h=5 and 10 respectively. From results we may find that forward convenience of
parameters is batter than the later tracking of parameters in FSPSO. Its convenience
(about 70 iteration times) is faster than the PSO of inertia weights (about 200
iteration times). The result with h=3 (Figure 5) is batter than other (Figure 6 or
Figure 7).

Figure 2 - PSO of inertia weights with
h=3

Figure3 - PSO of inertia weights with
h=5

Parameter estimation for time-varying system 365

 Figure 4 - PSO of inertia weights with
h=10

 Figure 5 - FSPSO with h=3

We may compare FSPSO and the PSO of inertia weights with above results.

Then we can discover that FSPSO combines the combinatorial PSO with the PSO of
inertia a weights to take thire advantages and to make up another degradation.

4.3 Identification with combinatorial PSO

If we use combinatorial PSO we meet the allocation of swarms. According to lots of
simulation we select an half particles (15 particles) for FSPSO and other particles
(15 particles) for PSO of inertia weights. Figure 8 shows the result in combinatorial
PSO when h is 3. Similarly Figure 9 and Figure 10 are results when h is 5 and 10
respectively. It is seen that in the combinatorial PSO tracking of parameters and
convenience is much batter than that one in FSPSO or the PSO of inertia weights.
The better result of tracking parameter is, the smaller h is when h is more than 2. Or
the convenience is imperfect.

 Figure 6 - FSPSO with h=5 Figure 7 - FSPSO with h=10

366 Information Technology for Balanced Manufacturing Systems

 Figure 8 - Combinatorial PSO with h=3 Figure 9 - Combinatorial PSO with
h=5

A lots of simulations show that the more particles for the PSO of inertia weights

are, the batter dynamic tracing is and that the more particles for FSPSO are the batter
the convergence of time invariant systems is.

4.4 The robustness with colored noise in system

In the above results h=3 is good selection. When the ratio of colored noise to signal
is 10 percentages simulation result is shown in Figure 11. Similarly Figure 12 and
Figure 13 are shown respectively when the ratios of colored noise to signal are 20
and 30 percentages. Results of tracking and robustness are more satisfied.

Figure 10 - Combinatorial PSO with h=10

Figure 11 - Combinatorial PSO with

noise 10%

Parameter estimation for time-varying system 367

Figure 12 - Combinatorial PSO with noise

20%

Figure 13 - Combinatorial PSO with

noise 30%

5. CONCLUSIONS

In this paper, parameter estimation of the time varying for process models is
converted to an optimization problem. Presented (15) can show not only outside
system output error but also inside parameters error in order to explain more
difference between actual and estimative system. We are able to make use of
advantages of more approaches in the time-varying system. We take the
combinatorial PSO that FSPSO combines PSO of inertia weights in simulation.

The identification algorithm for time-varying systems with colored noise was
indeed more efficient and robust in combinatorial PSO comparing with FSPSO or
PSO of inertia weights.

6. ACKNOWLEDGEMENT

This work is supported by the K. C. Wong Education Foundation

7. REFERENCES

1. Feng Ding, Tongwen Chen, “Performance Bounds of Forgetting Factor Least-Squares Algorithms

for Time-Varying Systems with Finite Measurement Data”, IEEE Trans. Circuits and Systems,
52(3): 555-566, 2005.

2. R. Salomon, “Evolutionary algorithms and gradient search similarities and differences,” IEEE Trans.
Evolutionary Computation: 2(2), 45-55, 1998.

3. Yuncan Xue, Qiwen Yang, Jixin Qian, “Parameter estimation for time-varying system based on
improved genetic algorithm”, Proc. the 28 Annual Conference of the IEEE Industrial Electronics
Society, Sevilla, Spain: 2007-2010, 2002.

4. R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” Proc. 6th Industrial
Symp. Micro Machine and Human Science, Nagoya, Japan: 39–43, 1995.

5. P. N. Suganthan, “Particle swarm optimizer with neighborhood operator,” Proc. Conference
Evolutionary computation, Washington, DC: 1958–1961, 1999.

368 Information Technology for Balanced Manufacturing Systems

6. R. C. Eberhart, P. Simpson, and R. Dobbins, Computational Intelligence PC Tools: Academic, ch. 6:
212–226, 1996.

7. Weixing Lin, Chongguang Jiang, Jixin Qian, “The Identification of Hammerstein Model Based on
PSO with Fuzzy Adaptive Inertia Weight”, Journal of Systems Science and Information, 3(2): 381-
391, 2005.

8. Y. Shi, R. C. Eberhart, “Empirical Study of particle swarm optimization”, Proc. IEEE International
Conference. Evolutionary Computation, 3: 101-106, 1999.

9. M. Clerc, “The swarm and the queen: toward a deterministic and adaptive particle swarm
optimization,” Proc. ICEC’99, Washington, DC: 1951–1957, 1999.

10. D. Corne, M. Dorigo, F. Glover, Eds., New Ideas in Optimization. New York: McGraw-Hill, ch. 25:
379–387, 1999.

11. M. Clerc, J. Kennedy, “The particle swarm: explosion, stability, and convergence in a multi-
dimensional complex space,” IEEE Trans. Evolutionary Computation, 6(1): 58–73, 2002.

12. R. C. Eberhart, Y. Shi, “Comparing inertia weights and constriction factors in particle swarm
optimization”, Proc. Conference Evolutionary Computation 2000, San Diego, CA: 84-88, 2000.

13. [13] J. Kennedy, “Stereotyping: Improving particle swarm performance with cluster analysis,”
Proc. 2000 Conference Evolutionary Computing: 1507–1512, 2000.

14. J. Kennedy, R. Mendes, “Population structure and particle swarm performance”, Proc. 2002 World
Conference Computational Intelligence, Honolulu, HI: 1671–1676, 2002.

15. Jing Ke, Yizheng Qiao, Jixin Qian, “ Identification of Time-varying Delay Systems Using Particle
Swarm Optimization”, Proc. the 5th World Congress on Intelligent Control and Automation,
Hangzhou, P.R. China: 330-334, 2004.

