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This paper proposes an adapted diagnoser for manufacturing systems. This 
diagnoser combines event and state based models to infer the fault’s 
occurrence using event sequences and state conditions characterized by 
sensor’s readings and commands issued by the controller. Furthermore, this 
diagnoser uses expectation functions to capture the inherent temporal 
dynamics of the system represented by time delays between correlated events. 

 
 
1.  INTRODUCTION 
 
Fault diagnosis is defined as the operation of detecting and isolating faults. 
Manufacturing systems are an example of Discrete Event Systems (DES). Their 
behavior is generally based on two characteristics: all information regarding their 
operation is determined from the event sequencing and timing of events and their 
initial state may not be known. 

The majority of DES fault diagnosis methods are based on a finite-state 
automaton. Some examples of the use of automata can be found in (Philippot, 2005), 
(Sampath, 1994), (Tripakis, 2001) and the references therein. This model accounts 
for the normal and failed behaviors of the process. 

Since not every process is diagnosable, a notion of diagnosability must be 
defined (Lin, 1994), (Sampath, 1994), (Zad, 2003), (Mouchaweh, 2005) to 
determine if a process is diagnosable according to a certain set of observable events 
and pre-defined partitions of faults. It defines a diagnoser that must be able to infer 
the fault’s occurrence after both the occurrence of the fault and the initialisation of 
the diagnoser and within a finite delay. This notion is formalized differently 
according to whether the fault model is event-based or state-based ones. 

In (Sampath, 1994) a diagnosability notion using an event-based model is 
defined. All information relevant to the diagnosis is captured in the event set of the 
model. A process model is diagnosable if and only if any pair of faulty/non-faulty 
behaviors can be distinguished by the diagnoser using their projections to observable 
behaviors. The diagnoser, defined by this notion, can handle the actuator and sensor 
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faults. However, the diagnoser and the process model must be initiated at the same 
time to allow the process model and diagnoser to response simultaneously to events. 
This initialization is hard to obtain in manufacturing systems since their initial state 
may not be known. To enhance the diagnosability, the above framework is extended 
to dense-time automata (Tripakis, 2001). This extension is useful since it allows 
diagnosers to base their decisions not only on the sequences of observed events, but 
also on the time occurrence of these events.  

To find a remedy to the initialization problem, a diagnosability notion using a 
state-based model is proposed  in (Lin, 1994). In this notion, since the process states 
describe the conditions of its components, diagnosing a fault can be seen as the 
identification in which state or set of states the process belongs to. In (Zad, 2003), a 
diagnoser using a state-based model is proposed. However, the diagnosis is limited 
to the case of actuator faults. While manufacturing systems use many sensors 
entailing the necessity of diagnosing their faults. 

In (Pandalai, 2000) Pandalai et al. use template models for monitoring DES, 
specifically manufacturing systems. Template models are based on the notion of 
expected event sequencing and timing relationships. However, these models do not 
allow the analysis of diagnosability properties based on a diagnosability notion, as 
the case for event or state based models.  

This paper presents a diagnosability notion that defines a diagnoser combining 
event and state based models. Furthermore this diagnoser uses expectation functions 
in order to take into account the inherent temporal dynamics of processes. 
Consequently this diagnoser is adapted to diagnose manufacturing systems. 

The paper is structured as following: firstly, the proposed diagnosability notion 
is introduced. Secondly, the construction of the diagnoser, defined by this notion, is 
explained using an illustration example of manufacturing systems. Finally, a 
conclusion and the perspectives of our future work end this paper.  
 
 
2.  TIMED-EVENT-STATE-BASED DIAGNOSABILITY 
NOTION 
 
In this paper, we consider the problem of diagnosing DES, specifically 
manufacturing systems with discrete sensors and actuators. 
 
2.1  Notations and definitions 
 
2.1.1 Process components model 
 
Let G and its corresponding prefixed closed language, L = L(G), be the process 
model. This model accounts for normal and failed behaviors of the process. G = (Σ, 
Q, Y, δ, h, q0) is a Moore automaton. Σ is the set of finite events, Q is the set of 
states, Y is the output space, δ : Σ x Q → Q is the state transition function. δ(σ, q) 
gives the set of possible next states if σ occurs at q. h: Q → Y is the output function. 
h(q) is the observed output at q. q0 is the initial state. 

Balemi et al. (Balemi, 1993) define controllable events Σc ⊆ Σ as the controller’s 
outputs sent to actuators, and uncontrollable events Σu ⊆ Σ as the controller’s inputs 
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coming from sensors. (Σo = Σc ∪ Σu ) ⊂ Σ is the set of observable events. 
We use the Boolean DES (BDES) model, introduced in (Wang, 2000), to 

construct G. This modelling was initially used for the supervisory control of DES. 
We develop it to realize the diagnosis of DES. Each state of G is represented by an 
output vector, hj, considered as a Boolean vector whose components are Boolean 
variables characterizing the state variables. Let n denote the number of state 
variables of G, the output vector, hj, of each state, qj, can be defined as :  

{ } n
j

n
jpjnjpjjjj YhjhhhhhqhQq Β⊆∈≤≤∈==∈∀ ,21,1,0),,...,,...,()(,

1
  

A transition from one state to another is defined as a change of the variable state 
value from 0 to 1, or from 1 to 0. Thus each transition produces events characterized 
by either rising, ↑α, or  falling edges, ↓α. 

To describe the effect of the occurrence of an event, α ∈ Σo, a displacement 
vector, Eα, is used. It is defined as a Boolean vector, Eα = (eα1,..., eαp,..., eαn), in Bn. 
If eαp = 1, then the value of pth state variable, hjp, will be set or reset when α occurs. 
While if eαp = 0, the value of pth state variable, hjp, will remain unchanged when α 
occurs. Consequently we can write the transition function as:  

ααδ EhhqqQqq ijijji ⊕=⇒=∈∀ ),(:,    (1) 

Similarly, we can define the displacement vectors for the other events. The set of 
all the displacement vectors of all the events provides the displacement matrix E. 

For each event, α ∈ Σo, an enable condition, enα(qi) ∈ {0,1}, is defined in order 
to indicate if this event can occur at the state qi, enα(qi) = 1, or not, enα(qi) = 0. 
Consequently, (1) can be re-written as : 

))(.(),(:, iijijji qenEhhqqQqq αααδ ⊕=⇒=∈∀  (2) 

 
2.1.2 Constrained-process model 
 
Let S = (Σ, QS, Y, δS, h, q0) denote the constrained-process model, characterized as a 
Moore automaton. It defines the desired behavior of the process which is 
represented by the prefixed closed specification language, K = L(S) ⊆ L(G). S and its 
language, K, are constructed by experts. The set of states, QS , is included in Q.  

The user provides the automaton S representing the desired behavior that the 
process should follow. We represent S as a BDES model. To obtain the transition 
function, δS, the enablement conditions for all the process events, ∀α ∈ Σo, must 
satisfy all the specifications, K, representing the desired behaviour: 

))(.(,1)(),(:,,0 iijiiSjSji qenEhhqenqqQqq ααααδα ⊕==⇒=∈∀Σ∈∀ . 
 
2.1.3 Definitions and conditions of Diagnosability 
 
Let F = {F1, F2,..., Fr} define the set of fault modes to be diagnosed. Each fault 
mode corresponds to some kind of faults in a component (sensor, actuator) or a set 
of such faults. We will take the case of simple fault for which a fault mode 
corresponds to a simple fault, Fi = {fi}. Additionally, we assume at most one of the 
fault modes may occur at a time. Let 

ifΨ  define the set of all the event sequences 

ending by the fault fi. Thus )(1 if
r
if Ψ=Ψ =U denotes the set of all the event 
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sequences ending by a fault from F. Consequently fΨ ⊆  (L – K), i.e., all the faulty 
sequences ending by a fault of F are considered as violation of the specification 
language K. An observation mask is defined as : P: Σ* ∪ {ε}→ *

oΣ , where Σ* is the 

set of all event sequences of the language L(G) and *
oΣ  is the set of all observable 

sequences. The inverse mask is defined as: { }usPLsuPL =∈=− )(:)(1 . The set of 

faulty states is defined as Sf : )(1 if
r
i S=U where 

ifS  is the set of states reached by the 

occurrence of the fault fi. Let 
ifH  denote the set of all state output vectors of the 

faulty state partition 
ifS , then the output partition 

ifH can be defined as: 

ii ff HhqhhSq ∈′⇒′=′∈′∀ )(, . Since the state output vectors are used to diagnose 
fault’s occurrence in state-based model, then two states belonging to different faulty 
state partitions must have different output vectors.  

We define the set of fault labels Λf = {f1,...,fr} in order to indicate the occurrence 
of a fault belonging to one of fault partitions F = {{f1}, {f2},...,{fr}}. In adding the 
normal label N, which indicate the non presence of any fault, we can obtain the set 
of all the labels used by the diagnoser : Λ = {N} ∪ Λf . 
 
2.1.4 Events timing delays modelling 
 
The majority of sensors and actuators in manufacturing systems produces 
constrained events since state changes are usually effected by a predictable flow of 
materials (Pandalai, 2000). Therefore, a temporal model centered on the notion of 
expected event sequencing and timing relationships can be used. This expectation 
function is constructed for observable events and it describes the next events that 
should occur and the relative time periods in which they are expected.  

In this paper, we define an expectation function for each controllable event, β ∈ 
Σc, in order to predict uncontrollable but observable consequent events within a pre-
defined time periods. These pre-defined time periods are determined by experts 
according to the process dynamic and to the desired behaviour S. If u = βu1α is an 
observable sequence starting by a controllable event β, and ending by the 
consequent event α and the observable events u1α occur at the states qi, …,qj, then 
each expectation function EF(u) is created when the event β occurs. This function 
has the following form: EF(u) = ({{qi},..., {qj}}, α, [t1, t2], {{fi},..., {fj}}), ∀fi ∈ Λf. 
This expectation means that when β has occurred, the event α should occur at any 
instant between t1 and t2. If it is the case then the expectation function is satisfied 
and it will provide the value 0. If the event α has occurred before t1 or after t2 then 
the expectation function is not satisfied and it will provide the value 1. If this non 
satisfaction occurs at the state qi then this expectation function provides the fault 
label, l = {fi}, to indicate that the cause of this non satisfaction is the occurrence of 
the fault fi. Similarly the non satisfaction of the expected function at the state qj 
indicates the occurrence of the fault fj and it provides the fault label l = {fj}. The 
expectation function is deleted when it is satisfied. 
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2.2  Timed-Event-state-based diagnosability notion formulation 
 

The fault diagnosis problem is to diagnose unambiguously the occurrence of the 
fault fi entailing a faulty behavior belonging to (L – K) 

ifΨ∩ , by the diagnoser 
within a bounded delay. Consequently the timed-event-state-based diagnosability 
notion is defined as follows: a process model G with its language L, and a 
specification language K is diagnosable according to the observation mask P and the 
fault partitions F iff:  
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The satisfaction of (3) means that the occurrence of the fault fi is diagnosable by 
one or more of the following three ways : 

• If the faulty event sequence, s, ending by the fault fi is distinguishable by the 
diagnoser after the execution of k = |t| transitions where t is a continuation of 
s. Then, any other event sequence, u, belonging to (L – K) and producing the 
same observable event sequence as st, P(u) = P(st), should contain in it the 
fault fi.  

• If the state q’ is reached by an event sequence containing the fault fi and 
possessing an output vector h’ = h(q’) belonging to the output partition 

ifH , 
then any other state reached by any other event sequence containing the same 
fault, fi, should possess an output vector h” = h(q”) belonging to the same 
output partition 

ifH .  

• There is at least one expectation function, defining a temporal constraint 
between the occurrence of the observable events P(st) not satisfied due to the 
occurrence of the fault fi. This expectation function should provide the fault 
label l = {fi} as the cause of this non satisfaction. 

 
2.3  Timed-Event-state-based diagnoser definition 

 
The diagnoser D defined by (3) is considered as a Moore automaton : D = (Σo ∪ 
{eEF1,..., eEFm}, QD, Y, δD, h, q0D). The set of events, (eEF1,..., eEFm), corresponds to 
the non satisfaction of expectation functions indicating a fault. Each diagnoser state, 
qiD ∈ QD, is of the form: qiD = (hi, Li), where hi is the output vector of the diagnoser 
states qiD, characterized by sensor’s readings and commands issued by the controller. 
Li is a subset of the set, Λ, of faults labels with the normal label. We can obtain (2|Λ|-
1) possible subsets of labels for Li. If Li = {N} or {fj} then the diagnoser, when it 
reaches the state qiD, can decide with certainty the non presence of fault or the 
occurrence of the fault fj. If Li contains the label N and any other fault label then the 
diagnoser, at the state qiD, cannot decide whether a fault has occurred or the system 
is in normal function, i.e., ambiguity case. The transition function δD is based on (1) 
and is defined as, δD : Σo ∪ {eEF1,..., eEFm}xQD → QD. (1) calculates the output 
vectors without verifying the enablement conditions. Thus all the output vectors of 
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faulty states reached by a fault, characterized by the occurrence of an event not 
authorized at this state, can be calculated.  

To construct the diagnoser, each diagnoser state must be defined. This state must 
be reached by an observable event belonging to Σo ∪ {eEF1,..., eEFm}.  The 
construction of this diagnoser will be explained in detail using the illustration 
example of the next subsection. 
 
3.  ILLUSTRATION EXAMPLE 
 
To explain the construction of the timed-event-state-based diagnoser, let take the 
example of a wagon moving from an initial position, state A, measured by a sensor 
a, towards a terminal position, state B, measured by another sensor b, passing by the 
state A-B indicating that the wagon is located somewhere between A and B. This 
movement of two directions (right and left) is realized by two commands: left, L, 
and right, R as it is depicted in Figure 1. 

The following hypotheses are verified for this example : 
• There is one part (i.e. one wagon), 
• Accepted response time is defined for the actuator by the designer, 
• The wagon inertia is null, 
• The actuator does not fail during operation, i.e., if it does fail, the fault occurs 

at the start of operation, 
• The operating conditions of the process initial state are normal, 
• The occurrence of any fault can be expected only after the activation of a 

command by the controller. 

 

L R 

a b 

A B A-B  
Figure 1 – Example of a wagon with two directions of movement 

 
3.1  Component Boolean DES models 
 
The wagon example consists of two components: the change of the wagon location 
measured by the sensors a and b and the wagon motor behavior. Since each BDES 
model must account for the normal and failed behaviors, the fault partitions to be 
diagnosed must be defined. Let F = {{f1}, {f2}, {f3}} be the set of faults to be 
diagnosed. f1,  f2, and  f3 indicate, respectively, fault in sensor a, fault in sensor b and 
the wagon motor is stuck-off in one of the two senses right or left. The Figure 2 
shows the BDES models for the change of process location and the behaviour of the 
wagon motor due to the commands R and L. Four Boolean state variables a, b, R and 
L are used to describe the overall wagon behaviour. State variables a and b are true 
when the wagon is located, respectively, in the position A or B. The value of R or L 
is 1 when they are enabled and 0 when they are disabled. If the fault f1 occurs at the 
state A, then the model will transit to the state a_fault with the state variables (a b) = 
(1 0). When the wagon arrives at the position B, the state a_fault will be 
characterized by the state variables (a b) = (1 1). Similarly if R is enabled then the 
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BDES motor behaviour model will transit to the state characterized by (R L) = (1 0). 
If the motor is stuck-off at this instant, then the model will transit to the state 
stuck_off with the same output vector (R L) = (1 0). The same reasoning can be 
applied for the occurrence of the other faults. The sets of observable and controllable 
events are: Σo = {↑R, ↓R, ↑L, ↓L, ↑a, ↓a, ↑b, ↓b} and Σc = {↑R, ↓R, ↑L, ↓L}. 

   
0   0 

   
1   0 

   
0   1 

   
0   0 

↑L 

↑R 

↓R 

h : R  L 

↓L 

Stuck-off 0       0 
 

Stuck - off   1       0   
 

Stuck - off   0       0   
 

  f3 

  f3
 

↑L ↓L ↑R ↓ R   

Stuck-off 0       1 
 

A   1       0   
  

A - B   0       0   
  

B   0       1   

h   : a b   

↑ a   

↑ b   

↓ a   

↓ b   

a _ fault 1       0 
  

a _ fault  1       1 
 

  

b_fault   0       0   
 

↑ b 

 

f 1 

  

f 2 
  

a _ fault 0        0 

  

b_fault 1       1

 
 

b_fault 0       1 
 

f 2 
  

  

↑a

 

f 1 

 

a) b)  
Figure 2 – Boolean DES models for the change of wagon location, a), and the 

wagon motor behavior, b) 
 
3.2  Constrained-process model construction 
 
The constrained-process model, S, for the wagon example is depicted in the Figure 
3. It corresponds to the desired behavior provided by an expert. In BDES modeling, 
this desired behavior can be described using two tables; the first explains the 
enablement conditions for the occurrence of each event, Table 1, and the second is 
the displacement matrix E, Table 2. We can notice that the only event allowed to 
take place in the initial state, characterized by the output vector h1 = (abRL)=(1000), 
is the enablement of the controllable event ↑R since its enablement condition, en↑R 
(q1) = 1, is satisfied at this state and the enablement conditions for all the other 
events are false. The output vector of the next state can be calculated using (2):  

)1010()1).0010(()1000())(.( 112 =⊕=⊕= ↑↑ qenEhh RR . Similarly we can 
calculate output vectors for next states after the occurrence of each authorized event.  

1  2  ↑  R  

8  7  
↑ a  

3  4  ↑ b  

6  5  
↑  L  

↓ a  

↓ b  

↓  L  ↓  R  

h  :  a   b   R   L  =   1 0 0 0 1 0 1 0 0 0 1 0 0 1 1 0

0 1 0 01 0 0 1 0 0 0 1 0 1 0 1  
Figure 3 – Constrained-process model, S, for the wagon example 

 
Table 1 – Enablement conditions for the events of the wagon example 

Event 
σ 

Enable 
condition 

enσ 

  Event
     σ 

Enable 
condition 

enσ 

Event
σ 

Enable 
condition 

enσ 

Event 
σ 

Enable 
condition 

enσ 
↑a LRba ...  ↑b LRba ... ↑R LRba ... ↑L LRba ...  
↓a LRba ...  ↓b LRba ... ↓R LRba ... ↓L LRba ...  
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Table 2 – Displacement matrix E of the wagon example 
State 

variable 
↑a ↓a ↑b ↓b ↑R ↓R ↑L ↓L

a 1 1 0 0 0 0 0 0 
b 0 0 1 1 0 0 0 0 
R 0 0 0 0 1 1 0 0 
L 0 0 0 0 0 0 1 1 

 
3.3 Expectation functions construction 
 
The faults entailing the actuator to be stuck-off can be diagnosed using the principal 
of watchdogs to watch the actuator response times. We use expectation functions to 
model the actuator response times which can be obtained by learning, and/or by 
technical documentation. For the wagon example, we define 2 expectation functions, 
one for each command enablement: EF(↑R ↓a ↑b), EF(↑L ↓b ↑a).  

To construct these expectation functions, we use the desired behavior, S, 
provided by the user, see Figure 3. The enablement of R, entails the event ↓a at the 
state q2 and the event ↑b at the state q3. We expect ↑b to occur within the time period 
[3, 5] according to the process dynamic. If this event does not occur at q2 then the 
wagon motor has not responded since ↓a did not occur. Thus the non satisfaction of 
the expectation function at this state indicates the occurrence of the fault f3, i.e., l = 
{f3}. If ↓a  has occurred, then S will transit to the state q3. If ↑b has not occurred then 
the non satisfaction of the expectation function provides the label l ={f2} to indicate 
that the sensor b is faulty since the wagon has responded, because the event ↓a has 
occurred. While if ↑b has occurred too early, then the model will transit to the state 
q4 and the expectation function will not be satisfied at this state and will provide the 
fault label l = {f2}. Consequently the expectation function can be written as 
following : 

EF(↑R ↓a ↑b) = ({{q2},{q3},{q4}}, ↑b, [3, 5], {{f3},{f2},{f2}}). Similarly the 
expectation function for the enablement of the command L can be written as 
following : EF(↑L ↓b ↑a) = ({{q6},{q7},{q8}}, ↑a, [3, 5], {{f3},{f1},{f1}}). 

 
3.4  Timed-Event-state-based diagnoser construction 
 
The diagnoser D for the wagon example is depicted in Figure 4. It contains, besides 
the states of the desired behavior model S, all the faulty states reached by the 
occurrence of a fault belonging to F. Each one of these faulty states is reached due to 
the non satisfaction of the enablement condition of an event or of an expectation 
function. This diagnoser is constructed using the following steps : 

1. We start from the first diagnoser state, q1D, corresponding to the process 
initial state, which is characterized by the state vector h1 = 1000. At this state 
we suppose that the diagnoser is in normal state L1 = {N}. 

2. All the enablement conditions for all the wagon controllable events will be 
tested in order to find the authorized event to occur at this state. We can find 
that the activation of R is the only event authorized to take place since its 
enablement condition, en↑R(q1D) = LRba ... , is equal to 1, (see Table 1). 

3. The occurrence of ↑R transits the diagnoser to the second diagnoser state, 
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q2D. The output vector for this state can be calculated using 
(1): )1010()0010()1000( 12 ==⊕== ↑REhh . Since 1)( 1 =↑ DR qen , then 
this state corresponds to a state of the desired behaviour S.  

4. After each command enablement, all the fault labels and the label N will be 
included in the label of this state : L2 = {f1, f2, f3, N} since after each 
command enablement, any fault belonging to F can occur. Then, all the 
enablement conditions of the possible observable events will be tested. Here 
there are three possibilities: either the event ↓a , or ↑b or the event eEF(↑R ↓a ↑b) 
corresponding to the non satisfaction of the expectation function EF(↑R ↓a 
↑b). The event ↓a is authorized, en↓a(q2D) = LRba ...  = 1 and it transits the 
diagnoser to the state q3D. The output vector for this state can be calculated 
using (1) : 

 ).0010()1000()1010( 23 ==⊕== ↓aEhh The occurrence of ↑b conducts D 
to the state q9D. This event is not authorized at q2D , en↑b(q2D) = 

00.1.0.1... ==LRba and the only reason of this non enablement is the 
variable state of the sensor a. Thus the label of this state contains only the 
label f1, i.e., L9 = {f1}. The output vector for this state is: 

)1110()0100()1010( 29 ==⊕== ↑bEhh . If EF(↑R ↓a ↑b) is not satisfied at 
q2D, then the event eEF(↑R ↓a ↑b) will occur to indicate the occurrence of the fault 
f3. Thus this event will transit the diagnoser to the state, q11D, with h11 = h2 and 
L11 = {f3}. Consequently, the state corresponding to the one with the 
authorized event, q3D, will possess the label L3 = L2 – L11 – L9 = {N,f2}. 

5. Similarly, the other diagnoser states can be calculated to obtain, at the end, 
the diagnoser of the Figure 4.   
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Figure 4 – Timed-event-state-based diagnoser for the wagon example 
 

The diagnoser can be initiated at any state distinguished by its output. While if 
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the diagnoser was initiated at any state distinguished by an event, the diagnoser 
cannot diagnose a past occurrence of a fault. As an example, if the fault f3 has 
occurred before the diagnoser initialisation, then the diagnoser cannot distinguish 
between q2D and q11D since they have the same output vectors : h2 = h11. The state 2 
has the labels L2 = {N, f1, f2, f3} which means an ambiguity and thus the diagnoser 
cannot decide if a fault has occurred or not.  
 
 
4.  CONCLUSION 

 
In this paper, a timed-event-state-based diagnoser is proposed for manufacturing 
systems. The goal of this combination is to find a remedy to the problem of 
synchronisation between the process and its diagnoser. This problem can be often 
seen in manufacturing systems. To enhance the diagnosability and to capture the 
inherent temporal dynamics of the process, expectation functions are used. They 
model the temporal information about actuator’s minimal and maximal response 
times. 

Since manufacturing systems are modular, we are developing a distributed 
diagnosis module to perform the diagnosis. This module uses the timed-event-state-
based diagnoser, proposed in this paper, as a local diagnoser in a distributed 
structure. In addition, we are developing the diagnosis module to relax the 
hypothesis of unique source or part in order to be adapted to manufacturing system. 
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