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In this paper, we describe the design and development of a simulation-agent 
interface for real-time distributed control system benchmarking. This work is 
motivated by the need to test the feasibility of extending agent-based systems to 
the physical device level in manufacturing and other industrial automation 
systems. Our work focuses on the development of hybrid physical/simulation 
environment that can be used to perform tests at both the physical device level, 
as well as the planning and scheduling level of control. As part of this work, we 
have extended the proxy design pattern for this application. This paper focuses 
on the resulting software design pattern for distributed control system 
benchmarking and provides examples of its use in our hybrid 
physical/simulation environment. 

 
 
1.  INTRODUCTION 
 
Given the difficulty of practical manufacturing scheduling and control problems, 
recent research has moved away from traditional, analytical approaches that have 
been the domain of operations research for many years and towards new approaches 
that rely on artificial intelligence, holonic and multi-agent systems (Shen et al., 
2001; McFarlane and Bussman, 2000). In order to make this research relevant 
however, it is important that realistic and industrially relevant test cases are 
available to address specifically the evaluation and stress of the performance of 
scheduling and control systems based on these new technological paradigms. As 
well, it is important that these test cases span the realm of research in this area from 
planning and scheduling systems to real-time control. 

In order to address this need, a special interest group on benchmarks of multi-
agent systems was established under the umbrella of the Network of Excellence on 
Intelligent Manufacturing Systems (IMS-NoE, 2004). This paper focuses on one 
aspect of the work being performed at the University of Calgary in this area. 

In this paper, we describe a hybrid physical/simulated environment that is 
currently being developed for manufacturing systems control experimentation that 
incorporates both simulated and physical manufacturing devices. The objective of 
this work is to extend benchmarks of multi-agent systems to the full manufacturing 

11 



 
 
 
 
 
 
 
100  Information Technology for Balanced Manufacturing Systems 

 

hierarchy: i.e., from device control to planning and scheduling. In order to 
accomplish this, an important aspect of the project involves developing an interface 
between the simulation software and the physical devices. In our work, we 
investigate the use a Tiny Internet Interface (TINI) board (Loomis, 2001) that runs 
Java programs (allowing us to develop local software), and has access various I/O 
(e.g., discrete/analog I/O, Ethernet). The link to the discrete-event simulation model 
is created using Arena® Real Time (Kelton et al., 1998) and Java socket-based 
communication. This paper focuses on the design and development of the 
Simulation-Agent interface for the hybrid distributed control system using design 
patterns. 

We begin the paper with some background on the work on connecting simulation 
software with physical devices. Next, we introduce the notion of design patterns in 
Section 3 and follow this with details on the use of the proxy design pattern for the 
hybrid system in Section 4. In Section 5 we focus on the development of the Client-
proxy and tests. Finally, we conclude the paper with comments on the future 
direction of this research. 
 
 
2. THE HYBRID PHYSICAL/SIMULATION ENVIRONMENT 

 
In the manufacturing domain, discrete-event simulation is a very powerful tool 

that can be used to evaluate alternative control policies. For example, discrete-event 
simulation has been used to evaluate agent-based scheduling approaches by 
interfacing agent-based or object-oriented software with a discrete-event simulation 
model of a plant to be controlled as is illustrated in Figure 1 (Brennan and O, 2004). 

 
Figure 1 – Using discrete-event simulation to evaluate agent-based 

manufacturing systems 
 
In this example, each entity in the discrete-event simulation model (such as a 

machine (e.g., M1) or robot (e.g., R1)) is represented by a corresponding software 
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agent (SA) in the control module. For example, the software agents can be thought of 
as the “reasoning” part of the entity that is responsible for scheduling etc. 

The reason for this direct correspondence between SA and entity is that (given 
recent advances in hardware and software) is it possible to have intelligent agent 
software running directly on a machine (e.g., computer numerical control (CNC), 
robot, etc.). This software can be thought of as the “brains” of the machine that can 
potentially allow it to act autonomously and/or cooperatively. 

The next step is to have these SA’s run directly on the machines. This will allow 
us to test the real-time capabilities of the system (i.e., its ability to meet deadlines), 
and also allow us to incorporate extra functionality concerned with “execution”. For 
example, SA’s (running directly on a machine) may be used to perform fault 
diagnosis and preliminary recovery services. SA’s may also be capable of 
reconfiguration (e.g., allowing new hardware to be added/removed/modified 
dynamically). This arrangement is shown in Figure 2. 

 

 
Figure 2 – Physical agents 

 
From an experimental and research point of view, there are some problems with 

this second approach even though it represents the ultimate goal (i.e., industrial 
implementation) of the agent-based system. The main problem is that, given 
financial and space resources, most researchers using this approach are limited to 
experimenting with relatively small systems. As well, even if a large system is 
possible, it is debatable whether it would be a good time and cost investment. For 
example, we may only need a relatively small number of physical devices to test and 
validate the execution capabilities of our agent system. However, we would like to 
have a reasonable number of emulated machines to test the scheduling capabilities. 

The former requirement (execution) is typically hard real-time (i.e., deadlines 
must always be met very quickly), while the latter requirement (planning, 
scheduling, and dispatching) is typically soft real-time (i.e., deadlines must be met 
on average and much more slowly). As a result, we need physical hardware to test 
the execution environment and could use a simulated environment to test the “higher 
reasoning” part of the system. Of course, physical hardware could also be used to 
test this latter part of the system. 

A second problem (from a research perspective) with a pure physical system is 
that we lose many of the experimental benefits of discrete-event simulation software 
(e.g., statistical analysis, graphics, the ability to easily change the system 
configuration). 
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As a result, we suggest that a hybrid physical/simulated environment is 
developed for manufacturing systems control experimentation. In order to 
accomplish this, one aspect of the project involves developing an interface between 
the simulation software and the physical devices. One approach is to use a Tiny 
Internet Interface (TINI) board. This board runs Java programs (allowing us to 
develop local SA’s), has access to discrete/analogue I/O, and has Ethernet 
capabilities. The general idea is illustrated in Figure 3. 

 

Figure 3 – A hybrid environment for experimentation 
 

In this example, M1, M2, and Pi have software agents associated with them (SA1, 
SA2, and SAi respectively). M3 and M4 are also part of the system, but they are real 
physical devices. For example, the TINI boards could act as controllers for robots or 
conveyors. Their agents (SA3 and SA4 respectively) communicate with the other 
parts of the system via a UNIX socket. 

 
 
3.  DESIGN PATTERNS 
 
The hybrid prototype used for this research is comprised of Arena simulation 
software and a Java-based embedded controller (Soundararajan and Brennan, 2005). 
An important issue that was addressed during the application development was the 
transparency of the potential remoteness of the server (the Arena model) and the 
hiding and encapsulation of the means by which to contact such remote servers by 
the client. As a result, a design pattern that addresses this large-scale system design 
(the high-level architecture of the distributed system) concern was investigated. 

The first step involved familiarization with the patterns literature related to 
distributed real-time systems. This was followed by the identification of the design 
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pattern that addressed the distributed system design. Applying pattern matching for 
this architectural design issue led to the discovery of the “Proxy” design pattern for 
the hybrid system.  

The proxy pattern allows clients to be decoupled from their server by providing a 
local proxy. The proxy is a local stand-in that allows clients to access the remote 
server. In this way, all clients of the server request information and services from the 
proxy. The proxy encapsulates the information necessary to obtain data and services 
from the actual server, and when a client requires information from the server, the 
proxy marshals this request to the server (Douglass, 1999). This design pattern is 
one of the distribution patterns. A common situation in which the proxy pattern is 
applicable is where “a remote proxy provides a local representative for an object in a 
different address space”. The pattern allows us to vary how an object is accessed and 
its location (Gamma et al., 1995).  

This design pattern was applied discriminately for the higher level architectural 
design and the structural elements of the hybrid system were organized to be 
consistent with the pattern. The following section describes the use of the proxy 
design pattern in the development of the FB interface. 

 
 
4.  THE PROXY PATTERN 

 
The hybrid system is comprised of the Arena real-time discrete event simulation 
model and the function block application embedded in the TINI board. This real-
time embedded system is distributed between the PC where the server is located and 
the embedded function block application on the embedded controller that forms the 
client. The design problem to be addressed here is to structure the distributed client-
server communication. 

The simulation model is devised using Arena and the real-time features are 
modeled in the system using specific function blocks (FB) for routing information to 
the external controller. The server uses socket abstraction over TCP/IP to talk to the 
client. In essence the entire simulation model is the server as it knows the whole of 
the system: i.e. the simulation model holds the information about the job entities, 
process etc, as well it has a database with its event calendar to track the workings of 
the model and records statistics. For a system comprising of one embedded 
controller the structuring required on the server side is the development of the 
simulation model and the verification and validation of the model.  

Regarding the communication aspect on the server side, for the current setup of 
having one real-time controller linked to the simulation, the available Arena 
dynamically linked library file is well suited and need not be modified. When more 
real-time controllers are to be interfaced then the server proxy is required to have 
multi-threading features to deal with the multiple threads associated with the 
different real-time controllers. The server side of the hybrid model conforms to the 
server side structural elements of the proxy design pattern as described.  

Therefore, for the hybrid system, it is the client side of the setup that warrants 
immediate use of the proxy design pattern. In this setup it is known that the server 
would be located in a remote address space. However, the location of the server 
though now at a static IP address could be relocated. As well the clients maybe 
deployed in an environment much different from that of the server’s, such is the case 
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in the hybrid model. The server is the Arena simulation model along with the server 
proxy and client applications are modeled as function block applications embedded 
in a Java-based embedded controller. The clients can be redeployed across different 
environments as well.  

If the clients are intimately aware of the design details in such a setup then there 
would be problems when they are redeployed. By using the proxy design pattern we 
would be hiding and encapsulating the transparency of the remoteness of the server 
taking into account the client specific embedded controller environments. Along 
with this, using Java based embedded controllers is beneficial as Java based 
applications can be platform independent. Thus choosing Java based embedded 
control is beneficial when accommodating the redeployment of the clients. As long 
as the controller supports a java virtual machine with an Application Program 
Interface (API) then we could embed the developed client applications in them. 

The proxy pattern adds a proxy between the Abstract Client and the Abstract 
Server. The pattern has two sides. In the first side, the Client-side Proxies subscribe 
to the Server-side Proxies, which publish the data under the command of the 
Concrete Servers. When the Concrete Servers call the send() operation, all the 
remote Client-side Proxies are notified of the new data (Douglass, 2003). 

For the hybrid model a similar setup would serve well for the processing and 
data exchange involved. Only the deployment would be in a hybrid environment 
thus only part of the system is a real-time embedded controller. The data exchanged 
between the Arena model and the client application would be that information 
specific to jobs to be processed in the embedded controller, i.e., the emulator. The 
data exchanged is passed in the form of strings to the TINI function block 
application. In here the local proxy, namely the proxy function block will receive the 
information. This data/information would be extracted by local SIFBs (Service 
Interface Function Blocks), to process the information according to the nature of the 
job. 

The hybrid system is designed and implemented conforming to the proxy pattern 
as illustrated in Figure 4. The pattern implementation in the hybrid system is unique 
since there is a simulation model and a real-time module. Therefore, the proxy 
pattern implementation has to be fine tuned to the specific environment. It is not 
possible to have the class relations in the implementation exactly as specified in the 
default template of the pattern but nevertheless the implementation does adhere to 
the proxy pattern specification (Soundararajan and Brennan, 2005).  

For the hybrid setup, the pattern does a good job of isolating the subject from 
knowledge that the server may be remote. The client will be simplified by having 
the proxy, not having to deal differently with all the local FBs to subscribe data from 
the server. The proxy also encapsulates the knowledge of how to contact the server 
and what communication process it is using to talk to the server. Thus if the 
communication media changes or if the client environment changes the proxy can be 
changed to suit the needs appropriately. Also if the client environments do not 
support a Java virtual machine JNI’s (Java Native Interfaces) can be built to serve 
the purpose. 
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Figure 4 – Hybrid implementation of the proxy pattern 
 

Since there is one client proxy instance than many client FB instances the traffic 
on the communication media is reduced. This benefit is not fully realized for the 
hybrid system as of now but when there would be multiple clients, this streamlining 
of the IPC would be very beneficial. Also, the subscription policy is event triggered 
due to the event triggered FB application. Although there is a continuous thread, 
confirm messages are used in the socket stream to request and receive messages 
from the server. 

 
 
5. DEVELOPMENT OF THE CLIENT PROXY AND TESTS 
 
The first step is to model the required SIFB, named “ARENA_RSPR”, in the IEC 
61499 (IEC, 2000) context by formulating the properties with appropriate event and 
data connections allowing for graphical representation and service representation. 
IEC 61499 specifies in general terms the way in which an interface to an SIFB is 
defined. A graphical representation of this is given in Figure 5. 

The behavior of the SIFB is specified using Time-sequence diagrams. These 
diagrams help visualize the order in which the various messages or events occur. 
The Time-sequence diagram for the ARENA_RSPR depicts five transactions: 

1. normal_establishment 
2. unsuccessful_establishment 
3. normal_data_transfer 
4. server_initiated_termination 
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5. client_initiated_termination 
 

 
 

Figure 5 – Graphical representation of the client proxy 
 

In this section, we will focus only on the “normal_data_transfer” sequence as 
shown in Figure 6, which specifies the data transfer between the server and the 
client. Arena sends the data to TINI which is acknowledged by the IND event 
output. When the TINI application has completed the machine execution the RSP 
event is triggered on the TINI and the confirmation message is received by the 
Arena model. The service sequence is as follows. 
 
SEQUENCE normal_data_transfer 
    ARENA.sendData(RD_1) -> TINI.IND+(RD_1); 
    TINI.RSP+(SD_1) -> ARENA.receiveData(SD_1); 
END_SEQUENCE 
 

 
 

Figure 6 – The normal_data_transfer sequence 
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The ARENA_RSPR FB was developed as per the above specifications in Java 
using object-oriented principles. The process involved studying the abstract 
superclass for communication service interfaces in FBDK (Holobloc, 2006) and 
inheriting this class to develop the appropriate Arena class.  

Figure 7 illustrates the program working with established client-server 
communication. In this case, the client proxy function block connects to the 
simulation model at IP Address 136.159.105.74 over port 4334. 

The simulation model sends the process part instruction for job with TGID 2 to 
ARENA_RSPR FB and upon completion of the process instruction a confirmation 
message “0 2 0” is sent back to Arena. The next process instruction for job with 
TGID 3 is then sent to ARENA_RSPR and the confirmation message “0 3 0” is sent 
back to Arena model. The subsequent job to be processed, job with TGID 4 is then 
sent to the Arena model. 

 
 
6.  CONCLUSIONS 
 
In this paper we have provided a summary of our work on the design and 
development of a simulation-agent interface for real-time distributed control system 
benchmarking with a specific focus on the design and development of the design 
pattern used for this interface. 
 

 
 

Figure 7 – Communication establishment 
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In this case, the proxy design pattern has provided a good framework for the 
large-scale design of the hybrid application. Organizing the structural elements of 
the hybrid system to the pattern has allowed us to model the client proxy’s role and 
how it should allow for the client application to access the server for information.  
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