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Modern value-added processes will be globally cross-linked through outsourcing and 
reduction of real net output ratio. Therefore logistical planning and control processes 
become more complex. Events in supply networks and their consequences to the 
partners in the supply network will be hardly to overlook without using computer 
based decision support systems. This paper describes such a decision support system, 
learning the rules used to control the production network. In details the system 
architecture will be described, requirements to such a system will be identified and a 
solution developed at the Heinz Nixdorf Institute and Fraunhofer ALB (application 
center for logistic-oriented business administration) in Paderborn will be presented. 
The solution is based on a q-learning approach supported by a k-means clustering 
algorithm.  

 
 
1.  INTRODUCTION 
 
Modern value-added processes in the European Automotive Industry will be globally 
cross-linked through outsourcing and reduction of real net output ratio to reduce 
production costs (Fraunhofer, 2004). Therefore logistical planning and control processes 
become more complex, because more cross-linked processes cause higher co-ordination 
effort for planning and controlling such heterogeneous supply networks (Baumgaertel, 
2006). 

Especially the handling of events, causing direct effects to the supply network and its 
production systems, must be handled very efficient. To optimize such control processes in 
their efficiency and reliability, automated systems are used to support human production 
planners in their daily complex decisions making processes. But the complexity of the 
event handling task in supply networks limits the usage of classical operation research 
methods and their algorithms: adequate models to model the problem will cause NP-hard 
optimization problems and long algorithm runtimes (Suhl, 2006). 

The handling of an event needs fast reaction, at best case in real-time (Doering, 2007). 
Therefore, the usage of intelligent methods for production network control like artificial 
learning systems is in the focus in applied production research both in applied scientific 
projects (AC-DC) and in industry (Diedrichsen, 2007). Despite their specific 
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implementation the objective of such intelligent systems is mostly to learn rules 
supporting human or automatic event handling by selecting possible reaction measures. 

An event is defined as a state of a production plan offering a restriction violation in 
this production plan after an unexpected change of customer demands, suppliers or 
capacity supply or demand change, e.g. usage of safety stock after an increased customer 
demand. Reactions to events are here defined as the usage of specific change panning 
strategies, implemented by specific change planning algorithms for solving occurring 
lacks in production plans efficiently (Heidenreich, 2006). 

Event-based rules have been defined to select applicable planning strategies enabling a 
fast reaction to the event (Ibid.). But the complexity of the supply networks generates 
many possible event states, which requires many rules to cover all possible or relevant 
event situations. It is obvious, that a human planner is not able to formulate all rules for 
implementing an efficient rule based event handling system. Also the usage of experience 
causes problems, because experience may not cover all respectively future events and is 
hardly to extract objectively using knowledge engineering techniques (Görz, 2003). 

Therefore, this work deals with using machine learning techniques based on Q-
learning (e.g. Mitchell, 1997 or Sutton, 1998) to learn such rules automatically and though 
efficiently.  

For the implementation of such a learning system, several tasks are to be fulfilled. The 
complexity of the state space is a problem causing nearly unlimited exploration times for 
the Q-learning algorithm. Moreover, the learning function for Q-learning reward 
calculation must be defined, regarding the objective of a supply network based learning 
task. Thirdly, an efficient training algorithm must be developed to train the learning 
system efficiently.  

This paper will focus on the definition of such a learning system and outline a concept 
for state reduction and the calculation of rewards. Forthcoming problems for training and 
testing will be discussed briefly.  

The paper will start with brief definition of the learning problem and the requirements 
to the learning system in detail in chapter. 2. Chapter 3 outlines an overview of the state of 
the art. Chapter 4 introduces the concepts and drafts first results. The paper closes with a 
summary of the achieved work and an outlook to forthcoming research activities. 
 

 
2.  PROBLEM DEFINITION 
 
2.1. Co-ordination in supply networks 
 

The basic character of an automotive supply network is the breakdown of value adding 
processes to several production stages staring at tier-n up the Original Manufacturer 
(OEM),  which  finishes   the   value   adding  process  by   the   final   assembly  of   the   car.  Most  
production stages are based on serial production, which is mainly planned by lot 
scheduling algorithms (Heidenreich, 2006). 

 
In the production system model language MFERT (Schneider, 1996) (see Figure 1) 

every stage of a supply network can be modeled as combination of capacities (CON)1, 
processes (PN)2 and an incoming edge for material out of a buffer (AON)3, e.g. stock. The 
                                                           
1 Capacity object node 
2 Process node 
3 Assembly Object Node 
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stages are connected between an edge from a PN to an AON.  

 
Figure 1. Basic MFERT Model 

Considering a   network   consisting   of   several   connected   stages,   the   material   flow  
generally starts from the tier-n  up  to  the  OEM.  The  information  flow,  consting  of  demands  
for material in a certain time period, is directed upwards and downwards the network, 
depending on the   specific   type  of   information  exchange.  Upward  flowing   information   is  
called supply4. It contains information about part supplies based on values, that will be 
procured to the earliest possible period of a production pan in the next stage. Downward 
information   flow   will   consist   of   demand   figures   representing   a   latest   point   in   time   for  
delivering a part to the production stage, where the demand is generated.  

A plan consists of a number of periods t starting from now (t0) until a pre-defined  last  
period : 1, ,PH t PH� . Every period of a plan is, depending whether it is an AON or 
CON, allocated with a stock value or capacity value called lots. Every plan for an 
AON/CON will generally be represented by a vector p∗  allocated with a lot to consisting 
periods of a plan denoted by vector *( )p t . 

Every period will be restricted by a maximum and minimum value representing the 
maximum space of a buffer respectively the minimum safety stock or the maximal uti-
lization of a modeled capacity.   Between   every   production   stage   the   flow   of  material   is  
limited to a min or max value. Additionally, the upward procurement process between 
production stages can be managed in recurring cycles or at any point in time.  

If a min/max-restriction is violated,   the   corresponding   plan   is   called   ‘not   consistent’  
and a change planning process has to be started, in order to generate a new consistent 
plan. The coordination during those change planning processes in the supply network is 
organized in a decentral way. In the implementation of the learning system, every 
production stage is an autonomous agent, that coordinates only by communication with 
the prior or succeeding production stage agents by sending  gross  or   supply  figures.  For  
every   type   of   change   planning   coordination   a   specific   planning   algorithm   has   been  
classified,  that  reschedules a local plan or globally sends requests of demands or supplies 
to corresponding agents of other production stages by demanding a minimum of plan 
changing  steps  to  finish  the  rescheduling  process.   

Human  defined  rules  are  used  to  choose  a  change  planning  algorithm,  based  on  certain  
feasible system states to assure a fast recovery to a consistent plan without the need for 
many planning cycles. 

Such a system consists of an exponential growth of states, depending on the size of the 
network, the number of planning horizons and the min/max-restriction of every period. So 
the  definition  of  control  rules,  based  only  on  state/action-pairs, will lead to a tremendous 
number of rules and cannot be generated e.g. by a human planner anymore. 

                                                           
4 4

Supply can be split into netto(NS) and gross(GS) supply depending on the point in the MFERT model where it 

is consumed by a node (see figure 1) 
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2.2. Requirements for a production control rule learning system 
 
Wanting to be able to learn those rules in such an enormous state space, several problems 
arise. At first, the learning system must be able to search the state space efficiently and 
reduce its runtime to an acceptable time period. Secondly, the learning task itself must be 
based on an intuitive learning function, since the usage as a decision support system, the 
acceptance of the learned rules will rely on their intuitive understanding by human 
planners. At last, the training process of such learning system learning on a distributed and 
interrelated network planning model must be well defined to prevent the extension of 
runtime duration through never-ending planning processes. 

Therefore, Q-Learning is a suitable solution for learning rules, because the reward 
function, which fulfills the learning task, can be specified in a problem oriented and 
intuitive way. For convergence, Q-Learning must search an unlimited amount of time 
through the state space (Mitchell, 1997). Therefore the state space must be reduced, in 
order to make Q-Learning efficient while assuring convergence of the Q-values.  

Clustering, especially k-means clustering function has been identified in former and is 
described in a published paper, using a problem-oriented clustering (Doering, 2007 p. 
487-497).  

The training process must combine both, clustering and Q-learning, to an efficient 
learning system. The training process should deal with learning episodes based on a 
change planning negotiation process and restricted by clear stopping rules. This 
requirement prevents the unlimited duration of a learning episode and the learning task 
itself. The whole training process will coordinate the learning episodes and stops the 
training, when successful. 
moreover, the quality of the original data, used in the learning process is of a high 
importance. Only real data, e.g. extracted from ERP-Systems, or realistic generated data 
must be used to ensure a problem oriented learning task.  
In general the learning task could be described as:  

Learning of production system control rules will be enabled by a problem 
oriented and intuitive mathematical assessment of change planning actions 
(reward). The rules will be represented by sorted list of Q-values where 
every Q-value represents a proposal for a suitable change planning action 
based in a specific state. The training process must rely on problem-specific 
real or realistic original data to make the learning process must efficient. 

In sum, the core question for a learning task is illustrated in Figure 2. Can an event be 
handled locally e.g by reducing safety stock (1), or should the gross demand of supplier 1 
(2) or supplier 2 (3) be reduced to handle this event. Every learned rule will propose a 
solution for such a question. 

S1: GD+

S2: GD+

S1

S2

MinStock
Reduction

1

2

3
 

Figure 2. Draft of the learning problem 
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Therefore, the next chapter will shortly summarize the state of the art in Q-learing of 
production rules. The clustering part is also covered by (Döring, 2007 p 487-497). 

 
 

3.  STATE OF THE ART 
 
In general, only few applications in Q-Learning deal with learning in distributed network 
models. Stegherr (Stegherr, 2000) developed a Q-Learning approach, used for control of 
anticipated job control in production systems. This system is based on learning local 
decision and therefore not suitable for this learning task. 

Stockheim et. al. (Stockheim, 2003) conceptualized a learning approach for supply 
chain management. The learning task is to plan local lots for production charges and 
generate from this a secondary demand for the next production stage. The production 
system model used in this work is not sufficient for this learning task, because of its high 
granularity. 

Cao et. al. focused on learning fabrication fulfillment figures for a 2-stage production 
system not equivalent to a supply network. Mahadevan et. al. developed a learning 
concept called SMART learning rules for machine maintenance in factories. This concept 
could be used in addition to a change planning learning approach, but is actually not 
sufficient for usage in this work. 
 
 
4.  LEARNING PRODUCTION CHANGE PLANNING CONTROL 
RULES 
 
For learning control rules using Q-Learning support by k-means clustering the architecture 
proposed in Figure 3 is used. 

Learning System

Simulator

Flow of Control – Offline Learning
1. State abstraction using k-

means & feature distance
2. Q-Learning on characteristic 

plans
3. Generation of rule set

State Abstractor

Reward Calculator

Rule Generator

State C(s) State C(s+1)

Q(s, a)

R(C(s, a))

Q
C(s, a)

2

1

2

IF…THEN ACTION

3

IF…THEN ACTION

 
Figure 3. Learning System Architecture 
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The architecture consists of four modules. The State Abstractor module implements 
the clustering methods used to reduce the state space efficiently (Döring, 2007 p. 487-
497). The Q-values are assigned to admit state/action pairs on cluster level, while each 
cluster is represented by a characteristic state. This state, called Centroid, represents the 
characteristic course of all assigned single states. 

The Reward Calculator module assesses the state/action-pairs during the training 
process and calculates the Q-values. Each observed state will be mapped to its cluster, the 
Centroid is taken as origin data for the event handling change planning process. Then the 
resulting state is again mapped to its cluster and the reward between C(s,a) and C(s+1) 
will be calculated and the Q-value of C(s) will be updated. 

The Simulator module provides the learning system with original data based on real 
data or realistically generated data. Furthermore, this module controls the training process 
and its learning episodes.  

The Rule Generator Module generates, based on a specific algorithm, the rules from 
the preordered Q-values of each clusters stat/action pair. 

 
4.1 Concept of the reward calculation function 
 
To calculate the reward in an intuitive way, factors used for the decision taking by 
production planner should be considered. Based on the general approach of assessments in 
economics, a cost function will be used as a basis for the reward calculation. 

Main costs factors in production networks are that are regarded for assessment of plans 
are (Gudehus, 2004): 

 Preparation costs: In AON materials must be provided for transformation in 
the production process. This could be assessed by this preparation costs eg. 
including fix costs (stock etc.) and variable costs (e.g. employees). 

 Procurement costs: If material is not available from stock, it will be procured 
from suppliers respectively every procurement process causes costs. These 
costs are based on specific agreement between a supplier and a customer 
based e.g. on the value and regularity of parts that are procured. 

 Resource costs: To transform material resources, e.g. machine capacity, is 
needed. The performed work can be assessed by costs. 

 Restriction violations: Every plan restriction violation, namely an event, 
causes overhead for its handling e.g. through the demand of troubleshooters, 
who deal with those topics in their daily works. This overhead can be 
represented by costs. 
 

A plan will be assessed based on its periods and their values and restrictions. To get a 
normalized reward value the assignment of plan periods costs are normalized and limited 
to the interval [0..1], while 0 represents no costs and 1 maximal costs caused by 
restriction violations in one period. 

Based in the assumption, that events occurring in nearer future have more impact than 
events occurring later the costs will be reduced to the end of the planning horizon by a 
discount factor DF(p(k)): 

 

1( ( )) , 1.. , ( ) , 0..1
1

k

DF p k k PH p k P discount
discount  
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The sum of the costs of all periods in a plan is equal to the costs caused by this plan, 
called penalty costs PC(P) in state s.  

1

( ) * ( ( ))
PH

s
k

PC P DF PC p k  

Based in this the reward can be generally defined as the difference between the penalty 
costs in state s and state s+1 after a processed change planning. 

1( , ) ( , ) ( )s i s i sR P a PC P a PC P  

The main task is to calculate the detailed penalty costs of each period as the basis for 
the reward calculation. Despite the differences between global and local change planning 
Figure 4 shows the general concepts that is used. 

 

Min Max

Procurement

 
Figure 4. Penalty cost concept 

A period is restricted by a minimal and maximal restrictions while values above or 
below this restriction cause a restriction violation and an event. Therefore this could be 
assessed by a specific cost function. Also general costs for procurement occur in each 
period raising to the value of material procured. This could also be assessed by a cost 
function. The full penalty costs can then be calculated from the sum of the specific cost 
type in each period. To get comparable costs those cost types are normalized to an interval 
between [0..1]. 
 
 
5.  SUMMARY 
 
This paper discussed the requirements for a rule learning system to control change 
planning processes in production networks. Learning system architecture has been 
introduced, based on k-means clustering and Q-Learning.  

The general approach for calculation of rewards based on cost functions and the 
storage of the Q-values have been drafted out. 

Further work will specify the detailed cost functions for local and global change 
planning processes and detail the training process. An implementation of the system will 
be carried out to validate the learning architecture and the effects of clustering to its 
convergence. 
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