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A method for forecasting the number of parts shipments is proposed for build-to-order 
products using pre-sales estimate information as a leading indicator. Since the target 
number of parts shipments changes irregularly and over a short lifecycle, it is difficult 
to forecast with conventional methods. The method uses Kalman filter to correct for 
the noise associated with the leading indicator and to facilitate the practical 
application. The method was evaluated using 78 different parts of an electronic 
product. Experimental result revealed that the method is useful for forecasting the 
target shipping number. 

 
 
1.  INTRODUCTION 
 
Recently, the demand for increased product variety and short delivery time has 
strengthened as customer needs have become more diverse. For manufacturers therefore, 
access to inventory has become essential in order to satisfy these demands. Conversely, 
short product life cycles and the concomitant increase in the obsolescence of parts due to 
technical improvements act to increase the need for shorter inventory periods. 
Consequently, reducing the parts inventory while avoiding stockout risk is an important 
problem for manufacturers trying to secure earnings. To resolve this problem, a variety of 
improvements to the supply chain have been implemented, including improved demand 
forecast accuracy, implementing short-term planning cycles, and bringing the stock point 
closer to the market (Suguro, 2006).  

Build-to-order manufacturing has traditionally been limited to products with long 
delivery dates and with relatively low requirements such as industrial machines. However, 
in recent years, build-to-order manufacturing is increasingly being applied to products 
with a short delivery date and with high requirements such as electronics products. 
Consequently, it has become necessary to forecast requirements accurately to minimize 
inventories while ensuring short delivery dates. In this study, any product that has short 
delivery date requirements and which is mass produced according to order specifications 
on an assembly line using parts held in stock is referred to as a mass customized product. 
For these products, the number of parts shipments often varies markedly as the number 
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and type of parts that need to be installed vary in response to the customer specifications. 
In addition, the mass customized products such as electronics products often have short 
life cycles. Taken together, these factors complicate the process of forecasting part 
shipments. 

Many demand forecast methods have been proposed to date, including time series 
analysis (Kitagawa, 2005), the method for estimating the required number of parts 
employing Kalman filter (Ohta, 1974), and the method for estimating the required number 
of parts using neural networks (Araki, 1996). However, the restrictions associated with 
these methods are that data changes with some rules and that enough data is necessary to 
be able to statistically analyze before forecasting, making it difficult therefore to apply 
these methods when forecasting the number of part shipments, which is the aim of this 
study. 

 A method is therefore proposed for forecasting the number of individual parts. The 
method corrects for the delay associated with order probability and shipping time, which 
is variable, using estimated order information as a leading indicator with which to solve 
the aforementioned problem. It also applies to forecasts of the number of electronics 
product of part shipments and demonstrates the effectiveness of the method. 
 
 
2.  FORECAST PROBLEM: NUMBER OF PARTS SHIPMENTS 
 
2.1. Feature of Forecast Object 
 
The mass customized product targeted in this paper is one with two or more combined 
parts. The decision to install parts in the product and how many pieces to actually install 
depend on customer specifications. By stocking each part, it is possible to ship products 
immediately after assembly without the procurement lead-times of parts, even if assembly 
was initiated after the order has been finalized. Mass customized products therefore have 
the advantage of being able to make various products in a short time. 

For mass customized products, because prices differ depending on the type of part 
installed, the estimate becomes an important consideration in the order process. Figure 1 
is a schematic drawing of a certain order process. The horizontal axis represents time, and 
each row refers to the various parties concerned. First, the sales person makes an estimate 
based on the specifications that the customer presented. The number of parts to be 
installed in the product at the stage is decided and the order is confirmed through price 
negotiation. Then, parts being stocked by the factory are installed in the product and the 
product is shipped to the customer. 

Mass customized products are manufactured according to monthly or weekly 
production plans. In every plan cycle, the number of parts shipments, the number of parts 
coming in, and inventory figures for each part are calculated, with additional parts ordered 
so as not to cause stockout. However, in case of mass customized products such as 
electrics products, losses due to unsalable stock and those that arise due to differences 
between current low prices and those initially procured from the supplier can occur easily 
because the life cycle of products is short and parts of those products become obsolete 
fast. Therefore, forecasting the number of part shipments while ordering the minimum 
number of parts to avoid stockout is particularly important. 

However, the number of part shipments can fluctuate because orders for products 
equipped with the same part may occur with a relatively narrow period even though the 
orders themselves are random. In addition, since the parts of products are updated 
between different generations, the data for of each part only applies to one product 
generation. Consequently, since the number of forecasted part shipments for parts 
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fluctuate irregularly over the short term, it is difficult to apply forecasting techniques such 
as time series analysis because the data period is short and there are no periodic changes. 
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Figure 1. Ordering process 

 
2.2. Forecast model 
 
Based on the order process shown in Figure 1, the number of part shipments can be 
accurately determined when the order is fixed, when it is too late to control procurement. 
Conversely, while the number of parts included in the estimate is not final at the time of 
shipping, it is known early enough to control procurement. Therefore, estimate 
information is used as a leading indicator in this research. The total number of parts 
included in the estimate, compiled during the plan cycle, is defined as a leading indicator 
of the number of shipments. All of the electronic data in the estimate is compiled in the 
plan cycle and collected, and the number of each part is totaled. This leading indicator is 
referred to as the estimated number in this paper. In addition, the number of forecasted 
part shipments for an object is totaled using a procedure similar to that employed for the 
leading indicator. All of the electronic data related to the shipment slip is produced in the 
plan cycle and collected, and the number of each part is totaled. The number of part 
shipments required for this forecast will henceforth be referred to as the number of 
shipments.  

Comparisons of the waveforms for estimate and shipment number, revealed that the 
shape of both numbers is similar to each other and that the number of estimates precedes 
the number of shipments for one or two terms, and indicates that the number of estimates 
is a useful indicator for forecasting. However, the height of the peak position and the 
amount of shift between those two waveforms differ depending with respect to time, 
indicating the existence of noise in the ordering process. For example, the made estimate 
being not received an order, a similar estimate made repeatedly, and the time required 
from the time at which an estimate made to the shipment varies by a single order 
correspond. Therefore, to use estimate information as a leading indicator, correcting this 
noise factor becomes a problem. 

Figure 2 shows the approach employed by this study regarding the above-mentioned 
problem. The number of estimates is assumed to be an input into the system and the 
number of shipments to be an output, as shown at the left of Figure 2. The parameter that 
converts the input into the output is assumed for the state to be preserved at the 
subsequent period though changes for the long term. At this time, if the above-mentioned 
noise factor can be corrected using the I/O relationship, and if the parameter of the order 
production system can be presumed, then the output wave type can be predicted for any 
arbitrary input wave. The assumptions made using the above-mentioned parameter and 
predictions derived using the parameter are described further in Chapter 3. 
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Figure 2. Basic concept of the proposed method 

 
 
3.  METHOD OF PREDICTION IN WHICH ESTIMATE 
INFORMATION IS SEQUENTIALLY CORRECTED 
 
3.1. Predictive Model of Using Estimate Information as the Leading Indicator 
 
In this chapter, the order production system presented Figure 2 is formulated according to 
the idea described in the preceding chapter. When considering the lifespan of an order, 
from the time an estimate is made to when it is shipped, there are rare instances in which 
the shipping of an order occurs immediately after the estimate has been made, or, 
conversely, when the estimate is made a long time before the shipment. This means that 
the lump of the shipment exists at a point that passes the time that is after making the 
estimate, which can be defined as an order probability. Then, shapes of the overlapping 
waves from the estimates shown in Figure 2 are assumed to correspond to the number of 
shipments in each period. This means that the number of shipments is an impulse response 
to the number of estimates, and that the number of shipments can be described as a 
convolution of the number of estimates and the order probability as 
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Here, ky  is the number of shipments at plan cycle k , ku is number of estimates, and 

the coefficients ix  are the order probabilities of converting the number of estimates into 
the number of shipments. The order probability is a function of delay i , and the degree is 
assumed to be n . k is the tabulation error for the number of shipments, obtained by 
subtracting the number of shipments unrelated to estimates. Here, if order probability ix  
is obtained, the number of shipments at plan cycle k  is predictable by the input of the 
number of estimates before cycle k  of the plan to expression (1). However, the subscript 
that refers to the kind of part in this expression is omitted (it is similar in the following 
expressions). Here, at 0ik , it is 0iku . 
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3.2. Noise Correction Method Using the Kalman Filter 
 
To accurately estimate the order probability ix  of expression (1), correcting the noise 
that the order probability in Figure 2 possesses, is problematic. The noise associated with 
this order probability is considered to have a normal distribution because it is led from a 
lot of mutually irrelevant orders, and which is why it is corrected with Kalman filter 
(Katayama, 2000). To apply the Kalman filter, expression (1) is described by the 
following state equations (2) and observation equations (3): 
 

kkk ωxx 1
                                                                                                                     (2) 

kkkky xH                                                                                                                    (3) 

 
where, kx is order probability vector, kω  is the order probability noise, and kH  is 

the number of estimates.  
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Here, the normal distribution type noise kω  of the mean value vector n0 and the 

covariance matrix nnI
2 ( nnI is a unit matrix of n0 ) and k of the mean value 0 and 

variance 2 . The next expression is obtained by applying Kalman filter to expression (2) 
and (3).  
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Here, Kalman gain kK and kk|P̂ exhibited covariance matrix of the assumed error 

margin, and was assumed to be nnIP 2
01|1

ˆ , 00 . The order probability vector 
1|ˆ kkx  can be derived by sequential calculation of (7), (8), and (9). Then shipments of k  

periods ky  can be predicted from the number of estimates until the 1k  period. 
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4.  EVALUATION 
 
The proposed method was evaluated using real data for electronic components. A subset 
of equipments consisting of 78 different parts obtained by numerous shipments was 
selected. The evaluation period was taken as 32 terms, which exceeded the product life 
cycle of this product. In the evaluation, the short-term forecast was used to forecast the 
number of shipments based on the number of estimates and shipments until a previous 
period of time. For comparison, the exponential smoothing method (Goodrich, 1992) was 
performed under the same conditions. The exponential smoothing method is suitable for 
short-term forecasts as it tracks short-term changes relatively well than other known 
forecast method. The first-order method is adopted, and a coefficient is selected to 
minimize a past prediction error by the least squares method. 

The evaluation condition can be described as follows: The degree of the order 
probability was assumed to be three, because most products were shipped within three 
periods after it had been estimated. While it is preferable to set an initial value for the 
order probability of each part, but initial values are not be understand beforehand. 
Therefore, once all common values for the different parts were assumed and then an 
individual order probability for each kind of part is estimated by an initial forecast 
calculation. That is, the period from term 1 to term 5 was taken as the settling period and 
the period from term 6 to term 32 was taken as the evaluation period for the prediction 
error (Table 1). 

In Table 1, the 78 parts are classified by their average rate of change. Here, the 
average rate of change is an index that shows the degree of change in the shipment 
number pattern, which can be calculated using the following expression: 
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The performance was evaluated using the mean and the maximum MAPEs (mean 
absolute percent error (Mentzer, 1995)) for each range, which were calculated for the 
proposed method and the exponential smoothing method, which were then compared. In 
general, demand forecasting is useful when the error is less than 20% error; less than 30% 
is within the permissible range for practical use (Munekata, 2005). 

To remain within a range that could account for 64% of the parts whose average rate 
of change is   ≤0.4,   the   MAPE   for   the   proposed   method   is   ≤30%,   while   that   of   the  
exponential smoothing method is 35.8%, which exceeds the 30% that is permissible for 
practical use. In addition, the MAPE of the proposed method is 32.0% while that of the 
exponential smoothing method is 60.2% paying attention to the maximum value of the 
error. The proposed method exceeds 30% in the range for the change rate to exceed 0.4 
but it is more excellent than the exponential smoothing method in each condition. 
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Table 1. Evaluation results 

Average 
rate of 
change 

Number 
of parts 
types 

Average of mean absolute 
percent error (%) 

Maximum of mean 
absolute percent error (%) 

Proposed 
method 

Exponential 
smoothing 

method 

Proposed 
method 

Exponential 
smoothing 

method 
～0.2 7 21.8 20.4 25.1 30.3 
～0.3 27 23.2 26.0 26.9 56.8 
～0.4 16 28.2 35.8 32.0 60.2 
～0.5 19 34.3 40.2 40.1 63.8 
～0.6 9 41.5 45.9 48.0 63.3 

 
Figure 3 shows the example of the forecast result. The horizontal axis represents the 

plan cycle and the Y-axis shows the number of parts. The predicted results for the 
proposed method and the exponential smoothing method are displayed overlapping with 
the number of shipments. The prediction error increases for the period where there is a 
large rate change because the result of the exponential smoothing method follows the 
change in the number of shipments after a delay of almost one term (MAPE is 23.6%). On 
the other hand, the result of proposed method synchronizes with the change in the number 
of shipments after four terms of settling period. Compared with the exponential smoothing 
method, the prediction error of the proposed method is improved as a result (MAPE is 
20.0%). 

The above-mentioned result shows that the proposed method is effective for use as a 
predictive technique using in this paper. 
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Figure 3. Example of forecasted result 

 
 
5.  SUMMARY 
 
A demand forecasting method for predicting the number of parts, which change 
irregularly in the short term, that need to be ordered for a mass production product. The 
proposed method employs peculiar estimate information as a leading indicator for 
ordering product, sequentially corrects the noise that the order probability possesses by 
Kalman filter to assume the prediction error to be minimum, and accurately forecasts the 
number of part shipments. 
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The method was applied to the problem of forecasting 78 different parts for an 
electronic product as an actual example. The experimental results demonstrate that the 
method can be used to predict shipments up to change rate of 0.4 for an associated error 
margin of 28.2%, which is permissible for practical use. 
 
 
6.  REFERENCES 
 
1. Araki, H., Kimura, A., Arizono, I., Ohta, H. Demand Forecasting Based on Differences of Demands via 

Neural Networks. Journal of Japan Industrial Management Association 1996; Vol.47, No.2: 59-68. 
2. Goodrich, Robert L. Applied Statistical Forecasting. Business Forecast Systems, 1992. 
3. Katayama, Toru. "Applied Kalman Filtering". Asakura Shoten, 2000. 
4.  Kitagawa,  Genshiro.  “Introduction  to  time  series  analysis”.  Iwanami  Shoten,  2005. 
5. Munekata, S., Saito, K. "A New Demand Forecasting Method for Newly-Launched Consumer Products Based 

on Estimated Market Parameters". Hitachi Tohoku Software technical report 2005, Vol.11, pp.34-39. 
6. Ohta, H., Noda, H., Kase, S. Forecasting by Adaptive Kalman Filter. Journal of Japan Industrial Management 

Association 1974; Vol.25, No.1: 39-43. 
7. Suguro, Takao et al. Stock management of site departure. Communications of JIMA 2006; Vol.16, No.5: 263-

309. 
8. Mentzer, John T. et al. Forecasting Technique Familiarity, Satisfaction, Usage, and Application. Journal of 

Forecasting 1995; Vol.14: pp.465-476. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


