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Abstract. In this work we propose an agent based model where a fixed finite 

population of tagged agents play iteratively the Nash demand game in a regular 

lattice. This work extends the multiagent bargaining model by [1] including the 

spatial dimension in the game. Each agent is endowed with memory and plays 

the best reply against the opponent's most frequent demand. The results show 

that all the possible persistent regimes of the global interaction game can also 

be obtained with this spatial version. Our preliminary analysis also suggests that 

the topological distribution of the agents can generate new persistent regimes 

within groups of agents with the same tag. 
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1   Introduction 

The gist of agent-based modeling consists in the individual abstraction of the entities 

that participate in a given target system as computational entities – agents – in a 

model [2], [3]. It also facilitates to establish a direct correspondence between the 

interactions observed as agent‟s interactions, and hence to analyze the emerging 

behavior. 

In the last twenty years, this technique has become popular in almost every 

scientific domain, such as natural resources management [4], biology [5], project 

management [6], etc. Nonetheless, it has been particularly useful in economic and 

social systems as a formalization tool. 

The role that norms play as regulator mechanisms of certain aspects of social, 

economic and organizational behaviors has been thoroughly studied in social sciences 

[7], and even by means of agent-based modeling [8]. Once a norm has been 

established, it acts as a self-reinforcement mechanism of behavior. However, the 

emergence of norms is, in general, exempt from explicit mechanisms of control. This 

is a key factor to understand the informal behavior of the organizations. 

In this work, we analyze the emergence of norms using the agent-based model 

proposed by [1], AEY‟s model from now on, which is an extension of the well known 



Nash demand game. By studying the transient and the asymptotic dynamics of this 

model, Axtell et al proved that self-reinforced norms can emerge spontaneously. 

These emergent norms may be completely different from one another even though all 

the agents of the population have the same behavior rule. Moreover, when agents are 

endowed with a tag (which initially has no meaning) and remember the past behaviors 

of their opponents and their tags, it is possible to demonstrate that segregation, in 

terms of different behavior within and outside a group, can emerge endogenously. 

We have generalized the original model by adding a new behavior rule that 

requires less cognitive abilities than those required in the original paper. Furthermore, 

when agents used this new behavior rule, the segregation emerged even more 

frequently. In our analysis, we have also incorporated the influence of the topology on 

the results of the game. To this aim, we have considered the spatial dimension of the 

game by introducing a regular spatial structure. 

This work is organized as follows: first, we will briefly explain the extensions and 

modifications that we have performed to generalize the AEY original model. Next, 

we will describe the results that we have obtained when agents are randomly 

distributed. Afterwards, we will discuss some cases where several persistent regimes 

can simultaneously emerge and the possible relation with mesoscopic topological 

effects. We will finish with conclusions and extensions of this work. 

2   AEY’s Model in Regular Spatial Structures 

In AEY‟s model there is a population of n agents that repetitively play a bargaining 

game. The interaction process in the model consists in the following: two agents – 

randomly selected from the population of agents – demand some portion of a pie 

(which is a metaphor of something that is going to be shared between two persons). 

The portion of the pie that each agent gets depends on the corresponding portion 

demanded by her opponent: they get what they demand as long as the sum of both 

demands is not higher than the whole of the pie; otherwise both get nothing. 

In order to simplify the analysis we will assume that agents have only three 

possible demands: low (30%), medium (50%) and high (70%). Table 1 shows one 

agent‟s reward depending on her opponent‟s demand –[9] study the influence of 

payoffs in the game–. 

Table 1.  Payoff matrix 

 H M L 

H 0,0 0,0 70,30 

M 0,0 50,50 50,30 

L 30,70 30,50 30,30 

Agents have a memory in which they keep the latest m decisions taken by their 

opponents in previous games (where m is the memory length). Agents check their 

memory and take their decision depending on the strategies followed by their 

opponents in the previous matches. When the game starts, the agents‟ memories are 

initialized with m random values between the three options they can demand (low, 

medium or high). 



There is a small probability of a player not following the rational decision rule and 

playing a random strategy instead, called the mutation probability ε. In the most 

sophisticated version of the model, each agent can be identified as a member of one of 

the two possible groups by means of a tag: agents store in their memory their 

opponents‟ demands conditioned by the corresponding group. 

In our simulation model, agents take decisions by using two different decision 

rules: either maximizing the expected utility in function of the memory vector, or 

demanding the best reply against the opponent‟s most frequent demand. 

In the original model by AEY, players randomly paired at each tick could play 

with any other in the population. However, in our spatial version of the model where 

agents are placed on a 10x10 toroidal reticule, each one interacts with one of her eight 

spatial neighbours located in a radius-1 Moore neighbourhood. 

A simulation run stops when the system reaches a persistent regimen. As there are 

no absorbent states for ε>0, we consider that a persistent regimen has been reached 

either when all the agents have at least (1- ε)·m instances of „medium‟ behaviour in 

their memories (an equitable norm) or when there are, at most, ε·m instances of 

„medium‟ behaviour in their memories (a non-equitable norm). When tags are 

considered in the game, the stop criterion is applied to both agents‟ memories 

corresponding to same and different tagged opponents.  

3   Equilibrium in a random scenario 

We have studied the model in different scenarios. In the first one, tagged agents are 

randomly distributed in the grid (see Figure 1). 

The system is an ergodic time-homogeneous Markov chain [10]. Although there is 

a strictly positive probability of finding the system in each of its states in the long run, 

some states are more persistent than others -the probability of staying in them is 

higher-. The best way of representing the state space is a simplex of the agents' 

memory states. Because the memory of an agent is made by two partitions, 

corresponding to the past demands of the two classes of opponents, we use two 

simplexes to represent both ones. 

 



 

Fig. 1. A sample of random distribution of agents in the grid. In order to show clearly the 

players' strategies for both kind s of contacts, two symmetric grids are used to represent 

interactions between agents with the same tag (the left one) and with different tag (the right 

one), called “intratype” and “intertype” interactions respectively.  

The pure strategy equilibrium MM of the Nash demand game, or equity norm, is a 

stochastically stable equilibrium for mutation rates small enough -once it is reached, it 

is very unlikely the system leaves it-. However, other regions of inequality strategies 

can be considered as pseudo-stable because the transition time to go from them to the 

equity norm is enormously long, and it grows exponentially with the number of 

agents and the memory length m, so the system can permanence in them over a long 

time. 

 

Fig. 2. Most probable states (persistent regimens) in the intertype game 

Figure 2 depicts two important states of the memory of agents playing against 

opponents of different tag -intertype game- On the left simplex, everyone plays the 

strategy one-half, whereas on the right one every agent of one group (circles in the 

example) demands high against agents of the other group (squares), who consequently 

demand low. 



 

Fig. 3. Most probable states in the intratype game 

Figure 3 shows the three possible final states of the intratype interactions. In the 

first one (left), equity emerges within two groups (circles and squares). The second 

one (middle) represents a fractious state where both groups have members demanding 

simultaneously low and high. And finally, the third state (right) depicts a segregated 

situation in which equity emerges within one group (circles) whereas the other group 

(squares) plays inequality strategies. 

4   Other persistent regimes 

The results commented in the previous section confirm that the same six 

combinations of intertype and intratype persistent regimes pertaining to the global 

interaction game can also be obtained in the regular lattice game. Notwithstanding, 

when we run random intensive simulations in the spatial game we find that there is 

someone that needs a much higher time to converge to one of the mentioned regimens 

than the average time. This fact could suggest the appearance of some other basins of 

attraction beyond the mentioned combinations of states. This might imply that there 

are more situations where the transient dynamics of the system differs from the long 

run behavior of the system. A deeper insight into the tag spatial distribution puts 

forward two different types of situations (see Figure 4). 



 

Fig. 4. The intertype plot (right) shows two different persistent regimens: one LH at the center 

and another MM at the right and left borders. Notice that the lattice is a torus. 

A first case occurs when the particular distribution of tagged agents in the grid 

results in isolated areas of players with the same tag, without any contact between 

them. The behavior of disconnected frontiers of agents of the same type can produce 

different persistent regimens in each frontier. An extreme case of this effect is 

represented in Figure 4. 

However, the other kind of situations is much more interesting. Now, the system 

state is characterized by non-disconnected clusters of agents -with the same tag- 

playing simultaneously different types of intertype coordination. The key difference 

with the previous case is the existence of an interconnection between the clusters.  

The analyzed cases suggest that this last regime only appears when there is a strong 

community structure in the underlying network topology of the players, and that each 

regime corresponds to a different community. Our hypothesis is that the regimes 

obtained in the regular lattice version of the game are influenced by a mesoscale 

dimension between the individual and the complete population. In order to verify this 

intuition we have studied the community structure of an idealized case when this 

phenomenon frequently appears (see Figure 5). 

 



 

Fig. 5. We have analyzed the effects that appear in the stylized configuration showed on the left 

of the figure. On the right we represent the underlying interaction structure for the intratype 

game of grey-tagged players. 

In order to find out the community structure of the network, we have used the 

Girvan-Newman algorithm [11] based on the iterative removal of the nodes with more 

betweenness. Our results depicted in Figure 6 show that, as predicted, the different 

regimes correspond to the partition of the network in communities detected by the 

algorithm. 

 

Fig. 6. On the left of the picture we can observe two different simultaneous persistent regimes 

in a connected population of agents with the same tag (h-shaped area). The different regimes 

correspond exactly to the different communities obtained in the underlying network of 

neighbors. 

5   Conclusions 

In this work we have analyzed the Nash demand game played by a finite population 

of tagged agents situated in a regular lattice and playing as decision rule the best reply 

against the opponent's most frequent demand. Our results confirm that all the different 

regimes obtained in the global interaction model, including discriminatory norms, can 

emerge. Furthermore, computational simulations show that different persistent 



regimes can appear simultaneously within a group of agents with the same tag 

depending on the topology –especially the mesoscopic characteristics of the network-. 

Some results correspond to the trivial case, when there are disconnected clusters of 

players with the same tag, but also to other non-evident distributions of tagged agents 

in the grid. A preliminary study suggests that the community structure of the network 

of players with the same tag could be a strong predictor of these special regimes of 

the spatial version of the Nash demand game.  
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