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Abstract: Combinatorial auctions are used as a distributed coordination mechanism in 

Multiagent Systems. The use of combinatorial auctions as negotiation and coordination 

mechanism is especially appropriate in systems with interdependencies and 

complementarities such as manufacturing scheduling systems. In this work we review 

some updating price mechanisms for combinatorial auctions based on the Lagrangian 

Relaxation Method. We focus our research to solve the optimization scheduling 

problem in the shop floor, taking into account the objectives of resource allocation in 

dynamic environments, i.e. -robustness, stability, adaptability, and efficiency-. 
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1   Introduction 

Scheduling is a decision-making problem devoted to allocate resources on tasks to 

optimize one or several objectives. Manufacturing and production systems are some of 

the most known fields of application of this problem. In this context, operations of a 

given production process are considered as tasks and the different machines in a 

workshop are considered the resources [1]. This problem is characterized by its highly 

combinatorial and dynamic nature and its practical interest for industrial applications 

[2]. 

Multiagent Systems (MAS) have been proved to be an appropriate paradigm to 

model complex systems and they constitute a useful framework to define distributed 

decision-making processes. In this specific domain, agents are used to encapsulate 

physical and logical entities or even autonomous functionalities of the production 

systems.  The ability of MAS to perceive and react to changes in their environment 

justifies their use as adaptive systems in manufacturing (some recent reviews in the 

field can be found in [3], [4] or [5]. 
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2   Market Based Coordination Mechanisms and Combinatorial 

auctions 

Distributed decision making through MAS are considered an alternative to centralized 

scheduling systems. They facilitate to take into account local objectives, preferences 

and constraints of each resource in the decision making process [6]. Combination of 

individual problem-solving and coordination/negotiation schemes is one of the 

research challenges in this area [3]. 

Market based allocation mechanisms are one of the most active branches of 

decentralized scheduling research. The underlying idea is to allocate resources among 

tasks by designing an ad-hoc market and setting prices iteratively to find the 

equilibrium. The process involves the creation of a production schedule based on the 

prices emerging from the bids sent by tasks. The goal is to design a bid structure and a 

selling mechanism that leads to an optimal scheduling of resources on a shop floor.  

According to [7], the main features of a decentralized scheduling problem are: 

First, each individual decision-maker follow its own objectives, but coordination will 

be enabled by prices. Second, decision-makers may have their own private 

information, such as their valuations of objects, and have no access to the private 

information of others (objectives, preferences and constraints). Third, complex 

calculations are distributed among the participating agents, so that the problem is 

divided into several easier problems which can be solved in parallel, and hence 

calculations can be sped up. Fourth, the communication overhead is low since it is 

limited to the exchange of bids and prices between agents and the market mechanism. 

Combinatorial auctions have been used as a market mechanism to create 

schedules. One of the earliest works in this area has been developed by [8]. 

Combinatorial auction is a type of auction in which participants can place bids on 

combinations of items rather than just individual items or continuous quantities. 

Economic efficiency is enhanced if bidders are allowed to bid on bundles of different 

items when there are complementarities between the different items, [9]. The use of 

combinatorial auctions as negotiation and coordination mechanism is appropriate in 

problems in which the value of interdependent items needs to be considered. 

Manufacturing scheduling problem presents complementarities. For instance, jobs 

are required to bid for continuous time slots on a resource (non-preemption 

constraints) and each job is required to participate in multiple auctions for its different 

operations, however all these operations have precedence constraints. We use a 

combinatorial auction-based mechanism to coordinate agents.  

Combinatorial auctions can be divided into single round and iterative 

combinatorial auctions. In single round auctions participants send their valuations 

over the combinations of products just one time and the auctioneer allocate the items 

in such a way that the global objective is maximized. On the contrary, in iterative 

combinatorial auctions prices are fixed after multiple rounds. There are some 

advantages of using iterative combinatorial auctions instead of single round ones. 

First, participants do not have to make bids over the set of all possible combinations of 

bids. Second, participants reveal in each iteration their private information and 

preferences. Third, iterative auctions are well-suited for dynamic environments (e.g. 

manufacturing environments) where participants and items get in and out in different 

moments. 
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There are two kinds of iterative combinatorial auctions: quantity-setting and price-

setting. In the fist one, bidders send their valuation over every possible combination of 

the items sold. The auctioneer makes a provisional allocation that depends on the 

submitted prices. Bidders adjust the prices at every iteration. In the second one, price-

setting, (or demand query) auctioneer sets the prices for each of the items of the 

auction. Bidders submit the bundle of items they want to get at the given price. 

Auctioneer adapts the prices to balance the supply and demand [9]. 

3   Combinatorial Auctions and Lagrange Relaxation Techniques 

The updating methods used in the Lagrangian Relaxation Method to solve the dual 

problem can be used to update  prices in  iterative combinatorial auctions, since they 

share the same structure in their protocols [10]. Auction protocols can be implemented 

in a non-adaptive standard Walrasian fashion, or as an adaptive tâtonement (price 

adjustment process). The subgradient optimization can be viewed as a particular 

version of the tâtonement proccess. While the subgradient optimization tries to 

penalize infeasibility of dualized constraints and the auctioneer updates the resource 

prices as to discourage conflicts on the demanded objects, the subgradient algorithm 

adjusts the prices proportional to the amount of infeasibility and the auction algorithm 

updates the prices proportional to the excess of demand [6]. Lagrangian relaxation 

technique relaxes the complex constraints of an optimization problem (i.e. those 

constraints which make the problem hard to solve), making the problem easier to 

optimize. The group of relaxed constraints is incorporated to the objective function in 

such a way that the restrictions that are not fulfilled are penalized.  The new objective 

function is called Lagrangian function. The Lagrangian problem solution is always 

lower or equal to the solution of the original problem [11]. The iterative process will 

approach the solution of the Lagrangian problem to the solution of the original 

problem. 

4   Price setting iterative combinatorial auction 

The task scheduling problem can be modeled as an auction where time horizon is 

divided into slots that are sold through the auction. Tasks participate in the auction as 

bidders, trying to get the time slots of the resources that they need to perform the 

operation [10](See Fig. 1). We will relax the constraints that relies on variables 

belonging to different jobs. Our aim is to divide a complex problem into several easier 

ones. If we eliminate the restriction of capacity of the resources, we will be able to 

split the problem into N job subproblems. The mechanism will follow the main 

principles of distributed systems since the relevant information of the bidders (i.e. due 

date of the jobs, penalty for the delays, resources needed) will be hidden to the rest of 

agents [12]. None of the agents knows which other agents belong to the system nor 

what are the goals of those agents. Prices show the preferences of other agents, 

providing information to the agent to act consequently. This mechanism have been 

used to solve different kind of task scheduling problem, e.g. job shop problem [13], 

[14], flow shop problem [15], or project management [16], [17]. 
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Fig. 1. Auction-based scheduling mechanism 

 

It can be described as follows: There exists a central pool of resources (Resource-

agent). Each resource has different abilities. The planning horizon of the resource is 

divided into time slots. These time slots are sold in an auction. Several jobs have to be 

completed (Job-agents). The jobs need to get the necessary resources to be finished 

before their due date. Job-agents bid for the time slot of the resources. They try to 

minimize their cost function. An agent acts as a central node (Auctioneer-agent). The 

bids sent by Job-agents are received by the Auctioneer-agent, who will update the 

prices of the slots. Once known the new prices, the Job-agents will remake their bids. 

This iterative process continues until prices are stabilized or a stop condition is 

fulfilled.  (See fig. 2) 

Job-agents are price-takers in the model (See fig. 3). Price is fixed by an iterative 

process. The prices of the slots are raised or lowered by a walrasian mechanism. The 

auctioneer compares the demand over a time slot of a resource with the capacity of the 

resource in this time slot. if there is an excess demand, the auctioneer raises prices. On 

the other hand, if there is an excess of capacity he lowers them. 

   nn 1
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Fig. 2. Price-setting iterative combinatorial auction 

 

There are many ways to update prices (e.g. constant increase or decrease of prices, 

proportional to the demand, proportional to the excess of demand). 

5   Updating Prices Methods 

Subgradient method [18], [11], [19]: It is the method most commonly used to solve 

the relaxed (dual) problem. Each bidder sends the bundle of time slots that maximizes 

its utility. Auctioneer computes the excess demand (subgradient) and updates time 

slots prices along the subgradient. A lower bound of the optimal scheduling cost can 

be obtained from the dual problem resolution process. Although it is used by many 

practitioners for its simplicity and low computational overhead, it has many 

drawbacks: Multipliers zigzag along ridges (intersection of several facets) of the dual 

function. It suffers from slow convergence, and it can be difficult to solve all the 

suproblems in big size problems. 

Aiming to improve the performance of the subgradient method, [20] developed the 

conjugate gradient method, also used in [21], [22] or [23] by following a modified 

gradient step direction that is calculated as a linear combination of the actual vector of 

excess demand and the precedent modified gradient step direction. It reduces 

zigzagging with respect to subgradient method. 

The surrogate gradient method [24], [25] is based on the idea that it is not 

necessary to get the best directions to reach the optimum of the dual function. Good 

directions can be obtained with much less effort. The bundles of time slots sent by the 

bidders do not have to maximize its utility; they just have to improve the utility of the 
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bidder with respect to the previous bids at the given prices. This method is useful for 

large problems having many complicated subproblems. The main disadvantage of this 

method is that the surrogate dual cost is not always a lower bound to the optimal 

scheduling cost. 

The interleaved subgradient is a special case of the surrogate method [26], [13], 

[24]. Only one subproblem per iteration is solved to obtain a direction and to update 

the multipliers. The method is called random interleaved subgradient if this process is 

done in a non predefined order. This idea is attractive for real dynamic environments, 

where real time dynamics have to be considered. The directions obtained are also 

smooth for large problems, leading to better performance.  

The fuzzy subgradient [27] aims to make use of all the information generated in 

the job sub-problem resolution.  It takes not only optimal solutions of the job sub-

problems, but also near optimal solutions combining them to generate "fuzzy 

gradients". This method reduces the solution zigzagging without much additional 

computational requirements. 

 

 
 

Fig. 3. Problem-solution schema 

6   Research Line and future work 

We search an updating price method for combinatorial auction that meets the 

requirements of scheduling manufacturing systems in dynamic environments, i.e. they 

are intended to offer robustness, stability, adaptability, and efficient use of available 

resources through a modular and distributed design [5]. To the best of our knowledge, 

currently there is no work which compares the updating prices methods of 

combinatorial auctions for Job Shop problem.. In our work we will use a specific 

problem as Job Shop scheduling problem, but we want to extend the conclusions that 

we will obtain to other problems of the same nature. Our objective is to compare the 

different methods of updating prices based on those that update the Lagrangian 

problem. 

We will define and implement a distributed task scheduling system based on the 

Job Shop Problem [1]. We want to compare the different methods of updating prices 

using as criteria convergence, stability and other points to study in a real case 

implementation as asynchronous computation. We will use different benchmark as we 

can find in [28] and the modifications suggested in [29]. 
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