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Abstract. Tuberculosis is a treatable but severe disease caused by 
Mycobacterium tuberculosis (Mtb). Recent statistics by international health 
organizations estimate the Mtb exposure to have reached over two billion 
individuals. Delay in disease diagnosis could be fatal, especially to the 
population at risk, such as individuals with compromised immune systems. 

Intelligent decision systems (IDS) provide a promising tool to expedite 
discovery of biomarkers, and to boost their impact on earlier prediction of the 
likelihood of the disease onset. A novel IDS (iTB) is designed that integrates 
results from molecular medicine and systems biology of Mtb infection to 
estimate model parameters for prediction of the dynamics of the gene 
networks in Mtb-infected laboratory animals. The mouse model identifies a 
number of genes whose expressions could be significantly altered during the 
TB activation. Among them, a much smaller number of the most informative 

genes for prediction of the onset of TB are selected using a modified version 
of Empirical Risk Minimization as in Vapnik’s statistical learning theory. A 
hybrid intelligent system is designed to take as input the mRNA abundance at 
a near genome-size from the individual-to-be-tested, measured 3-4 times. The 
algorithms determine if that individual is at risk of the onset of the disease 
based on our current analysis of mRNA data, and to predict the values of the 
biomarkers for a future period (of up to 60 days for mice; this may differ for 
humans). An early warning sign allows conducting gene expression analysis 

during the activation which aims to find key genes that are expressed. With 
rapid advances in low-cost genome-based diagnosis, this IDS architecture 
provides a promising platform to advance Personalized Health Care based on 
sequencing the genome and microarray analysis of samples obtained from 
individuals at risk. The novelty of the design of iTB lies in the integration of 
the IDS design principles and the solution of the biological problems hand-in-
hand, so as to provide an AI framework for biologically better-targeted 
personalized prevention/treatment for the high-risk groups. The iTB design 

applies in more generality, and provides the potential for extension of our AI-
approach to personalized-medicine to prevent other public health pandemics.  
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1   Introduction 

Tuberculosis is a severe lung disease which is responsible for increase of 9.4 million 

[1] cases per year that will results about 2 millions of patients death [2]. Infection 

will be acquired by inhalation of Mycobacterium tuberculosis contaminated air 

and/or droplets [3]. Even from slight initial invasion of the agent, infection may lead 

to latent TB or may lead to primary disease [4]. The exact time which is taken from 

the initial infection until the development of disease varies among individuals. This 

variation can be attributed mainly to the immune status of an individual. Immuno-
compromised individuals or individuals which their immune systems are suppressed 

might likely develop primary disease. The World Health Organization WHO [1], has 

reported the burden of disease under various circumstances, and in particular, the 

number of bacteria sufficient to infect an individual [3]. After 2008, the numbers of 

incidence, prevalence and mortality, are estimated to be at least as 9.4 million 

incidence cases, 11.1 million prevalence cases and 1.3 million deaths [1]. Since an 

individual can infect 10-15 individuals [3], from a public health viewpoint, early 

diagnosis and treatment [5] is crucial to contain the disease. In particular, 

technologies for early detection and isolation of an infected individual will play a 

major role in sustainability of the global population health.  

Understanding the molecular mechanisms during the invasion of M. tuberculosis 
provides valuable insights for the analysis of the biological understanding of the 

course of infection. Besides, the molecular understanding might lead to development 

of the necessarily better targeted treatment strategies against tuberculosis [6]. To 

serve this purpose, Talaat et al. (2004) analyzed MTB infected lung samples of 

immuno-compromised and immune-competent mice. They found the genes that are 

expressed (or significantly changed) during early invasion through systematic 

application of the microarray technology [7]. As a result of this analysis, they 

reported the differences between expression profiles in three different environments. 

In an analogous fashion, but in a different context, microarray technology is used to 

monitor the changes in M. tuberculosis gene expression during the treatment with 

antituberculous drug isoniazid [8]. According to analysis of expressed genes in 
presence of isoniazid, researchers are more likely to enhance the drug targets. Behr 

et al. (1999) perform microarray analysis in order to understand the differences 

between genomic structures of M. tuberculosis and M. bovis and other strains of M. 

bovis which are also compound of the BCG vaccines. Accordingly, this study has 

aimed to serve the purpose of developing new and more narrowly-aimed vaccines 

and/or antituberculosis treatment [9]. Fisher et al. (2002), draw attention to the 

function of the acidification during the immune response through using microarray 

[10]. As a result of their analysis, they suggest that, acidification might be a signal to 

induce the gene expression needed by the bacteria to survive against the immune 

response cells known as phagosomes.  

The discussion above is short, but essentially highlights the critically sparse state-

of-art knowledge regarding detection, prediction and treatment of individuals at risk, 
and in fact, almost all categories of individuals infected by this microbe. 
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In the following, we report on preliminary progress in design of an intelligent 

system (Section 3) based on our earlier de novo analysis of gene expression time-
series by novel applications of stochastic signal processing, new clustering 

algorithms, and dynamics of representations of clusters in an appropriate hyperbolic 

space. 

2   Contribution to Sustainability 

One remark encountered often in modern higher education and research is the 

significance of close collaboration between young investigators in the computational 

and the engineering sciences with biologists to provide a fruitful framework for the 

synthesis of diverse concepts and tools. In this way, integration of hardware-

software and ‘biological knowledgeware’ provides prospects of imminent solutions 

of myriad challenging biological sustainability research problems through 

collaborative effort. This research is an illustration of this piece of educational 

wisdom in this regard. The need for solution of hard biological problems has 

inspired formulation of a number of challenging problems in scientific computation 

and engineering. 
High performance scientific computation plays a critical role in the 21st century 

research and engineering design optimization. An important case arises in research 

on challenging problems in Global Public Health, such as sustainability of protective 

measures against infectious diseases for humans and animals living across all 

geographic locations, and as much as possible, under all states of living conditions. 

This research adheres to the above-mentioned objective of sustainability, utilizing 

the state-of-art in informatics and engineering. Design of intelligent systems have 

enriched the modern technological societies, and extending its domain to include the 

entire global community is inevitable for future protection of life and earth and 

assurance of a sustainable mechanism to provide a healthy society across the globe. 

Further, among myriad health and disease conditions, there is a serious risk of faster 

spread of diseases such as TB by more susceptible sectors of individuals at risk due 
to a compromised immune systems. Sustainability of global health, therefore, must 

include effective solutions to prevent infection and more likely death by such 

individuals. On the ethical side, there are limitations to keeping in isolation 

individuals-at-risk due to the higher risks of eventual severe or fatal sickness. The 

research on iTB system provides a viable approach to answer the above-mentioned 

problems based on effective applications of modern engineering and informatics. 

3   iTB: Intelligent TB Dynamical Modeling 

We have developed a conceptual framework for dynamical analysis on the grounds 

of solid mathematical models and empowered by software engineering viewpoint 

toward information systems development. This viewpoint ensures reusability of the 

system as a whole or in part for different applications in different disciplines. In 

other words, a modular design of the system allows us to (1) simplify extending the 

system  capability while maintaining accuracy, (2) rebuild new configurations on 
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demand - e.g. for different clinical applications, and (3) distribution of massive 

computation among different processing blocks. The entire setting adheres to the 
engineering principles for deployment within today’s High Performance 

Computation (HPC) infrastructures, like Computational Grids, and most recently, 

Computation in Clouds. Data-intensive computing era calls for such adaptable 

architectures to guarantee the applicability of informatics methods for growing 

population, increasing healthcare demands and personalized (thus, real-time) 

medical treatment. 

 

 

Fig. 1. Global architectural view of iTB 

Fig. 1 shows a global architectural view of iTB. The main part is the empirical 

network construction module which can work iteratively to gain computational 

access into higher levels of dynamics of massively complex biological systems. 

A brief description of modules is provided below. The Imputation Module tries to 

fill in the missing pieces of the data, which is a common issue in biological time-

series samples. The algorithm utilized here relies on the widely-used Expectation 
Maximization (EM) algorithm to find the best candidates (i.e. most probable ones) 

for missing values. We have adapted a generalized version of EM [11] to apply to 

our problem setting. The next Module also performs preprocessing provides a 

suitable smoothing of the time-series for mathematical analysis, which requires 

stable local behavior of the time-series (regarding variations and disregarding spiky 

results). We have employed piecewise cubic Hermite interpolating polynomial 

(PCHIP) curve fitting approach [12] and re-sampled the regressed curve to 

approximately simulate the behavior of the system in an appropriately smoother way 

to accommodate differentiation and other analytic operations.  
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The next few Modules are designed to find the multi-level structure of the 

complex networks. They deal with the twisted behavior that results from the 
connectionism beyond the “build from the simplest blocks” philosophy. In non-

technical terms, connectionist and other learning-theoretic models are constrained by 

the nature of the domain of generalization, and the balance between the sufficiency 

of samples versus overtraining. This implies the requirement of elucidating the 

interrelationship among samples of different levels of significance for estimating 

future dynamics from the sample point (among other technical hurdles to overcome 

the biological complexity in predicting the state of the disease from a sparse 

sample.) Thus, to capture the dynamics of the disease, hierarchical clustering 

techniques are employed to build a multi-level structural/behavioral model of 

interactions inside the system.  There are advantages to using hierarchical clustering 

versus non-hierarchical clustering. A comprehensive analysis of different clustering 
methods and their applicability will appear in due time. Briefly, hierarchical 

clustering allows the modeler to take into account various forms of analytic 

singularities, avoiding the artificial assumption that the data samples are uniformly 

chosen from a single probability distribution function (pdf). Hierarchical clustering, 

on the other hand, offers the more realistic assumption that different sub-clusters are 

samples from several pdf that could somewhat differ from the initial pdf. Such 

diversity of pdf is expected in biology, due to variation and other complex biological 

phenomena.  

The remaining Modules attempt to render the novel concepts of special-

architecture empirical networks for topological modeling of complex networks. This 

approach enables us to use a vast spectrum of solid mathematical analysis tools to 

reveal invaluable measures of correspondence between components of complicated 
systems (cf. below for an outline.)  

Two of the Modules capture dynamic similarities, and record the migration of 

different classes of genes with different perspectives towards the inclination of the 

groups’ rate and acceleration change in the course of time. The next Module 

estimates the probability densities in clusters via the exponential family of models. 

The exponential family has the unique advantage of being quite flexible to 

accommodate many deviations from Gaussian models, while still are parameterized 

via a a finite dimensional Riemannian manifold in the Hilbert space of L2-integrable 

functions. The Riemannian structure alluded above is complete and hyperbolic. 

Hypothesizing the consistent behavior of related genes in the hyperbolic space, we 

have measured the distance between the clusters of genes as follows, which we 
mention in the Gaussian case to simplify the presentation. 

The individual clusters are regarded as samples from a probability distribution; 

e.g. for the sake of a concrete illustration, consider two clusters that are regarded as 

samples from two pdfs that are normal distributions 

2~ ( , )j j jN mµ σ
  

(1) 

 

So for any time frame, we have a topological representation of the system that 

evolves in time and shows the behavior of the systems in the frame of the 

hypothesis. To be able to visually inspect the dynamics of the system, we may argue 

based on the experimental results that projection of the high-dimensional networks 



120 A. Ardalan et al. 

 

obtained into the very first principal components gives us a good representation of 

the behavioral model. 

3.1   Mathematical Methods 

First, the solution of the preceding estimate requires transforming the ill-posed 

problem into a regularized well-posed problem [13], [14] and [15] Thus, it is desired 

here to have a well-posed problem regarding estimating the measure on the 

“function-space”. There are well-known methods and more modern ongoing 

research on regularization, and we shall omit the discussion due to lack of space [13] 
and [15]  To readers familiar with learning theory [16], the latter problem could be 

regarded as “Learning the Measure” from the sample of trajectory dynamics (we 

used the data available to us from the TB-infection of mice) through a controlled 

iterative scheme. Thus, we proceed to cast the latter in Statistical Learning Theory. 

Accordingly, we need to have a robust estimate for the error in iterative steps of 

learning to quantify the approximation error for the posterior mentioned above. 

Robust error estimates require stability in solution of sampling. To have a well-

posedness of the inverse problem for the posterior measure will provide desired 

levels of stability. In turn, such stability may be used as the basis for quantifying the 

approximation of inverse problems for functions in a finite-dimensional-space 

setting. This requires an estimate for the distance between the true and approximate 
posterior distributions, in terms of error estimates for approximation of the 

underlying forward problem. 

 Let µ1 and µ2 be two normal distributions with means m1, m2 and standard 

deviations σ1 and σ2. The computation of distance between them is as 
follows  
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This metric is initially defined for two measures µ1 and µ2 that are absolutely 

continuous relative to a measure λ as: 
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where 
��

��
 terms are Radon-Nikodym derivatives respectively. The definition of (3) 

does not depend on the choice of λ, so (3) does not change if λ is replaced with a 

different probability measure with respect to which both µj are absolutely 

continuous. For two normal distributions (1), the formula for (3) is (2) and readily 

could be used, even helped by symbolic algebra, to improve accuracy of the iterative 

1 2( , )
H

d µ µ
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Learning-theoretic calculations. Control of differences in the Hellinger metric (i.e. 

d2
H) leads to control on the differences between expected values of functions and 

operators (that admit polynomial bounds). Statistical Learning Theory [16] provides 

the tools to complete the remaining steps in this approach. There are other 

computational reasons for choice of the Hellinger metric versus other probability-

theoretic divergences, say from the family of f-divergences such as the Kullback-

Leibler, Wasserstein or other metrics. Among them, one could gain useful estimates 

of bounds more easily using this metric, such as in 

1

2 2 2
1 2 1 2 1 2|| || 2( || || || || ) ( , )Hfd fd f d f d dµ µ µ µ µ µ− ≤ −∫ ∫ ∫ ∫  . 

(5) 

In turn, such bounds point to design of numerical schemes that allow us to solve the 

inverse problem and gain control in relating estimates arising during perturbations in 

the domain and range, respectively. Briefly, in the discussion above, let the integer 

N denote the iteration count, and correspondingly, the estimates Ψ
N
(v;w), µ

N
, such 

that 
��

���
~���(
;�), 

���

���
~����(
;�). Then bounds on (6) provides a sequence of 

improving bounds on (3) that demonstrates when � → ∞, the Hellinger metric 
approaches zero exponentially in N. 

 

| (  ; ) (  ; ) |N
v w v wΨ − Ψ

. 
(6) 

 

For Gaussian densities, these bounds are used to prove that the means and 

covariance operators associated to µN, and µ, are close in the Hilbert-space (or the 
Banach space, in more general circumstances) operator-norms. Therefore, in the 

approach outlined above, we could arrange for the transfer of estimates from the 

numerical analysis of forward problems into estimates for the solution of the related 

inverse problem. 

4   Results and Discussion 

In the preceding arguments, the space of exponential probability density functions is 

a Riemannian manifold, and we need a discrete approximation to capture its metric 

properties within the prescribed error bound. The discrete approximation is typically 

expected to be high dimensional (thousands or more). In the case of normal 

distributions, a number of analytic simplifications are available that allow of us to 

reduce the dimensionality of the metric model. In particular, the Riemannian metric 

could be approximated by sampling of the distance data, and the model reduction for 

the sample agrees with the desired approximation to the Riemannian structure. As 

expected Singular Value Decomposition provides the direct approach, and in the 
case of animal models of the disease (murine), the results are obtained as follows.  

Empirically, we have observed that considering the first three principal components 

retains about 80-85% of the information content of the network (i.e. the ratio of the 

first 3 eigenvalues to the total sum), while the dynamical separation of different 

conditions under study are brilliantly visible. Figures 2 to 7 show a sample dynamics 
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of the TB genes in the level of data. The axes are all relative to a unit-free 

representation of the cluster distances as measured in the Heilinger distance. Figures 
are converted to the 3-dimensional projection metric for visualization purposes. The 

figures are shown in different zoom levels for clarity purposes. 

We have studied, as an example, the dynamics of gene expression profiles of TB-

related families in a period of 24 hours after infection. Profiles are recorded every 4 

hours and a sliding window approach is used to investigate the differences between 

the “behavioral associations” among genes. As could be observed in the figures, 

there is a heart-beat-like pattern between clusters representing the conditions. Each 

point on the graphs represents a cluster of genes in one of the conditions. The 

observable dynamics resemble a group of particles in a force field which approach 

each other and then the repulsing forces cause the system to scatter around.  

The importance of the above-mentioned results is that the behavioral differences 
between the two conditions are observable in the very first stages of getting exposed 

to the invader. The discrimination between the two groups of points (red crosses vs. 

blue circles) which correspond to the different conditions, could be observed from 

these graphs as a growth/shrinkage pattern. From a clinical treatment viewpoint, this 

is of utmost importance as one could be treated before the infection spreads out of 

control.  

At the time of writing this article, we are making progress in translating the 

above-mentioned visualization-based observations (the differences between the two 

cases) into a classification scheme within the 3-dimensional principal component 

space (please see figures). Our method is based on design of new algorithms that 

minimizes the empirical risk function (analogous to the Vapnik soft-margin SVM 

empirical risk functional), using the hyperbolic metric in lieu of the Euclidean 
distance in the theory by Vapnik and others. While the computations are much more 

challenging, the mathematical results that must guarantee the existence of a 

minimum for the risk functional and the desired regularity properties are ensured 

through extensive mathematical work on analysis of functions on hyperbolic spaces, 

in particular, bounded sequences of approximations to a minimum converge 

exponentially (hence even faster than the Euclidean metric) and there is a unique 

limit point for the sequence, hence a unique minimum. The details will be provided 

in a forthcoming paper. 
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Fig. 2-7. These samples of the visualization movie frames show instances of patterns in 
dynamics of the hyperbolic representation of the analyzed sample of TB gene expressions in 
time. The dynamics is approximated discretely, then projected to the 3-dimensional reduced 

model from the hyperbolic space. The first three dominant principal modes capture more than 
80% of the information contents in the original hyperbolic space. Once the separations of 
different dynamic patterns are accomplished in the reduced model, clearly the original data 
will also demonstrate the separation by considering the inverse-images of the separating 
hyperplanes. 

 

Fig. 3 A sample of projection of the gene expression dynamic pattern in the reduced model.         
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Fig. 4 A sample of projection of the gene expression dynamic pattern in the reduced model.        

  

Fig. 5 Another sample of projection of the gene expression dynamic pattern in the reduced 
model 
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Fig. 6 Another sample of projection of the gene expression dynamic pattern in the reduced 
model. 

 

 

 

Fig. 7 Another sample of projection of the gene expression dynamic pattern in the reduced 
model. 



126 A. Ardalan et al. 

 

References 

1. World Health Organization: Global Tuberculosis Control: A short update to the 2009 

report. 
2. Volokhov, D.V., Chizhikov, V.E., Denkin, S., Zhang, Y.: Mycobacteria Protocols. 

Humana Press, New York (2008). 
3. World Health Organization, http://www.who.int/topics/tuberculosis/en/ 
4. Murray, M.: Tuberculosis: The Essentials. Informa Healthcare, New York (2010) 
5. Hopewell, P.C.: Tuberculosis: The Essentials. Informa Healthcare, New York (2010) 
6. Triccas,J.A., Berthet,F.X., Pelicic,V., Gicquel,B.: Use of Fluorescence Induction and 

Sucrose Counter Selection to Identify Mycobacterium tuberculosis Genes Expressed 

Within Host Cells. Microbiology 145, 2923--2930 (1999)  
7. Talaat, A.M., Lyons, R., Howard, S.T., Johnston S.A.: The Temporal Expression Profile of 

Mycobacterium tuberculosis Infection in Mice. Proc.Natl.Acad.Sci, pp. 4602--4607. 
PNAS, USA (2004) 

8. Wilson, M., DeRisi, J., Kristensen, H.H., Imboden, P., Rane, S., Brown,P.O., Schoolnik, 
G.K.: Exploring Drug-induced Alterations in Gene Expression in Mycobacterium 
tuberculosis by Microarray Hybridization. Proc.Natl.Acad.Sci. pp. 12833--12838. PNAS, 
USA (1999) 

9. Behr, M.A., Wilson, M.A., Gill, W.P., Salamon, H., Schoolnik, G.K., Rane, S., Small, 
P.M.: Comparative Genomics of BCG Vaccines by Whole-Genome DNA Microarray. 
Science 284, 1520--1523 (1999) 

10.Fisher, M.A., Plikaytis, B.B., Shinnick, T.M.: Microarray Analysis of the Mycobacterium 
tuberculosis Transcriptional Response to the Acidic Conditions Found in Phagosomes. 
J.Bacteriol. 184, 4025--4032 (2002) 

11. Schneider, X.: Analysis of incomplete climate data: Estimation of mean values and 
covariance matrices and imputation of missing values. Journal of Climate. 14, 853--871 
(2001)  

12.Fritsch, F. N., Carlson,R. E.: Monotone Piecewise Cubic Interpolation. SIAM J. Numerical 
Analysis. 17, 238--246 (1980) 

13.Poggio, T., Girosi, F.: Regularization algorithms for learning that are equivalent to 
multilayer networks. Science. 247: 978--982 (1990) 

14.Girosi, F.: An Equivalence Between Sparse Approximation and Support Vector Machines. 
Neural Computation. 10, 1455--1480 (1998) 

15.Smola, A.J., Schölkopf, B.: Form Regularization Operators to Support Vector Kernels. 
Morgan Kaufmann (1998) 

16.Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (2000) 

 

 


