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Abstract. The growing processing power available in FPGAs and other 
embedded platforms, associated with the ability to generate high resolution 

images and interface with pointing devices, opened the possibility to create 
devices with sophisticated user interfaces. This paper presents an innovative 
tool to automatically generate debug, diagnostic and monitoring graphical 
interfaces to be integrated in embedded systems designed using Petri net 
based controllers. Devices powered with the new debug and diagnostic 
interfaces benefit from lower maintenance costs and simplified failure 
diagnostic capabilities, leading to longer product life cycles with the 
corresponding environmental and sustainability gains. To demonstrate the 
validity of the tools proposed, the paper presents an application example for a 

Car Parking controller, including results on a working prototype. 
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1   Introduction 

Graphical debug and monitoring tools have always played a very important role in 

the development of embedded and automation systems. Due to the lack of resources 

and processing power available in hardware used to deploy these solutions, the tools 

have traditionally relied on software running on external personal computers. 

However, the growing adoption of reconfigurable hardware platforms (ex. 

FPGAs) in embedded and industrial automation solutions brought increased 

processing power associated with the capability to generate high resolution images 

and interface with pointing devices, as mice and touch-screens, with no significant 
additional cost. 

This paper presents a tool framework to the automatic generation of graphical 

debug, diagnostic and monitoring interfaces directly in FPGA hardware. This 

approach has many advantages over traditional solutions because the tools can be  

used after the development, test and validation phase terminates, to perform 

maintenance tasks and help diagnose mechanical and electrical faults. 

The new tool takes advantage and extends a previous framework [1] containing 

design and modeling tools based on IOPT (Input-Output Place-Transition) Petri nets 
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[2], simulation and automatic code generation tools for micro-controllers or FPGAs, 

plus an Animator tool to produce Graphical User Interfaces associated with the 
IOPT model execution [3]. 

The proposed solution analyzes a PNML file [4] generated by the referred tool 

chain describing an embedded system controller and automatically creates a set of 

XML files to the Animator tool, containing a debug and monitoring animation 

screen. This screen contains a graphical image of the IOPT Petri net model and a set 

of animation rules to display the status of the model in real time, including net 

marking, transition status and input and output signals. The system designer can 

later integrate this animation screen in the final application user interface.  

2   Contribution to technological innovation and sustainability 

The main innovation presented in this paper is the capability to automatically 

generate debug and monitoring graphical interfaces for embedded systems, with 

zero additional design effort and negligible cost. The complete tool chain can 

generate full embedded system controllers for FPGAs, including the controller and 

an animated GUI with a debug and monitoring interface, without writing a single 
line of code. 

Adding graphical debug and monitoring interfaces to embedded devices can have 

an enormous environmental impact and greatly contribute for sustainability. To 

better understand those impacts, embedded devices should be separated into two 

classes: industrial automation systems and end-user appliances. 

Industrial automation systems generally have high availability requirements 

because downtime in one system can stall entire production lines, causing effective 

downtime over entire production plants, with the consequent delivery delays and 

high labour loss. In light of this problem, the performance of maintenance and 

technical assistance services is regarded with special importance. 

Technical assistance interventions are generally characterized by a typical pattern: 

whenever an assistance call is received by an equipment supplier, a technical team is 
immediately scheduled to visit the costumer's site and diagnose the problem, 

returning home to fetch the required parts, followed by a second visit to implement a 

solution. 

Embedding diagnostic and monitoring capabilities in the final systems can 

effectively break this pattern, as machine operators and the factory's maintenance 

engineers, with the help of the vendor's remote assistance, have the means to 

diagnose problems and identify damaged parts, reducing the number of travels to 

just one. Factory's maintenance engineers can even receive training to use auto-

diagnostic systems to solve most problems and replacement parts can be sent using 

express mail services, avoiding the need to send technicians altogether. This solution 

results in faster repair times, minimized down-times and equipment suppliers can 
operate with smaller technical assistance vehicle fleets, reducing energy 

consumption and  contributing for sustainability. 

Another indirect result is the reduction of redundant production units: to minimize 

downtime, industrial facilities generally purchase spare units of the most sensitive 

machinery. The number of redundant units is calculated according to past failure 
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statistics (MTBF) and average repair time. Lower average repair times enable the 

reduction of spare units,  contributing even more to sustainability. 

Embedded systems present in end-user appliances can also benefit from internal 
diagnostic and monitoring interfaces. In this class of systems, a high percentage of 

technical assistance incidents is related to improper user operation and bad device 

configuration, as users did not receive adequate training, resulting in unnecessary 

travels to support centers. The addition of internal diagnostic graphical interfaces 

provide an effective way to simplify the communication between end-users and 

help-desk staff, allowing to solve most problems remotely. 

When devices suffer from real defects, internal debug and diagnostic interfaces 

can provide the same gains experienced by industrial systems: end-users and help-

desk staff can cooperate, diagnosing failures remotely and making possible to send a 

technician with all the necessary parts to quickly solve the problem. 

Due to the lack of capability to diagnose and solve problems in a single visit, most 

brand-name manufacturers strategy consists in immediately replacing systems 
covered by warranty with new units. This approach poses many environmental 

hazards, as the consumables present in the old systems are simply disposed as 

garbage and the old systems cannot be resold as new after repair, being often also 

disposed. 

When appliances malfunction after warranties expire, there is a common 

perception that they are not worth repair, due to the low cost of new units, high 

transportation costs and high technical-center fees. This happens even when faults 

are caused by trivial problems as a loosen screw, a melted fuse or a wrong EPROM 

configuration. 

The addition of integrated debug and diagnostic interfaces can help users detect 

most problems and repair the most trivial ones or use the service of local repair 
shops.  These shops used to be very popular several decades ago, but the advent of 

ever increasing complex electronic devices, requiring the use of specialized 

diagnostic equipment, turned the repair of sophisticated electronic devices almost 

impossible. The addition of integrated diagnostic and debug interfaces can revive 

local repair shops and allow end users repair trivial problems, largely increasing the 

useful life cycle of consumer devices, minimizing the creation of hazardous garbage 

and contributing to great environmental and sustainability gains.  

3   Comparison with present solutions 

Debug and monitoring interfaces present in embedded systems development tools 

generally run on external computers connected to the physical embedded systems 

using special purpose data cables. This is the usual method employed in industrial 

programmable logic controllers. However, an industrial facility generally contains 

many systems from multiple vendors and it is not always possible to hold the 

development tools for all of them. 
Even the development tools may not be enough to run diagnostics because the 

tools often require access to the real model files used during system development. 

However, equipment suppliers may deny access to the development model files to 
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hide implementation secrets and to prevent unauthorized changes that may 

compromise safety and regulation compliance, leading to possible legal problems. 
On the contrary, the diagnostic interfaces produced by the new tools are available 

to end users without requiring any dedicated hardware or software, yet do not allow 

system changes. To prevent access to implementation secrets, vendors can choose to 

install a simplified debug model, providing enough information to diagnose failures, 

but hiding sensitive information. 

Most current end-user appliances include some degree of self-test and diagnostic 

utilities. For example, some printers have self-test pages and many devices generate 

error codes presented as display messages or blinking  LED counts. 

However, the self-test routines must be specifically programmed during the 

development phase and only detect typical failures predicted by system developers. 

On the contrary, the new tools do not require programming and automatically 
append a debug and diagnostic interface to the final system, helping diagnose all 

types of failures, including those not originally foreseen.  

More importantly, the traditional diagnostic routines do not work when a device 

reaches a deadlock situation. To perform diagnostics the device must be restarted, 

failing to identify transient error conditions. In alternative, the new diagnostic 

interfaces run in parallel with the system controller and can be recalled at any time, 

independently of the main controller status and without causing any state changes, 

thus allowing the detection of deadlock and transient faults. 

Finally, the error codes generated by current devices often have no value to the 

end users because the meaning of the codes is only available to manufacturer's 

technical staff. On the opposite, the new debug and diagnostic interfaces provide an 

intuitive animated graphical user interface, displaying the state of the system in real 
time as a Petri net model, which is the underlying modeling formalism. 

4  Related work 

Embedded systems design based on Petri net models has been the subject of many 
research publications, ranging from Low level nets [2][5] to High level colored nets 

[6][7][8]. 

Most development frameworks based on Petri net models include debug and 

visualization interfaces [8][9], to exhibit the system state, but these tools generally 

work only during simulations running on personal computers and have not been 

ported to physical embedded devices.  

Some Petri net frameworks include tools to create interactive animations [8][10]. 

For instance, the Colored Petri net Tools, a very successful modeling tool-chain, 

contains animation design tools [11][12] to enhance user-friendliness and simplify 

communication with persons with no knowledge about Petri net formalisms. 

Other authors have worked on automatic code generation from Petri net models 
[13][14][15], to allow the rapid development of embedded applications. These tools 

automatically generate software source code and low level hardware descriptions 

implementing the behavior described by the model.  

 The contribution presented in this paper is based on a previous work [1][3] 

combining automatic software and hardware co-generation with the capability to 

design animated graphical user interfaces for embedded systems. The animations are 
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automatically generated from the original Petri net model and a set of rules 

associating the visibility and position of graphical objects, varying according to the 

system state evolution. 
Using the previous tools, a designer could rapidly create embedded applications 

with sophisticated graphical user interfaces, without writing code and without  

needing deep understanding about software and hardware design, thus bringing 

embedded systems design to a much broader audience. 

In fact, the previous generation of tools already included the capability to 

implement debug and diagnostic interfaces, but those interfaces had to be designed 

by  human operators, drawing a background image and defining a large set of rules 

to display the system state, one at a time. However, this operation was repetitive, 

error prone and time consuming, specially with large models. In contrast, the new 

tool generates the desired results without any human intervention. 

5  Development flow 

The tools introduced in this paper are based on a development flow presented in 

[16], beginning with the analysis of system behavior through the identification of 

patterns of use, leading to the creation of UML Use-Case diagrams. The captured 
use-cases will then be modeled using IOPT Petri nets [2], with the help of the 

Snoopy IOPT net editor. After a first version of the controller model is finished, the 

editor will generate a PNML [4] file, with the corresponding XML representation. 

This PNML file will be the base for all subsequent development steps. 

IOPT nets are a non-autonomous Petri net class inheriting the characteristics from 

the well known Place-Transition nets [17], with the capability to associate input and 

output signals and events to model elements, enabling the deterministic specification 

of the interaction between models and the external environment. IOPTs also benefit 

from maximal step semantics, meaning that all autonomously enabled transitions 

will immediately fire as soon as the associated guard conditions and events are 

active. To enable automatic conflict resolution, IOPT nets include transition 

priorities and other characteristics, like test arcs and arc weights that improve 
modeling capabilities.     

Automatic code generation is performed through two applications, PNML2VHDL 

and PNML2C, that create system controllers based on VHDL hardware descriptions 

or “C” source code, according to the desired embedded target device. 

Using the PNML file as input to an “Animator” tool, the developer can create a 

graphical user interface, consisting of multiple screens containing animated 

graphical objects. The PNML model is used as a base to define a set of rules 

describing the evolution of the animated graphical objects. 

The animations created in the previous step can be presented on a personal 

computer during model simulations, to debug, validate and correct the designed 

controller model. Another tool – GUIGen4FPGA - will automatically generate 
VHDL code and EEPROM image files, to enable the execution on FPGAs. 
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Fig. 1. Proposed development framework 

To finally generate a running embedded application it is necessary to configure the 

physical hardware platform, through the association of model signal names and 

events to real FPGA pins, using a Xilinx UCF file. 

The proposed development flow includes a simulation and animation step where 

the user can test and correct the designed model, returning to the first development 

stage whenever incorrect behavior is detected. However, the validity of the 

simulation phase largely depends on the ability to also model and simulate the 
physical environment surrounding the embedded controller, which can be a complex 

task. In those cases the validity of the models can only be checked on a physical 

prototype.  

One of the goals of the present work is to provide tools to help debug and identify 

mistakes during the prototype test phase. This way, the former development flow 

has been improved and a new tool “PNML2Anim4Dbg” was developed to 

automatically generate debug and diagnostic animation screens. Figure 1 displays a 

diagram describing the improved development tool chain. 

6  Implementation 

The tool introduced in this work, “PNML2Anim4Dbg”, receives input from a 

PNML file containing a IOPT Petri net model describing a system controller and 

automatically generates a set of XML files for the “Animator” tool. 

As both the input and output files are encoded using XML, the XSLT (Extensible 

Style-sheet Transformation) [18] framework was selected to implement the new 
tool, due to the capability to automatically validate syntactic grammars using DTDs 

or Schema and XML pattern matching, XML tree navigation and query tools 

(XPATH). 

The usage of XSL transformations applied to PNML files is as old as the PNML 

format itself, since the first documents introducing the PNML standard [4], already 

proposed XSL transformations as a tool to convert models between different Petri 

net classes. 

As seen in figure 2, the PNML2Anim4Dbg creates 5 files: A SVG background 

image, a «rul» file containing all generated animation rules, an «env» file 

associating a list of BMP image files to shortcut names present in the animation 
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rules, an «ov» file with a list of output values generated by the controller and a 

«pdc» file containing a list of input signals and the corresponding user interface 

methods. 

Fig. 2. PNML2Anin4Dbg data flow 

Although other XSLT based PNML to SVG converters were available [19], a new 

IOPT2SVG transformation was created, to account with the non-autonomous nature 

of IOPTs, including input and output signal graphical representations, different test 

and normal arc representations, transition priorities, etc. 

The SVG background file contains an exact image of the IOPT model and can be 

edited and rearranged using most vector graphics editors, and finally converted to 

BMP format. During this phase it is possible to hide model comments and other 

superfluous information. Together with the SVG background image, a set of static 

image files is also appended to the animation project, containing pictures to display 
tokens inside places, signs to highlight the autonomously enabled transitions and 

LED signs to display active input and output signals. 

 The rules file contains a large set of rules to draw the correct number of tokens 

inside each place, to check if each transition is autonomously enabled and to check 

for active I/O signals. For more information about implementation details, the 

complete source code will be available online.   

Complex hierarchical models, composed of several sub-net components, can be 

processed at different abstraction levels. Developers can choose simplified models 

showing only the top level components, full detailed models describing the entire 

system in a flat network, or create an hierarchy of multiple interface screens 

showing individual components. The tools do not require the entire model and can 
work with partial models, just requiring identifier consistency with the final 

controller system, maintaining the same place, transition and signal names. 

7  Test and validation 

To test and validate the new tools, a car parking lot controller IOPT model (fig. 3) 

was processed using the proposed development flow to automatically generate a 

working prototype with a debug and diagnostic interface. This model is simple 
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enough to eliminate the need for a detailed explanation, yet allows the 

demonstration  of the proposed tools. 

Fig. 3. Demonstration example IOPT model 

The hardware prototype was implemented using a Xilinx Spartan 3A 1800 Video 

Kit, including a Spartan 3A-DSP 1800 Starter Board, an Avnet EXP PS Video 

Module and a 1024x768 LCD panel. The starter board contains an FPGA and 

several memory devices, including a parallel flash EPROM to store images and a 

DDR2 RAM memory used to implement a video frame buffer. 

Fig. 4. Prototype photos – Application GUI on the left and debug interface on the right 

Figure 4 displays photos of the prototype showing the Parking Lot animation screen 

and the corresponding debug and diagnostic screen. The car parking lot model 

contains one entrance, one exit, parking places for up to N vehicles, entry and exit 

barriers and inputs representing entry and payment sensors. 

8  Conclusion and future work 

An embedded system prototype was created and tested using the proposed tools, 

demonstrating the capability to rapidly generate embedded applications with 
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sophisticated user interfaces and embedded debug, monitoring and diagnostic 

interfaces, using IOPT models and without the need to write any line of software 

code or design hardware components. 
The new tools fully automate the task of diagnostics interface creation, generating 

a solution with minimal hardware requirements, just needing a few hundred Kbytes 

of EPROM space to store the debug interface images and some FPGA space to 

implement the animation rules. However, as most rules share code with the 

controller implementation, the VHDL logic optimizer tools will greatly simplify the 

generated hardware, removing duplicate signals. For example, both the controller 

and debug animation modules check if transitions are autonomously enabled and 

will share the same hardware. Image compression techniques, as simple as RLE 

encoding, can further reduce the total EPROM memory consumption to less than 

50Kb per animation screen, with performance gains and no additional complexity. 

Although the prototype was implemented using a standard FPGA development 

kit, it is possible to use the same tools to create very low cost production embedded 
controllers using dedicated PCB boards, requiring just one FPGA/ASIC chip, 2Mb 

of video RAM memory, one EEPROM, voltage regulators, interface logic and 

connectors, competing with the equivalent micro-controller based solutions.  

As a result, in the near future will be possible to add debug and diagnostic 

interfaces to many embedded devices with no additional labour cost and irrelevant 

hardware cost increments, turning all the environmental and sustainability gains 

described in chapter 2 into a reality. 

Future work include image the possibility to add pause and step-by-step execution 

capabilities to the generated interfaces. While the implementation of step-by-step 

execution mechanisms during simulation and software execution is trivial, it can 

pose technical challenges for hardware implementations, specially on asynchronous 
systems. Pausing and step-by-step execution on real hardware devices can create 

additional difficulties because certain real-time functions cannot be safely 

interrupted   without the risk of causing permanent damages to external hardware 

and mechanical components. To solve this problem, additional work must be carried 

on. 
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