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Abstract. Systems biology of plants offers myriad opportunities and many 

challenges in modeling. A number of technical challenges stem from paucity of 

computational methods for discovery of the fundamental properties of complex 

dynamical systems in biology. In systems engineering, eigen-mode analysis has 

proved to be a powerful approach to extract system parameters. Following this 

philosophy, we introduce a new theory that has the benefits of eigen-mode 

analysis, while it allows investigation of complex dynamics prior to estimation 

of optimal scales and resolutions. Information Surfaces organize the many 

intricate relationships among “eigen-modes” of gene networks at multiple 

scales. Via an adaptable multi-resolution analytic approach, one could find the 

appropriate scale and resolution for discovery of functions of genes in plants. 

This article pertains the model plant Arabidopsis; however, almost all methods 

can be applied to investigate development and growth of crops for research on 

sustainable agriculture. 

Keywords: Dynamical Systems, Multiscale Analysis, Multiresolution Analysis, 

Eigen Analysis.  

1   Introduction 

The concept of dynamical systems has been proposed to investigate natural and 

synthetic time-dependent systems. Poincare first introduced dynamical systems to 

study the qualitative aspects of orbits in celestial mechanics [1]. The theory of 

dynamical systems has  been extended to model broader classes of systems whose 

time-evolution may or may not have periodic orbits [1][2] [3] [4] [5].  

The numerical study of dynamical systems is focused on  modeling the current 

state of the system [3] for data mining purposes (i.e. supervised and unsupervised 

classification) [6]. On the other hand, one can argue the need for models that explain 

the potentially complex relationships among two or more systems [7]. In this 

direction, we introduce a measurement for quantifying the distance between two 

dynamical systems. We illustrate the utility and technical power by application of the 

theory to time-series of gene expression profiles. The data set is comprised of a set of 

genes stored in rows along time-steps corresponding to expression values in columns.. 

To analyze such arrays, we introduce the method of  “InfoSurf”s in accordance to the 

three well-known mathematical theories, namely, multiscale analysis [8], 
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multiresolution analysis [9], and Eigenanalysis [10]. The corresponding algorithms 

are implemented on a high-performance computing (HPC) platform. Briefly, the 

algorithm considers a two-dimensional array consisting of ‘m’ observations in the 

rows and ‘n’ time points in the columns. Clearly, when we regard the value of the i
th

 

observation at the j
th

 time point as the height (z-coordinate) of a point (x=i, y=j) in a 

three-dimensional Euclidean space, then we would obtain a surface. In InfoSurf 

theory, one extracts the entries of the 2-dimensional array from eigenvalues of 

suitable operators, as outlined in Section 2.  

In section 3, computational steps of the InfoSurf method are illustrated. In section 

4 we apply InfoSurf’s to a biological dynamical system associated to the Arabidopsis 

Thaliana.  

2   Contributions to Value Creation 

Sustainable agriculture is regarded as a domain that can greatly benefit from 

transformative innovations in molecular and cellular plant biology. Molecular 

methods in biotechnology and agricultural engineering promise rapid breeding of new 

lines of crops that would sustain stress from global warming and other harsh climatic 

events. Success of molecular methods depends on breakthroughs in molecular 

systems biology, and invention of new ways of understanding the complex dynamics 

formed by time-course data from genes, proteins and other biomolecules. The 

technical demand for development of new algorithms to surmount the present 

computational challenges requires re-examination of traditional methods that have 

proved successful in non-complex systems and their dynamics. In particular, 

researchers must address discovery of the necessary biological properties implicit in –

omic data, and mine the abundance of dynamical features that could be observed only 

in appropriate scales and via optimal resolutions. 

This research addresses some of the bottlenecks that are posed in providing 

effective applications of systems biology to sustainable agriculture. Thus, the 

applications of this research will contribute towards value creation and directly 

addressing critical scientific problems that face humankind today. 

3   Method 

One of the novelties of InfoSurf theory is that it provides a new representation for 

“global information contents” in a dynamical system that could be localized in a 

heterogeneous manner. InfoSurf’s allow such information contents (in the sense of 

Shannon) in a discretized dynamical system (Mmxn) to be considered as a surface in 

three-dimensional Cartesian coordinates, where  appropriately defined estimates of 

(Shannon) information are assigned to the entries in rows and columns of the matrix 

constructed from the dynamics. In the case of gene expression time-series, the 

dynamical systems matrix consist of m rows (genes) with n columns (expression 

values sampled at time points), and typically � ≫ � for whole genome or a similar 

High Throughput experimental assay due to that the high cost of performing  
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experiments for each period of time[11][12]. On the other hand, in the time-series that 

we study,  smooth interpolation of the few number of time points enable us to include 

a greater number of finer-scale and finer-resolution attributes for situations that the 

time-series implicitly encode such information about the dynamics [13].This method 

is a row-wise interpolation, and  the choice of the algorithm is based on the regularity 

properties that are required from various real-valued or vector-valued functions. 

Further, regularity of the interpolation functions is important to ascertain the 

smoothness of the corresponding “information surfaces”. Also, an InfoSurf requires 

regularity in how different columns are arranged in relative position (column-wise 

regularities). To achieve such regularity, an InfoSurf sorts the objects based on three 

features: the area underneath the curve for (a) the signal (a row), (b) its first derivative 

(speed of change), and (c) its second derivative (concavity).  With these preliminary 

steps in mind, an InfoSurf is a transformation of the dynamical system onto a 

piecewise smooth surface (possibly without information loss, if so-desired, or 

according to estimates for lossy transformations) through multiscale and 

multiresolution analysis of singular value decompositions (SVD) of the numerous 

matrices that arise in the process.  

3.1   Multiscale Analysis 

Multiscale methods are used more commonly in recent years due to advances in 

computational speed that allow running parallel tasks for each scale simultaneously, 

as well as other hardware advances. In addition, an increasing number of biological 

modeling problems rely on disparate mathematics to describe phenomena at different 

spatial and temporal levels. Multiscale analysis [8] provides a bridge between these 

levels. Further, it allows one to analyze phenomena that are interdependent, to make 

their relationship explicit, and provide a synthesis of heterogeneous scales that might 

otherwise be impossible or too difficult to properly describe within the scope of a 

single model. Particularly in systems biology, biomolecular reactions occur at 

different rates (scales) and must be estimated at appropriate resolution that varies 

according to scale. In our setting,, multiscale analysis plays an important role to 

analyze data at different levels for biological realistic modeling, and as a result, 

requires us to identify new phenomena at different scales that may otherwise go 

undetected. This ability is especially important for the Arabidopsis systems biology, 

because the size of its genome is quite large (about 30,000 genes and other significant 

non-coding RNAs, or perhaps more.) To perform multiscale analysis on a dynamical 

system (Mmxn), InfoSurf theory considers a sliding window, a sub-matrix �, of size 

� × �, 2 ≤ � ≤ min(�, �), of Mmxn. The size of � varies between the construction of 

different surfaces but remains invariant for the entire surface under consideration and 

for the comparison of two surfaces as will be described later in this section. The sub-

matrix slides in two directions; the first sub-matrix is defined by � = M(1: �, 1: �) 
(left-top), and slides to right and down by one in every iteration. The following 

pseudo-code illustrates the process: 
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for i=1:m-k 
 for j=1:n-k 
  S = M(i:i+k, j:j+k) 
  //Performing analysis on S 
 end 
end 
 

One finds that this process projects the matrix Mmxn to a super-matrix containing 

(m-k)x(n-k) sub-matrices of dimension KxK. Overlaps in the sub-matrices reveals the 

continuous influence of objects on other groups of objects and allows for the method 

to proceed continuously and reveal information between data points that would 

otherwise be unaccounted for. Considering every point in different windows 

illustrates the effect of an object on other object/objects and is seen multiple times as 

the object remains in the sliding window. This amplifies the (probabilistic) effect(s) of 

the object and allows for it to be observed in different sliding windows. This allows 

for easier identification of an object and increases the accuracy of the algorithm when 

analyzing a dynamical system. 

3.2   Multiresolution Analysis 

Multiresolution analysis allows for larger features of a system to be reduced to the 

relationships of its fine features. For an example, in a gene expression time-series it 

allows for the detection of groups of genes that are potentially up or down regulated 

with respect to one another when verified through relevant biological data. Through 

use of surfaces, one can observe patterns of gene activity and reduce the macroscopic 

picture to the action of the individual genes responsible. Considering subsets of genes 

through different resolutions increases the accuracy of the InfoSurf algorithm. The 

different resolutions of InfoSurf are characteristic of the sliding window (Skxk) 

described in the previous section. Through use of this window, InfoSurf’s detection 

capabilities are increased and it allows for the extraction of specific attributes of genes 

and the construction of their interrelationships.  

Starting multiscale analysis at a larger scale, larger k for the size of the sliding 

window, allows the algorithm to identify regions of differences of two dynamical 

systems. InfoSurf uses the multiresolution process to zoom into the regions with very 

fine sliding windows (smaller values of k) and identify the specific objects 

corresponding to the differences between the dynamical systems. It provides the 

ability to capture relationships between groups of objects (coarse scale) and tune it to 

identify relationships between the objects (fine scale) [14]. 

3.3   Eigen Analysis 

Eigen analysis is a fundamental method of data analysis and the investigation of 

structural properties of datasets. The use of  Eigen analysis in the InfoSurf algorithm 

was inspired by the kinematics of surface deformation as described in [15]. This 

analysis of InfoSurf is conceptually similar to what introduced in [16] in analysis of 

neuronal activation data in experiments on rat Anterior Cingulate Cortex in pain 
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research, and in [17] for MEG data of human brain for detection of activated brain 

regions by measuring the starting point and estimate on length of time of the magnetic 

fields generated by neuronal spiking and ion transport properties. 

For every invariant sliding window (section 3.1), InfoSurf computes its 

eigenvalues and eigenvectors. The eigenvalues of a sliding window represents a) the 

heights of the surface. The distribution of eigenvalues is representative of the number 

of eigenvectors needed to reconstruct S. Since the number of necessary eigenvalues 

for reconstruction of a surface depends on the smoothness of the surface, b) 

eigenvalues can be used to represent the smoothness of the surface. For every 

dynamical system the InfoSurf computes the eigenvalues of every sliding window. 

Since the sliding window iterates in two-dimensions the eigenvalues are stored in 

entries of a matrix, E.  For the r
th

 row and s
th

 column iterations, InfoSurf associates 

the absolute value of the sum of the eigenvalues to E(r, s). The matrix E is called an 

Eigensurface and represents the internal properties of data. After constructing the 

Eigensurface, the InfoSurf method calculates the first and second derivatives of the 

Eigensurface. These derivatives are useful for identifying circadian clock information 

of dynamical systems [18]. While the first derivative is characteristic of the slope of 

the change of the eigenvalues, relating the change of the information content of each 

window and the objects within it, the second derivative provides information on the 

concavity, or acceleration of changes, circadian clock, and shows whether a subset of 

objects within each window is having a larger or smaller effect as time progresses.  

After constructing the representative surfaces, the InfoSurf measures the dissimilarity 

between the dynamical systems. To compare two dynamical systems, the InfoSurf 

generates seven surfaces: a) distance of the Eigensurfaces, the surfaces of the first 

derivatives, and surfaces of the second derivatives. b) free-scale distance of the three 

representative surfaces, and c) the Jacobian matrix. The distance is the absolute value 

of the direct subtraction of two matrices (surfaces): ����(�, �) = 	���(� − �), and the 

scale-free distance is defined ��������(�, �) = 	
 !"(#$%)

 !"(#)& !"(%)
. The distance surfaces 

show differences/similarities of the dynamical systems. Figure 1 shows different steps 

of the InfoSurf method. 

 

 

Fig.1. The InfoSurf workflow diagram. This figure shows the flow of data in the algorithm. 

After calculating the Distance, Free Distance surfaces, and finding the largest 

differences between the derivative surfaces, multiresolution analysis is applied to 
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locate the biggest differences in behavior of Eigensurfaces, which in turn, focuses 

with a finer resolution and more accuracy towards an area in the original data set that 

caused these differences.  

4   Discussion and Experimental Results  

To evaluate the InfoSurf algorithm we used two dynamical systems from  the 

Arabidopsis Diurnal Rhythms experiment [19]. The data represents gene expression 

levels of Arabidopsis Thaliana when stimulated with changes in temperature and 

light. Samples of 22,810 genes were taken in 4 hour intervals over a period of 48 

hours. The first experiment consists of exposing the plants to constant light and 22
C
 in 

temperature for 12 hours, and then 12 hours of darkness with a 12
C
 temperature. The 

second experiment was from plants that were exposed to light during the entire 

experiment while the change in temperature was the same as the previous experiment. 

The first data set is called LDHC (Light, Dark, Hot and Cold) and the second data set 

is called LLHC (Light, Light, Hot and Cold). Each data set has genes in 22,810 rows 

(genes) and 12 columns (the four hour time steps in the experiments). We interpolated 

the data sets by the cubic SPLINE method row-wise, and then resampled uniformly to 

obtain 100 time points for each gene expression.  

To acquire a smoother starting surface, we sorted the genes through row exchange 

based on the similarity of their time series (i.e. expression values). If we denote the 

time series of a gene by f(t), we consider the value of g(x) 	= 	) f(x) 	+ 	) f′(x) 	+
	) f′′(x) to be a good representation of the shape of the signal. The integrations are 

calculated by the trapezoidal approximation. We sort the LDHC data set and apply the 

algorithm to obtain the control surface; LDHC) and rearrange the second data set 

LLHC to impose the same order of genes in both data sets.  The deformed surface 

corresponds to LLHC.  

To find the genes that have different dynamic behavior in the two data sets, we 

considered the differences between the second derivatives of the two Eigensurfaces 

with the sliding window of size 40, and found the local extrema. These points 

represent a window of 40x40 in the original data sets (40 genes in 40 time steps) 

whose eigenvalues are different in the two data sets. To refine the selection of genes, 

we used a higher resolution sliding window (20x20) inside of the 40x40 matrix. Then 

the Eigensurface is constructed and the second derivative is calculated in order to 

elucidate a better understanding of the genes’ dynamic behavior within their group 

and at a finer resolution. This leads to a 20x20 window in the original data that 

includes the local extrema. We further continued increasing the resolution by using 

the Eigensurfaces of the10x10 and 5x5 sliding windows which yield a 5x5 area (5 

genes in 5 time steps). Algorithm 1 delineates these steps. We considered these 5 

genes as potential candidates for being the culprit for the differences in the 

Eigensurfaces. We then looked up the phenotypic traits attributed to these genes using 

DAVID (the Database for Annotation, Visualization and Integrated Discovery[20]) to 

check their functionality, and  found a gene whose  functionality is related to the 

response of temperature or light stimulus. Due to the  large amount of data we ran our 

program on  high performance computing facilities of the Keeneland project [21]. The 
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time required to run the MATLAB code that implemented the algorithm on our HPC 

Cluster (64 nodes AMD Athlon 2.8 GHz and 32 GB RAM) exceeded 24 hours. This 

computing time was reduced to 3 hours once we implemented the algorithm for the 

Keeneland HPC platform. David listed “response to temperature stimulus” and 

“response to cold” as one of the functionalities of gene AT3G49910 (252235_at), and 

listed response to “light stimulus” and “response to light intensity” for AT2G06850 

(266215_at).  Output of analyzing these data is shown in a supplementary data at 

(http://vv811a.math.wisc.edu/InfoSurf).  
 

Algorithms 1. 
 

1- A ← interpolated LDHC; B ← interpolated LLHC.  

2- Sort A according to similarity of signals; Rearrange B in the same 

order. 

3- eigA ← Eigensurface of A; eigB ← Eigensurface of B (window size 40). 

4- D1A ← first derivative of eigA; D1B ← first derivative of eigB. 

5- D2A ← second derivative of eigA; D2B ← second derivative of eigB. 

6- Delta ← D2A-D2B. 

7- E ← The local extrema of Delta. 

8- for each point “e” in E, do the following: 

8.1- W2A, W2B ← 40x40 window from A and B that starts from 

coordinates of e. 

8.2- Delta2 ← difference of second derivatives of Eigensurface of 

W2A and W2B (with sliding window of size 20). 

8.3- E2 ← The local extrema of Delta2. 

8.4- consider “e2” to be maximum of E2. 

8.5- W3A, W3B ← 20x20 window from A and B that starts from 

coordinates of e2. 

8.6- Delta3 ← difference of second derivatives of Eigensurface of 

W3A and W3B (with sliding window of size 10). 

8.7- E3 ← The local extrema of Delta3. 

8.8- consider “e3” to be maximum of E3. 

8.9- W3A, W3B ← 10x10 window from A and B that starts from 

coordinates of e3. 

8.10- Delta3 ← difference of second derivatives of Eigensurface of 

W3A and W3B (with sliding window of size 5). 

8.11- E3 ← The local extrema of Delta3. 

8.12- consider “e3” to be maximum of E3. 

8.13- select genes in the 5x5 window that starts from coordinates of 

e3, as possible candidates. 
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