
DYNAMIC ADAPTATION, COMPOSITION
AND ORCHESTRATION OF WEB

SERVICES IN VIRTUAL ENVIRONMENTS

Peter Bertok
Stephen Reynolds

RMIT University
Melbourne, AUSTRALIA

peter.bertok@rmit.edu.au

To solve interaction and discovery problems, Web services need to be
unambiguously described. Existing technologies, such as WSDL describe the
functional aspects of Web services, network service end points and interfaces.
The semantic aspects are more difficult to handle, as different organizations
operate in different ways, and may use different information models and
domain specific vocabularies.
This paper explores how ontologies can be used to orchestrate dynamic Web
service compositions. A shared ontology is developed that exchanges data and
meaning. By adding "smarts" to the service description and not including
within the applications’ processing of the data, the descriptions are able to
move freely between domains. Examples from a bookshop service are used
indicate that the proposed method’s is well suited to virtual environments.

1. INTRODUCTION

The World Wide Web is shifting from a predominantly information interaction
platform operating with HTML documents to a service interaction platform
operating with Web services [1], but existing technologies offer only partial
solutions [2]. The power of Web services lies in the successful management of the
relationships and composition of cooperating business services in a distributed
application-to-application (A2A) or business-to-business (B2B) environment. Web
service composition is very complex, due to the high autonomy, high distribution,
and high heterogeneity of the services involved [3].

Today's Web services are predominantly isolated remote data services. An
example is an international online trader that has built an intra-organizational service
that operates within a localised environment. Our goal was to build reactive and
adaptive Web services that can automatically reason with different business schemas
to find a matching service. If a matching service is found, it invokes the service to
form a virtual business environment. This happens automatically without user
intervention.

At the same time, that most existing Web service composition and orchestration
methods are assuming an unknown, but fairly static environment, where once a
matching service has been found, invocation and execution is straightforward. The
solution proposed here addresses the issue of failures by detecting failed services
and invoking replacements.

52

502 PERVASIVE COLLABORATIVE NETWORKS

Web service architecture is implemented via the Web Service Technology Stack
(Table 1). Data moves up and down through the layers, each layer addressing a
separate business problem.

Table 1: The Web Service Technology Stack [2]

 Layer Description
 Discovery Means for consumers to fetch descriptions of providers
 Description Description of the service, contact point and its use
 Packaging Date encoding, serialization and marshalling
 Transport Application-to-application protocols. TCP, HTTP
 Network Addressing and routing

Adaptation and composition of Web services is implemented via the Description

and Discovery service layers. In the proposed system, the existing Description and
Discovery service layer were extended, to avoid the need to rewrite other parts of
the infrastructure because of the specialization of the layers.

D i s c o v e r y /
D e s c r i p t i o n

E n v i r o n m e n t

U D D I S e r v e r

Q u e r y f o r W e b S e r v i c e

U D D I R e s p o n s e

W e b S e r v i c e

W e b S e r v i c e M e t h o d s
R e q u e s t

R e t u r n W S D L

W e b S e r v i c eC l i e n t
A p p l i c a t i o n

In v o k e a m e t h o d , u s i n g
S O A P

S O A P R e s p o n s e

Figure 1: Web Service Technologies [2]

To call a Web service, firstly, a web service has to be discovered by querying a

UDDI server. The server returns information about Web services that match the
specified requirements and a link to a WSDL document that details the methods
exposed by the Web service (Figure 1). The methods and parameters described by
the WSDL document are used to build a SOAP request to invoke the web service.

2. PREVIOUS WORK

2.1 Concepts
Carman, Serafini, Traverso [4] propose that the complex problem of Web service
composition can be simplified by breaking services into their constitute parts. An

Dynamic adaptation, composition and orchestration of web services 503

aggregate Web service is composed of atomic Web services. An atomic Web service
is broken into states, document types and actions that collectively identify it
uniquely. Data heterogeneity is resolved by data mapping requirements that decide if
data described by one data type can be substituted by another. DAML-S is used to
specify schemas that describe the operations (precondition, post conditions), goals
and states that are available to the system when it needs to discover and execute
service operations. These schemas would semantically describe data types and
enable other Web services to automatically interpret and match data types.

Sirin, Hendler, Parsia [5] present a prototype for semi-automatic binding of Web
Services based on service constraints. They enhanced the business process flow
representation of BPEL4WS with semantics to enable runtime discovery of Web
Services and to resolve inter-service dependencies during dynamic binding of Web
process flows. Business constraints were captured in the DAM-S ontology
technology, a Semantic UDDI module was to discover the services and a dynamic
binder and invoker was used. However, the Web services and their inter-
dependencies still had to be known at design time.

For composition, Korhonen, Pajunen, Puustjärvi [6] propose that a Web service
compositor should select the most appropriate available service based on policies
and regulations that match the caller’s organizational requirements. They describe
Web services via syntactic, semantic and pragmatic (contextual), properties. They
also introduce the concept of “conversation” to identify all the business documents
that compose a business model. While the solution allows designers to choose Web
service providers that meet organizational goals, it may be too complicated to
achieve business goals.

The WebTransact framework by Tosic, Pagurek, Esfandiari and Patel [7] is a
centralized approach to the management of distributed Web services. It enables
structurally and semantically different services to work together to achieve the same
business goal via composition and by integrating semantically equivalent remote
services. It coordinates the sequence of service invocation within a Web service
composition and manages the data flow between the services.

Automatic orchestration of services has been addressed in static environments
only [11].

2.2 Related Technologies
Collaboration protocol profiles (CPPs) have been defined for ebXML, which
describe the transport, security, communication protocols and business processes an
organization recognizes to set up an ebXML relationship. These protocols and
processes specify syntax and enable communication, but interoperability for
message content, including invocations, has to be provided by additional methods.
Our solution goes further by providing information for service invocation, and
defining a pluggable architecture that does not need additional, connecting elements.

A number of ontological modeling and description methods are available for
Web services, such as WSMO, SWSO, OWL-S, which address the same space.
Some of them also have associated reasoners. Our implementation uses OWL-S
markup language constructs to describe Web service capabilities and properties.

504 PERVASIVE COLLABORATIVE NETWORKS

3. PROPOSED SOLUTION

3.1 Outline and Contribution
We describe a framework for automatic Web service orchestration: for dataflow
management and to manage the execution of atomic units. The Web services share a
stateful context to support distributed transactions, and a compensation process is
available to respond to failure conditions, in particular in case of long-running
transactions. The description of the services allows them to remain mobile and
independent of the deployment environment. Our main contribution is the last part,
dynamic orchestration that addresses issues related to the composition of services
external to the choreographer, and an ability to respond to failure conditions.

3.2 Web Service Description

W e b S e rv ic e s

W W W

S e m a n tic W e b
S e rv ic e s

S e m a n tic W e b

In te ro p e ra b le
S y n ta x

In te ro p e ra b le
S e m a n t ic s

D y n a m ic
R e s o u rc e s

S ta t ic
R e s o u rc e s

A u to m a t ic
R e s o u rc e s

O rc h e s tra te d W e b
S e rv ic e s

Figure 2: Convergence Models Describing Web Services

Approach
Web service description is used to compose Web services into units of work that
accomplish definite goals, e.g. fulfilling a single order of a series of parts from a
buyer to different suppliers. A Web service is unambiguously described by its type,
and is defined by the messages exchanged between its service partners. Web service
type description includes functionality as well as business semantics.

Figure 2 adapted from [8] shows that by converging the syntactic and semantics
models the WWW moves from a static resource environment to a machine-
processable, automatic resource environment, where functional and semantic
information is described, and relationships are published and available for discovery.
Figure 3 (adapted from [10]) illustrates the associated information that needs to be
published to enable a collaborative Web Service Environment.

Active Information Management
In order to be able to move freely between domains, data needs to be classified and
rules applied so each domain can understand not only the data, but also their
relationship. XML only provides syntactic interoperability, and we added semantic

Dynamic adaptation, composition and orchestration of web services 505

information in the form of "smarts" to the data, rather than include it in the
application’s processing of the data [9].

To achieve Active Management of Data we use four properties [9]: XML
documents for a single domain, XML documents composed from multiple domains,
XML documents that can describe relationships, and Trust Relationships.

After applying all the above, the data is application-independent, composable
and classifiable. The data is tagged with information that is machine-understandable
and can be extended to form an ontology.

Figure 3: Advanced Web Service Model

Business Profiles
Profiles help organize and apply rules and properties of Web services within diverse
application environments. To support discovery of services, Web services are
abstracted to a set of high-level specifications that allow for description of profiles
and a means of associating them to Web services. The profile lists the technical
information needed to do business electronically, i.e. which XML schemas to use,
security rules etc, and describe the relationship and dependencies between services.
The profiles exist as independent documents to enable them to be composed in
unique combinations and need to be accessible online.

Web Service Orchestration
To compose Web services into a structured workflow, an implementation neutral
standard vocabulary (structured protocol) script is used, together with an
orchestration engine to implement the process descriptions. This script is compiled
into runtime scripts that are executed by the orchestration engine. The script

Organisations

refers to

Web Service
Orchestration

Engine coordinates

describes

describes discovers refers to

Linked
Resources for example Database

Linked
Information includes Collaboration

Documents

506 PERVASIVE COLLABORATIVE NETWORKS

provides syntax for describing business workflow logic, sequences and logic, and
description of public and private business protocols.

Web Service Description
We describe a Web service as an ontology, so Web service profiles become
syntactically interoperable, and terms can be mapped between the participating Web
services. This adds a representation and inference layer on top of the Web’s current
layers and enables Web services to play the different roles, such as information
brokers, search agents, information filters and intelligent information integrators.

Because of using an ontology language, Web services possess knowledge
representation and can behave like plug-in sockets when connecting the user to
virtual business environments. We can also use ontological reasoners both at edit-
time (model construction) and at run-time (system execution), and Web service
compositors can organise individual Web services into aggregated Web services by
matching business requirements with suitable Web service partners.

3.3 Capturing Web service profiles

E ffe c t

O u tp u t

C o n d it io n s

In p u ts

P a ra m e te rs

P re c o n d itio n s
W e b

S e rvic e
W e b

S e rvic e

F
igure 4: Web services externalising their properties to create plug-in services

To externalise a Web service, it is viewed as a black box with properties, such as
preconditions, input, output etc, as shown in figure 4. The rich description of Web
services enables them to connect and form virtual business environments (figure 5).

Web service workflow
The composite service workflow is described by first defining each atomic service,
then by describing the composite services that aggregate the cooperating atomic
services into a structured workflow. An example is ItemBuy, a composite Web
service that uses the following atomic services: LocateItem, PutItemInCart, SignIn,
CreateAcct, CreateProfile and LoadProfile. The Web service parameters and service
workflows are stored in a repository.

3.4 Implementation

Our prototype extends the Description Layer (Web Service Technology Stack) by

Dynamic adaptation, composition and orchestration of web services 507

adding an upper ontology layer to describe the Web services and service properties
unambiguously. The advantages of this approach are:

• It complies with the Web Service Technology Stack, which is universally
available.

• Existing Web service technologies such as WSDL and UDDI can be used
to combine the syntactical discovery of Web services (via an UDDI
registry) with the semantic description of a Web service profile Ontology.

Virtual environments

Virtual environments

Database
Services Data

Services

Authentication
Services

Payment
Services

Payment
Services

Virtual environments

Data
Services

Figure 5: Web services creating business virtual environments

The profile matching is transparent to the requester. A Service Broker provided
the functionality of discovering suitable Web services, by querying syntactic Web
service information via the UDDI registry and semantic information via the
semantic repository. The results of the queries are combined and presented to a
Reasoner that mediates between various Web service profile ontologies by applying
rule reasoning. This approach also provides limited fault-tolerance, and service
failures result in the initiation of a new discovery process.

The combination of semantic and syntactical querying enabled service providers
to publish their services via the UDDI server. The UDDI service was extended with
an OWL classification identifier that also contained links to associated OWL-S
documents. The Service Broker queries the UDDI server to obtain the OWL
classifier, downloads the associated OWL-S document links and sends the links to
the Reasoner. The Reasoner uses the links to query the services profile, identify the
service types and discover if the service types are compatible. This reasoning is
automatic. The rules defined were simple “is a” or “has a” rules which can be
extended. The service providers must plan ahead when they publish their services
by adding this special classification.

4. CONCLUSION

Web service compositions often involve external services that are outside the control
of the orchestrator. This raises the problem of matching services syntactically and
semantically, and responding to failures.

508 PERVASIVE COLLABORATIVE NETWORKS

In our solution, automatic service discovery and composition was achieved via
modelling the services property types and their messages as an ontology, which
enabled a reasoner to mediate between services. To discover matching services,
machines automatically query and reason the data, arbitrate between descriptions
and then choose the most appropriate service, based on a given set of rules.

After detecting service failures or unavailability of services, the framework can
initiate a new service discovery to readjust execution, and provide limited resilience.

A prototype model was built that combines a UDDI registry service with a
semantic framework. By enhancing the WSDL descriptions, a Web service is
unambiguously identified via its type. Using ontologies enabled reasoning by
querying the data to identify type and its relationships. The prototype demonstrated
that services could understand not only their data types but also other services’ data
types that they had no prior knowledge of or relationship with.

5. REFERENCES

1. Paulo F. Pires, Mário R. F. Benevides, and Marta Mattoso “Building Reliable Web Services

Compositions”. Computer Science Department. COPPE - Federal University of Rio de Janeiro,
Brazil, 2002

2. James Snell, Doug Tidwell and Pavel Kulchenko “Programming Web Services with SOAP”. O’Reilly,
ISBN: 0-596-00095-2, January 2002

3. Vladimir Tosic, Bernard Pagurek, Babak Esfandiari, Kruti Patel. “On Various Approaches to Dynamic
Adaptation of Distributed Component Compositions”. OCIECE-02-02, June 2002.

4. Mark Carman and Luciano Serafini and Paolo Traverso, “Web Service Composition as Planning”,
carman,serafini,traverso@irst.itc.it, http://www.zurich.ibm.com/pdf/ebizz/icaps-ws.pdf

5. Evren Sirin, James Hendler, and Bijan Parsia, “Semi-automatic Composition of Web Services using
Semantic Descriptions”, University of Maryland, Computer Science Department, College Park MD
20742, USA evren@cs.umd.edu, University of Maryland, MIND Lab, 8400 Baltimore Ave,
College Park MD 20740, USA hendler@cs.umd.edu, bparsia@isr.umd.edu

6. Jarmo Korhonen,Lasse Pajunen and Juha Puustjärvi, “Automatic Composition of Web Service
Workflows Using a Semantic Agent”. Software business and Engineering Institute,Helsinki
University of Technology, {jarmo.korhonen,lasse.pajunen,juha.puustjarvi}@hut.fi, Proceedings of
the IEEE/WIC International Conference on Web

7.Vladimir Tosic, Bernard Pagurek, Babak Esfandiari, Kruti Patel, “On the Management of Compositions
of Web Services”. Network Management and Artificial Intelligence Lab, Department of Systems
and Computer Engineering, Carleton University, Ottawa, Ontario, Canada {vladimir, bernie,
babak, kpatel}@sce.carleton.ca

8. The Semantic Web, A guide to the Future of XML, and Knowledge Management, Micheal C.
Doaconta, Leo J Obrst, Kevin T. Smith, Wiley Publishing. Inc, 2003

9. Michael C. Daconta, Leo J. Obrst,Kevin T. Smith, Wiley Publishing, Inc. “The Semantic Web-A Guide
to the Future of XML, Web Services, and Knowledge Management” ISBN: 0471432571.

10. Tim Berners-Lee, Original Web proposal to CERN, http://www.w3.org/History/1989/proposal.html
11. Dyaz, G.; Cambronero, M.E.; Pardo, J.J.; Valero, V.; Cuartero, F. “Automatic generation of Correct

Web Services Choreographies and Orchestrations with Model Checking Techniques”,
Telecommunications, 2006. AICT-ICIW apos;06. International Conference on Internet and Web
Applications and Services/Advanced International Conference on
Volume , Issue , 19-25 Feb. 2006 Page(s): 186 - 186

