DISCOVERY AND SELECTION OF

CERTIFIED WEB SERVICES THROUGH
49 REGISTRY-BASED TESTING AND

VERIFICATION

Dimitrios Kourtesis', Ervin Ramollari',
Dimitris Dranidis®, Iraklis Paraskakis'

! South East European Research Centre (SEERC),

Research Centre of the University of Sheffield and CITY College
Mitropoleos 17, 54624, Thessaloniki, GREECE

dkourtesis @seerc.org, erramollari@seerc.org, iparaskakis @seerc.org

2 Computer Science Department, CITY College,
Affiliated Institution of the University of Sheffield,
Tsimiski 13, 54624 Thessaloniki, GREECE

dranidis @city.academic.gr

Reliability and trust are fundamental prerequisites for the establishment of
functional relationships among peers in a Collaborative Networked
Organisation (CNO), especially in the context of Virtual Enterprises where
economic benefits can be directly at stake. This paper presents a novel
approach towards effective service discovery and selection that is no longer
based on informal, ambiguous and potentially unreliable service descriptions,
but on formal specifications that can be used to verify and certify the actual
Web service implementations. We propose the use of Stream X-machines
(SXMs) as a powerful modelling formalism for constructing the behavioural
specification of a Web service, for performing verification through the
generation of exhaustive test cases, and for performing validation through
animation or model checking during service selection.

1. INTRODUCTION

Reliability is a fundamental prerequisite for establishing collaboration within a
network of peers, be them human or machines, and issues such as trust management
and evaluation of trustworthiness are significant challenges in Collaborative
Networks research. Collaborative business processes built on top of service-oriented
infrastructures in networked organisations are typically realised as compositions of
autonomous but trustworthy Web services provided and consumed across intra- and
inter-organisational boundaries. The individual Web services that a collaborative
business process comprises are discovered and composed at design-time on the basis
of some specification that is meant to explicate the functional or non-functional
properties of each service.

The formality of this specification may vary depending on the employed service
description framework, and the degree of ambiguity or rigour in the description
determines the extent to which a specification can be amenable to automated



474 PERVASIVE COLLABORATIVE NETWORKS

processing. The correctness of the implementation with respect to its corresponding
specification may also vary, due to modelling inconsistencies that may be intentional
or unintentional. In highly dynamic and loosely coordinated environments, service
specifications are especially likely to become outdated and unreliable sources of
information due to Web service implementations becoming modified or replaced, or
due to other changes in infrastructure. To avoid making design-time decisions based
of inaccurate information and incurring the associated cost of run-time errors,
special care must be taken to ensure that service specifications are reliable, i.e. that
they correspond to the actual service implementations they are meant to describe.

This paper introduces a novel approach towards extending the capabilities of a
service registry with additional functional testing and behavioural verification
functionality that can serve as a basis for overcoming the aforementioned challenge.
We propose the use of Stream X-machines (SXMs) (Laycock, 1993) (Holcombe and
Ipate, 1998) as a modelling formalism for constructing the behavioural specification
of a service at the provider-side, and generating test cases at the registry-side to
verify that the actual service implementation conforms to the specification. A
significant advantage of Stream X-machines compared to other behavioural
modelling and testing formalisms is in their associated testing method, which is
guaranteed to reveal all inconsistencies among an implementation under test and an
advertised specification (Dranidis, Kourtesis and Ramollari, 2007). The Web service
test set that is generated by the registry is represented as a sequence of operation
invocations with appropriate inputs and expected outputs. By applying the generated
set of tests to a Web service implementation and evaluating its responses, the
registry can conclude if it is behaviourally-equivalent to its associated specification.
The registry acts as a certification authority for service specifications and as a
trusted third party that service consumers can rely on for design-time discovery.

An additional feature of the proposed approach that sets it apart from other
solutions in the literature is that the SXM specification and the generated test sets
can be used not only for registry-side verification, but also for consumer-side
validation after discovery and during service selection. Service consumers can
validate the behaviour of every certified candidate service that the registry returns as
a match to their needs, in order to select the most appropriate one. Validation can
take place either by executing the SXM specification with an X-machine animator
and visually inspecting its behaviour, or by performing model-checking to assert
desirable or undesirable properties described by temporal logic formulae. This
allows service consumers to essentially simulate the service behaviour and evaluate
it without having to perform real testing with the associated overhead for both
service consumer and service provider.

The rest of this paper is organised as follows. Section 2 presents a summary of
related work in the domain of model-based Web service testing and verification.
Section 3 provides an overview of the Stream X-machine modelling formalism that
this paper suggests as a suitable means to model the behaviour of stateful Web
services. Section 4 provides an overview of the proposed holistic approach for
discovery and selection of certified services through registry-based testing and
verification, presenting the approach from the perspectives of the provider, the
registry and the consumer, and emphasising on their associated activities. Section 5
concludes the paper by summarising the main points of the presented work and
suggesting directions for future research.



Discovery and selection of certified web services 475

2. RELATED WORK

A number of approaches have been proposed for the verification of Web services by
employing model-based testing. In (Sinha and Paradkar, 2006) a method is proposed
for annotating a WSDL document with concepts from an OWL ontology
representing inputs, outputs, preconditions and effects, and automatically translating
the resulting WSDL-S specification into a semantically-equivalent extended Finite
State Machine (EFSM) model. A set of manual or automated techniques for
generating test cases based on the EFSM model is also provided. The techniques
vary in terms of adequacy criteria, coverage and completeness.

The use of an EFSM modelling formalism for describing the dynamic behaviour
of a Web service is also proposed in (Keum, Kang and Ko, 2006), where a manual
procedure is suggested for deriving the EFSM model from a WSDL description. The
proposed EFSM model is an FSM extended with memory, predicate conditions and
computing blocks for state transitions. With proper tool support the EFSM model
can be used for automatically generating Web service test cases with increased test
coverage that includes both control flow and data flow. The authors provide
experimental results showing that their method has the potential to find more faults
compared to other methods, but notably without completeness guarantees.

The number of research works proposing the incorporation of Web service
model-based testing and verification functionality in service registries is rather
limited. The addition of a lightweight verification mechanism to UDDI service
registries was first proposed in (Tsai et al, 2003). The key idea was to attach so-
called “test scripts” to Web service specifications for both service registry and
service consumers to use. Before publishing a service advertisement at the service
registry or before consuming a service the associated test scripts could be used to
test the actual service and verify its behaviour. The proposed approach is very
abstract and does not prescribe the use of a specific formal or informal method of
representing service behaviour, nor one for generating the test scripts.

In (Bertolino et al., 2005) the authors propose a framework with an enhanced
UDDI registry that generates test cases for Web services, executes them, and
monitors the interactions between the service under test and other services already
registered with the framework in order to verify conformance to the published
specification. Emphasis is placed on verifying that a Web service is interoperable
with other registered services, and the framework is called an “audition framework”
in the sense that a Web service undergoes a monitored trial before being admitted.
The authors suggest that the behavioural service specification should be expressed
as a UML 2.0 Protocol State Machine (PSM) diagram that can be semi-
automatically transformed into a Symbolic Transition System (STS) on which
existing automated test generation methods can be readily applied. The utilisation of
the proposed behavioural specification formalism for matchmaking among service
advertisements and requests is left undefined. Discovery is assumed to be supported
by the typical means available in UDDI, i.e. keyword-based search and
categorisation.

In (Heckel and Mariani, 2005) the authors propose a “high-quality service
discovery” approach that incorporates automatic testing and verification of Web
Services before allowing their registration to the service registry. The authors
propose Graph Transformation (GT) rules as the modelling formalism to be used for



476 PERVASIVE COLLABORATIVE NETWORKS

constructing behavioural service specifications. Conformance test cases are to be
automatically generated from the provided specification and executed against the
target Web Service. If the test is successfully passed, the service can be registered.
Apart from testing and verification the GT-based service specifications can be also
used for matchmaking among services and service requests that have been also
expressed via GT rules. The proposed approach does not prescribe the use of UDDI
or any other specific service registry specification as the technical infrastructure to
support the approach.

A significant drawback in the above model-based verification approaches is that
the test case derivation methods they employ cannot guarantee completeness in
testing of the service implementations. In contrast, the Stream X-machine testing
method on which our approach relies is proven to generate a complete set of test
cases that can reveal all inconsistencies among an implementation under test and an
SXM specification (Ipate and Holcombe, 1997). Moreover, a novel proposition in
our approach is the use of the behavioural service specification by service
consumers to perform validation after discovery, during the phase of service
selection, through model animation or model checking. Validation is an important
utility for service consumers, since it can assist them in selecting the most
appropriate services from a list of candidates, regardless of the matchmaking and
discovery method that was used to deliver this list.

3. MODELLING SERVICES AS STREAM X-MACHINES

Stream X-machines (SXMs) are a computational model capable of representing both
the data and the control of a system. SXMs are special instances of the X-machines
introduced in 1974 by Samuel Eilenberg (Eilenberg, 1974). They employ a
diagrammatic approach of modelling control flow by extending the expressive
power of finite state machines. In contrast to finite state machines, SXMs are
capable of modelling non-trivial data structures by employing a memory attached to
the state machine. Moreover, transitions between states are not labelled with simple
input symbols but with processing functions. Processing functions receive input
symbols and read memory values, and produce output symbols while modifying
memory values. The benefit of adding the memory construct is that the state
explosion is avoided and the number of states is reduced to those states which are
considered critical for the correct modelling of the system’s abstract control
structure. A divide-and-conquer approach to design allows the model to hide some
of the complexity in the transition functions, which are later exposed as simpler
SXMs at the next level.
A Stream X-machine is defined as an 8-tuple, (2, I, Q, M, @, F, g9, my) where:

- 2and I"is the input and output finite alphabet respectively;
- Q is the finite set of states;
- M is the (possibly) infinite set called memorys;

- @, which is called the type of the machine SXM, is a finite set of partial
functions (processing functions) ¢ that map an input and a memory state to
an output and a new memory state, ¢ : 2’ xM — ' XM



Discovery and selection of certified web services 477

- Fis the next state partial function that given a state and a function from the
type @, provides the next state, F' : Ox® — Q (F is often described as a
state transition diagram);

- go and my are the initial state and memory respectively.

Apart from being formal as well as proven to possess the computational power of
Turing machines (Holcombe and Ipate, 1998), SXMs offer a highly effective testing
method for verifying the conformance of a system’s implementation against a
specification. Stream X-machine models can be represented in XMDL (X-Machine
Definition Language), a special-purpose markup language introduced in (Kapeti and
Kefalas, 2000). XMDL has served as a common language for the development of
numerous tools supporting Stream X-machines (Kefalas, FEleftherakis and
Sotiriadou, 2003). An extension of XMDL to support an object-based notation was
suggested in (Dranidis, Eleftherakis and Kefalas, 2005). The object-based extension,
called XMDL-O, enables an easier and more readable specification of Stream X-
machines.

In order to model the behaviour of a Web service using a Stream X-machine, the
modeller must perform data-level and behaviour-level analysis to derive the
appropriate SXM modelling constructs. Parallels can be easily drawn among a
stateful Web service and a Stream X-machine, since they both accept inputs and
produce outputs, while performing specific actions and moving from one internal
state to another. SXM inputs correspond to SOAP request messages, outputs
correspond to SOAP response messages, and processing functions correspond to
Web service operation invocations in specific contexts (an operation invocation may
map to more than one processing functions because of the potentially different input
data parameters values provided). In addition, the modeller has to define the
memory structure, not only as a substitute for internal state, but also to supply
sample test data that can become part of the generated test sequences. SXM-based
modelling is applicable in the context of complex conversational Web services
where the result obtained from invoking a Web service operation depends not only
on the consumer’s input, but also on the internal state of the service.

login_failed add_item

login_OK add_item check_out

waiting empty_cart non_empty_cart

clear_cart

Figure 1 — Example of Stream X-machine model for a shopping cart Web service

Figure 1 illustrates an example SXM model of a simple Web service that provides
the backend functionality of a shopping cart to Web-based client applications. The
service comprises four operations (login, addToCart, clearCart, and checkout)
allowing customers to perform authentication, add items to the shopping cart, clear



478 PERVASIVE COLLABORATIVE NETWORKS

the cart, and proceed to checkout. The SXM modelling constructs depicted in Figure
1 are the states belonging to set O, the names of processing functions belonging to
set @, and the state transition diagram corresponding to F. A fully-detailed
description of this modelling example, including a complete definition of all
processing functions, inputs, outputs and memory is provided in (Dranidis,
Kourtesis and Ramollari, 2007).

4. ROLES AND ACTIVITIES IN THE PROPOSED
APPROACH

The approach that we put forward in this paper involves all three types of
stakeholders in a SOA environment, i.e. service providers, service registries, and
service requestors (consumers). As depicted in Figure 2, the role of each stakeholder
is associated with a number of activities. In brief, we propose that the behaviour of a
Web service should be formally modelled at the provider-side, in order to facilitate
registry-side verification at the time of service publication and consumer-side
validation at the time of service selection. In the following three sections we present
an overview of the activities performed by each stakeholder in the scheme.

.
S
S
“

(3) advertisement
generation

(4) test case °
generation

Service
Registry

Service
Provider

Service
Requestor

(9) invocation

{ A %,
" ,-* (8) validation I . ‘
=== and selection (1) specification ">~.__.*

Figure 2 — Stakeholder roles and ordering of activities in the proposed approach
4.1 Provider-side construction of a behavioural specification

The objective of the service provider is to construct a formal model reflecting the
behaviour of the service to be published (activity 1 in Figure 2) using the Stream X-
machine (SXM) formalism as described in section 3. The SXM model must be
encoded in XMDL-O and stored in an external document that must be subsequently
“linked” with the service’s WSDL document. The association among the two
document artefacts can be established by employing the SAWSDL (Semantic
Annotations for WSDL) (Farrell and Lausen, 2007) specification and its mechanism
for annotating Web service descriptions with pointers to externally maintained



Discovery and selection of certified web services 479

semantically-rich specifications. In order to indicate the association between the two
documents an SAWSDL modelReference annotation pointing to the URL of the
SXM specification document must be placed within the wsdl:portType definition of
the service’s WSDL document.

The process of constructing an SXM model from a WSDL description can be
automated to a great extent by modelling inputs, outputs, preconditions and effects
(IOPE) as concepts in an OWL ontology and then pointing to them from within a
WSDL document through SAWSDL annotations. The description of an approach for
modelling Web service inputs and outputs in an OWL-DL ontology and then
creating semantically annotated service descriptions using SAWSDL is provided in
(Kourtesis and Paraskakis, 2008). The method has been extended for modelling
preconditions and effects in an OWL-DL ontology and for capturing the IOPE
semantics of Web service interfaces through SAWSDL annotations. An algorithm
has been also defined for the semi-automated transformation of the resulting
SAWSDL specification into an SXM specification, but the presentation of these
extensions is beyond the scope of this paper. Modelling of IOPE semantics in the
aforementioned manner would not only assist in increasing the automation of the
SXM model construction process, but would also serve as a basis for performing
semantically-enriched matchmaking and discovery for high-precision retrieval of
services, as discussed in (Kourtesis and Paraskakis, 2008b).

Regardless of the method used to construct the SXM specification, manual or
semi-automated, as soon as the semantically annotated WSDL document is
complete, the provider must submit it to the service registry for processing and
publication (activity 2).

4.2 Registry-side generation of test cases and verification

The objective of the service registry is to verify that the service implementation is
functionally conformant to its advertised specification, and if this holds, provide a
certification for the service advertisement. All activities within the service registry
are automated, and their ordering is as follows. Firstly, the registry processes the
incoming SAWSDL description and creates a service advertisement with a status of
pending certification (activity 3). Secondly, the attached SXM specification is used
for deriving a complete set of test cases that can reveal all inconsistencies in the
service implementation to be verified (activity 4). Lastly, the executable tests are run
by the registry’s SOAP testing engine and if the results are successful (i.e. if the
produced outputs match the expected ones) the service advertisement obtains
certification status (activity 5).

The benefit of performing this procedure at the registry-side and at the time of
publication, as opposed to performing it on the consumer-side at the time of service
selection, is that it needs to be performed only once, by a trusted third party that
assumes the responsibility of certification and can be held liable for its decisions.
Since only successfully tested services receive certification status by the registry,
consumers can be sure that the specifications of the services they discover are
reliable sources of information.

As already mentioned, the SXM testing method that serves as the foundation of
our approach is guaranteed to generate a complete, finite set of test cases that can
reveal all inconsistencies among an SXM specification and an implementation under
test. This is an important criterion for entrusting the process of verification and



480 PERVASIVE COLLABORATIVE NETWORKS

certification to the registry. The SXM testing method is a generalization of the W-
method (Chow, 1978) and works on the basis that both specification and
implementation could be represented as Stream X-machines with the same type @
(i.e. both specification and implementation have the same processing functions),
where @ satisfies two fundamental design for test conditions: (i) completeness with
respect to memory — all processing functions can be exercised from any memory
value using appropriate inputs, and (ii) output distinguishability — any two different
processing functions will produce different outputs if applied on the same
memory/input pair. More details about the derivation of the test sequences are
provided in (Dranidis, Kourtesis and Ramollari, 2007).

For our testing approach to be applicable, we assume that the operations of the
Web service under test follow the request-response message exchange pattern, i.e.
they accept a request message from the consumer and return a response message.
This makes it possible to fulfil the condition for output distinguishability, and also
enables the testing engine to understand which processing functions have been
activated during an execution path based on responses of the service. We do not
consider this restriction important or unrealistic, since the request-response message
exchange pattern is currently the typical way of engineering Web services.

4.3 Consumer-side validation and service selection

The next activity in the process is for the service consumer to formulate a discovery
query and submit it to the service registry (activity 6). The registry will perform
some form of matchmaking based on the available advertisements and the specified
request, and return the results (activity 7). The discovery and matchmaking method
by which the candidate services will be derived is independent from the rest of the
approach, and can be based on any existing method. A semantically-enhanced
service matchmaking method such as the one described in (Kourtesis and
Paraskakis, 2008) would however by strongly encouraged, since it is free of
ambiguity, takes more information into consideration, and has the potential of
resulting in more accurate matches. In any case, if the registry returns more than one
certified services as matching candidates, the consumer must go through a service
selection process (activity 8).

As already discussed, the SXM specification that is associated with each of the
certified candidate services can be used not only for registry-side verification, but
also for consumer-side validation during service selection. A method that enables
behavioural validation is model animation through appropriate tools. During
animation the consumer feeds the SXM model with sample inputs while observing
the current state, transitions, processing functions, memory values, as well as
outputs. The sample inputs to be provided for driving the animator can be the actual
test data that were generated and used by the service registry at the phase of
verification. This would relieve the service consumer from the burden of re-
generating the data from the SXM specification.

The animation process can be readily supported by existing tools. X-System
(Kapeti and Kefalas, 2000) is a Prolog-based tool supporting the animation of
Stream X-machine models, while a Java-based graphical user interface on top of X-
System is also available. In addition to animation, model checking techniques can be
employed on the SXM model to check for desirable or undesirable properties
specified with temporal logic formulae. Research on X-machines already offers a



Discovery and selection of certified web services 481

model-checking logic, called XmCTL, which extends Computation Tree Logic
(CTL) with memory quantifiers in order to facilitate model-checking of temporal
properties in X-machine models (Eleftherakis, Kefalas and Sotiriadou, 2001).

5. CONCLUSIONS

The contemporary IT infrastructure landscape is changing rapidly, and SOA-based
solutions are becoming dominant. Collaborative business processes layered on top
of SOA infrastructures are typically realised as compositions of autonomous Web
services that are discovered and composed on the basis of some specification
explicating their functional or non-functional properties. In highly dynamic and
loosely coordinated environments service specifications can easily become outdated
and dissolve into unreliable sources of information. To avoid making design-time
decisions based of inaccurate information and incurring the associated cost of run-
time errors we propose a registry-based testing and verification approach that can be
used for ensuring that service specifications are reliable, i.e. that they correspond to
the actual service implementations they are meant to model.

The approach that we put forward in this paper involves all three types of
stakeholders in a SOA environment, i.e. service providers, service registries, and
service consumers. The service registry becomes a trusted third party and
certification authority that undertakes the responsibility of testing a service’s
implementation to verify that it conforms to its advertised formal specification. We
propose the use of Stream X-machines (SXMs) as a powerful modelling formalism
for constructing the behavioural specification of a Web service at the provider-side,
in order to facilitate registry-side verification at the time of service publication and
consumer-side validation at the time of service selection.

The particular strengths of the presented approach compared to other works in
the literature can be summarised in three points. Firstly, a significant advantage of
Stream X-machines compared to other behavioural modelling and testing
formalisms is in their associated complete testing method, which is guaranteed to
reveal all inconsistencies among a specification and the implementation under test.
Secondly, the SXM specification and the generated test sets can be used not only for
registry-side verification, but also for consumer-side validation after discovery and
during service selection. Thirdly, the proposed approach can be readily supported by
a number of existing tools for SXM modelling, test case generation, verification, and
validation, as well as an existing open source service registry implementation for
performing semantically-enhanced publication and discovery of services. The main
objective for future research is the consolidation of existing techniques, methods and
tools into a comprehensive application framework and the development of the
connecting components and user-friendly interfaces that would be required in order
to yield an all-inclusive solution with industrial applicability.

6. ACKNOWLEDGMENTS

This research work was partially supported by FUSION (Business process fusion
based on semantically-enabled service-oriented business applications), a research



482 PERVASIVE COLLABORATIVE NETWORKS

project funded by the European Commission’s 6" Framework Programme for RTD
under contract number FP6-IST-2004-170835 (http://www.fusion-strep.eu/).

7.

10.
11.
12.

13.

14.

15.

16.

17.

18.

REFERENCES

Bertolino A., Frantzen I, Polini A. and Tretmans J. Audition of Web Services for Testing
Conformance to Open Specified Protocols. Architecting Systems with Trustworthy Components,
Springer LNCS 3938, 2006, pp. 1-25.

Chow T.S. Testing Software Design Modelled by Finite State Machines. IEEE Transactions on
Software Engineering, Vol. 4, 1978, pp. 178-187.

Dranidis D., Eleftherakis G., and Kefalas P. Object-based Language for Generalized State Machines.
Annals of Mathematics, Computing and Teleinformatics (AMCT), Vol. 1, No. 3, 2005, pp. 8-17.
Dranidis D., Kourtesis D. and Ramollari E. Formal Verification of Web Service Behavioural
Conformance through Testing. Annals of Mathematics, Computing & Teleinformatics (AMCT), Vol.
1, No. 5, 2007, pp. 36-43.

Eilenberg S. Automata, Languages and Machines, Volume A. Academic Press, New York, 1974.
Eleftherakis G., Kefalas P., and Sotiriadou A. XmCTL: Extending Temporal Logic to Facilitate
Formal Verification of X-machines. Analele Universitatii Bucuresti, Matematica-Informatica, 50:79-
95, 2001.

Farrell J. and Lausen H. (Eds). Semantic Annotations for WSDL and XML Schema (SAWSDL). W3C
Recommendation, August 2007.

Heckel R. and Mariani L. Automatic Conformance Testing of Web Services. In Cerioli M. (Ed.):
FASE 2005, LNCS 3442, Springer-Verlag Berlin Heidelberg 2005, pp. 34-48.

Holcombe M. and Ipate F. Correct Systems: Building Business Process Solutions. Springer Verlag,
Berlin, 1998.

Ipate F. and Holcombe M. An integration testing method that is proved to find all faults.
International Journal of Computer Mathematics, Vol. 63, 1997, pp. 159-178.

Kapeti E. and Kefalas P. A Design Language and Tool for X-Machine Specification. Advances in
Informatics, Fotiadis D. and Nikolopoulos S. (Eds), World Scientific, 2000, pp. 134-145.

Kefalas P., Eleftherakis G. and Sotiriadou A. Developing Tools for Formal Methods. In Proceedings
of the 9th Panhellenic Conference in Informatics (PCI 2003), November 2003, pp. 625-639.

Keum C., Kang S. and Ko LY. Generating Test Cases for Web Services using Extended Finite State
Machine. In Proceedings of the 18th IFIP International Conference on Testing Communicating
Systems (TestCom 2006), Springer, 2006, pp. 103-117.

Kourtesis D. and Paraskakis 1. Web Service Discovery in the FUSION Semantic Registry. In
Abramowicz W. and Fensel D. (Eds.): BIS 2008, LNBIP 7, Springer-Verlag Berlin Heidelberg 2008,
pp. 285-296.

Kourtesis D. and Paraskakis I. Combining SAWSDL, OWL-DL and UDDI for Semantically
Enhanced Web Service Discovery. In Bechhofer S. et al.(Eds.): ESWC 2008, LNCS 5021, Springer-
Verlag Berlin Heidelberg 2008, pp. 614-628.

Laycock G. The Theory and Practice of Specification-Based Software Testing. PhD thesis,
Department of Computer Science, University of Sheffield, UK, 1993.

Sinha A. and Paradkar A. Model-based Functional Conformance Testing of Web Services Operating
on Persistent Data. In Proceedings of Workshop on Testing, Analysis and Verification of Web
Services and Applications (TAV-WEB’06), July 2006, pp. 17-22.

Tsai W.T., Paul R., Cao Z., Yu L., Saimi A. and Xiao B. Verification of Web Services using an
Enhanced UDDI Server. In Proceedings of 8th IEEE International Workshop on Object-oriented
Real-time Dependable Systems (WORDS 2003), January 2003, pp. 131-138.



