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Abstract. A virtual enterprise (VE) is a temporary organization that pools the 

core competencies of its member enterprises and exploits fast changing market 

opportunities. The success of such an organization is strongly dependent on its 

composition, and the selection of partners becomes therefore a crucial issue. 

This problem is particularly difficult because of the uncertainties related to 

information, market dynamics, customer expectations and technology speed up. 

In this paper we propose an integrated approach to rank alternative VE 

configurations in business environments with uncertainty, using an extension of 

the TOPSIS method for fuzzy data, improved through the use of a stochastic 

multiobjective tabu search meta-heuristic. Preliminary computational results 

clearly demonstrate the potential of this approach for practical application. 

1   Introduction 

The success of a Virtual Enterprise (VE) strongly depends on all of the participating 

organizations being capable of cooperating as a single unit. Therefore, an adequate 

selection of partners is surely very important to overcome the fragilities of this type of 

organization (e.g., lack of formal contracts and heterogeneity of companies), that are 

much related with trust [1]. 

Moreover problem solving with explicit consideration of uncertainty may have a 

very high impact on real world situations, as problems arising in practice are 

becoming increasingly complex and dynamic, due partially to the fast development of 

communications that makes the perception of changes more rapid, stochastic and 

difficult to forecast [2]. Stability cannot be considered a reasonable assumption any 

more as we do not have perfect information either in terms of the VE projects (some 

activities or activity features, like the processing time, or the resources capacity 

cannot be known with certainty) or in terms of the characteristics and behaviours of 

the companies that will perform those activities (e.g., market capacity entrance). 

Moreover, each company’s performance is affected by the operations or decisions of 

the others, i.e., there is a propagation of uncertainty through the members of a supply 

chain, and in the business environment customers’ needs and preferences, market 

forces, technologies, and even the original problem being solved may change [3]. 

In many situations (like in partner selection) decisions have to be made in 

environments with high uncertainty. Actually, in dynamic environments, the context 
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may change at any time, making a current VE no longer viable. In such a situation a 

new VE composition that better fits the prevailing circumstances has to be found.  

In Stochastic Combinatorial Optimisation Problems, all or part of the information 

about the problem is unknown, but it is possible to assume some knowledge about its 

probability distribution. To our best knowledge, there is in the literature no explicit 

reference to stochastic versions of the partner selection problem in the context of 

virtual enterprises. An interesting and complete survey about supplier selection that 

can be found in Aissaoui et al. [4] reflects this situation. Nevertheless, various models 

are available to select supply chain partners with uncertainty and risk (see e.g., [5-8]). 
Uncertainty in the configuration of collaborative networks has also been object of 

study by analytical or multi-agents approaches but not in terms of stochastic models 

(see e.g., [9] or [10]). 

In this work we propose the use of a multistage stochastic model that captures 

both the stochastic and dynamic elements of real world situations, as a way to deal 

with uncertainty. Unfortunately, realistic stochastic models often lead to optimisation 

problems impossible to solve due to their astronomical number of possible outcomes. 

Therefore some kind of approximation procedure has to be performed. Our approach 

is based on a scenario tree formulation and makes use of the flexible hybrid algorithm 

presented by Crispim and Sousa [11] adapted to deal with uncertainty. This algorithm 

combines multiobjective (tabu search) with a multiattribute (fuzzy TOPSIS) 

technique. The scenario reduction technique adopted aims at reducing the vast 

number of possible scenarios to a manageable scenarios subset, keeping the 

approximation as close as possible to the original.  

The remainder of the paper is organized as follows. In Section 2 the problem is 

formulated as a scenario tree, in section 3 the method used to solve the problem is 

presented, in Section 4 an illustrative example is described and finally, in Section 5 

some preliminary conclusions are presented. 

2  Scenario trees 

The discretization of the problem formulated as a scenario tree is a standard approach 

to solve multistage stochastic programs. A scenario is a path starting at the root node 

and ending at a node of the last period T. Along time, in different stages, several 

uncertain events can occur. In this way a representation is obtained for a finite number 

of possible realizations of the future outcomes of a given variable x (Figure 1).  At 

each stage we have as many nodes as different realizations of ξ. The stages do not 

necessarily refer to time periods, but they correspond to steps in the decision process 

[12]. A (conditional) probability pij > 0 (such that  is associated to each arc 

of the tree. Therefore, at each stage, decisions must be made for different probability 

values. In scenario-based multistage stochastic programs, for feasibility reasons, one 

assumes that the probability distribution is discrete, and concentrated on a finite 

number of points, or branches. We also assume that the probability distributions of the 

various stages are independent of each other. 
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It was found that uncertainties on demand quantity and timing are the two most 

common changes occurring in supply chain management [13].The scenario-

baseapproach attempts to capture uncertainty by representing it in terms of a moderate 

number of discrete realizations of random quantities. We assume here that the values 

taken by random variables ξT are independent between stages.  

Unfortunately, realistic models often lead to optimisation problems impossible to 

solve because of their size. According to Kim [14], in most large-scale stochastic 

programming problems, the total number of outcomes is huge and hence it is 

practically impossible to enumerate those outcomes. Therefore an approximation has 

to be done, i.e., a scenario tree is generated/aggregated/reduced (Figure 2).  
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Fig. 1. Multistage problem formulation 

Fig. 2. Scenario tree generation/reduction 
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Scenario reduction techniques aim at reducing the vast number of possible 

scenarios to a manageable subset (with or without a predefined cardinality). In the 

literature the studies along this idea basically follow one of two different perspectives:  

- partition of the simulated scenarios, for example through cluster analysis 

(e.g., [15]); 

- aggregation methods, for example by merging nodes with similar states of 

the stochastic parameters [16]. 

The objective is to make the scenario tree practically manageable, with a loss of 

information as small as possible. To avoid having to deal with exponentially growing 

scenarios we have used a reduction scheme based on cluster analysis.  

The cluster simulation method adopted is similar to those introduced by Gülpinar 

et al. [17] or Shen and Zhang [15]. The main idea is to partition the simulated 

scenarios into random clusters and select one scenario in each cluster taken as 

representative – this scenario is known as the ‘‘centroid’’ (Figure 2). Therefore, the 

centroids
1
 of the various clusters should be (in some sense) far away from each other. 

In our work, since we do not know the number of clusters in advance, we have chosen 

an agglomerative “hierarchical clustering” approach. In this procedure, to start the 

process, we assume each data point has its own cluster, and with each step of the 

clustering process, these clusters are combined to form larger clusters, in an iterative 

way. “Similarity” among each cluster’s members is measured through an Euclidian 

distance formula (see [18]). 

These principles resulted in the design of a two phase scenario tree reduction 

procedure, as follows: 

Phase 1: Simulation: randomly generate random variables (demand, production 

capacity and processing times) data through simulation.  

- Phase 2: Clustering: the generated data is grouped into clusters around a 

given number of centroids according to the hierarchical clustering scheme. 

Initially, we consider that the probability associated to the various clusters is 

the same and equals a given value - 1/#_of_clusters. After the clustering 

process, these probabilities have to be redistributed amongst the remaining 

scenarios (which correspond to the centroids). Therefore, we consider that 

the probability of each centroid is proportional to the number of elements in 

the respective cluster. 

3  The algorithm 

The algorithm we have designed to cope with uncertainties in partner selection was 

firstly presented in Crispim and Sousa [11] and comprises two phases, namely: 

identifying good VE configurations, and then rank them according to a set of weights 

provided by the decision maker. In the first phase a multiobjective tabu search 

metaheuristic is used. As we take a multi-objective perspective, we are basically 

looking for a set of nondominated alternative solutions (the Pareto frontier). 

                                                 
1
 The centroid of a cluster is the average point in the multidimensional space defined by the 

scenarios, i.e., the cluster’s centre of gravity. 
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A stochastic feasible solution (i.e., a potential VE configuration) is represented by 

a set of companies in the network, associated to the different project activities, along 

with the corresponding attribute values, considered in an uncertain environment.  

In other words, a solution is a subset of potential candidates (that all together form 

a so-called Virtual Breeding Environment) that fulfils the requirements of the project, 

respecting a set of constraints (associated to competencies, capacities…) and resulting 

in values for the different, possibly conflicting objectives. 

In order to evaluate the stochastic Pareto solutions we adopted the stochastic 

domination concept proposed by Medaglia et al. [19] with the exception that we use 

distances instead of probabilities. Let x and y be a pair of feasible solutions for the 

partner selection problem, we say y stochastically dominates x (i.e., ) if and 

only if the following conditions hold: 

 

i) , for 

all k; 

ii) 
 

 

where  is the expected value of the k
th

 objective and D  is 

the distance between  and the target value Tk specified by the DM. In our 

algorithm we propose Tk as the ideal value of the objective and, since we use fuzzy 

sets to express the information, Tk assumes the value of 1 in case of a benefit criterion 

or 0 in case of a cost criterion. Therefore, the differences to the deterministic version 

of the problem is in the way we evaluate each neighbourhood solution, as here a given 

number of samples is randomly determined to obtain the expected value of each 

objective, and the correspondent probability for each stochastic variable. 

In the search (first) phase of the global procedure, we have introduced in the 

metaheuristic algorithm the directional search concept, with the aim of generating a 

good approximation of the set of Pareto solutions, hopefully not neglecting any region 

of the search space. This concept tries to incorporate some important features into the 

algorithm: the ability to generate all available non-dominated solutions and be 

relatively easy to implement and apply. 

The algorithm starts by exploring all objective functions choosing a specific 

objective f1, to be improved, when f1 has not been improved for a certain (large) 

number of iterations. In this situation, in the next iteration, the search only makes use 

of objective f1. 

Since we admit the exploration of unfeasible solutions during the search (e.g., one 

potential VE formation may be unfeasible because of the lack of production capacity 

to satisfy the demand), we apply the same scheme to the constraints, i.e., in cases 

where the search has been performed in unfeasible regions of the solution space for 

too long, in the next iteration, the algorithm only accepts solutions that are feasible for 

the constraint with higher unfeasibility. To direct the search in such occasions we 

make use of two matrices, one for constraints and another for objectives. They are 

somehow similar to a tabu list, but they are used to force, and not to forbid, the search 

in a given direction..                                                                                                                                                                                                                                                          
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For the second phase of the algorithm, we have designed a fuzzy TOPSIS approach 

that accepts different types of variables (numerical, interval, linguistic, etc.) to 

facilitate the Decision Maker preferences expression.  For a more detailed description 

of this procedure see Crispim and Sousa [11].  

 

The algorithm steps are as follows: 

 
Step 0. Initialization: Initialize the tabu list (the list of moves that is forbidden for a given number of 

iteration) and the ND (non-dominated) solutions list. 

 

Step 1. Select the current solution: Randomly (uniformly) select a single current solution from the set of 

ND solutions. 

 

Step 2. Search the neighbourhood: Search all possible defined moves, according to the adopted 

neighbourhood structure.  

Step 2.1 Directional search 

• If the objective parameter is activated, make the correspondent objective function active, 

otherwise, all objective functions are activated. 

• If the constraint parameter is activated, only feasible solutions with respect to the activated 

constraint are kept. 

Step 2.2 Choose  

• Calculate the expected value of the kth stochastic objective and the distance to the ideal value 

for each neighbour. 

• Choose the non-tabu candidate solution with the best activated stochastic objective function(s) 

value(s) (or if it is tabu, but dominates any solution in the ND solutions list) as the best 

candidate solution. 

 

Step 3. Stochastic scheme (applied in each stage) 

Simulate a given number of scenarios for the stochastic variables (demand, processing time and 

production capacity) and compute the number of representative centroids and the respective 

occurrence probabilities. 

 

Step 4. Update the ND solutions list and the tabu lists 

4  Illustrative example 

Suppose that we have 3 manufacturing stages for a given product in which some 

stochastic events can occur, namely variations in demand (with an impact on the 

capability of firms to respect production capacity constraints and on the production 

costs). This example will allow us to demonstrate how the approach reacts to 

uncertainty influencing the objective functions and the constraints. Figure 3 shows a 

scenario tree in which several realizations of the uncertain demand are considered at 

each of three distinct stages (events). These events in which uncertainty unfolds over 

the planning horizon can be, for example, market research reports (important in case 

of fluctuating markets or in case of innovative and technological products), publicity 

actions, new market entrances, new competitors, etc. The number of scenarios 

represented in Figure 3 is only used for illustrative purposes (as the total number of 

scenarios of the studied example is 512). 

Making use of the data of the problem example proposed by Crispim and Sousa 

[11], namely: a project composed by 6 activities (Table 1) and a network composed 
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by 100 (candidate) enterprises where 12 different activities that require 10 different 

resources has to be performed. These companies are characterized by: enterprise 

identification code (a number from 1 to 100); activity; interval time for the 

availability of resources; capacity; and 8 evaluation attributes (Table 2).  

 
 

 
 

 

 

Table 1. Project data 

Project  

Activities 

(code) 

Resources Precedent 

activities 

Duration Earliest start 

time 

Latest start 

time 

Quantity of 

resources 

A 7 - 36 0 106 400 

B 8 - 62 0 97 604 

C 3 - 67 0 122 528 

D 5 A 16 36 122 275 

E 4 B 25 62 122 368 

F 8 C,E,D 43 87 165 304 

 

Table 2. Description of attributes 

attributes 

(objectives) 
c1 c2 c3 c4 c5 c6 c7 c8 

type linguistic numerical interval interval linguistic numerical numerical linguistic 

max (+) /  

min (-) 
+ + - -  +  + - + 

cardinality 
(for linguistic) 

7 - - - 3 - - 7 

weight (%) 20 23 2 7 19 13 14 2 

… 
potential VE compositions 

VE composition 

event 1 event 2 event i 

Scenario 1 

Scenario 2 

Scenario 3 

Scenario 4  

Scenario 5 

Scenario 6 

Scenario 7 

Scenario 8 

high 

high 

high 

high 

high 

high 

high 

low 

low 

low 

low 

low 

low 

low 

Stage 1 Stage 2 Stage 3 

… 

Fig. 3. Scenario tree 
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Impact of demand uncertainty on the constraints. As the final demand at each stage is 

unknown a priori, we will not be sure about each firm’s capability to produce the 

required quantity. Therefore, for each company, we have calculated its probability of 

being capable of satisfying the required demand. For example, if the demand at a 

given stage is normally distributed with N(µ=2000, σ=200), the probability that a 

company with a production capacity of 2561 units is able to satisfy the demand is 

. For decision purposes, we have assumed that a solution is 

feasible if the probability of respecting the capacity constraints is higher or equal to 

0,8 for all companies involved in the three stages considered. In a practical situation 

the DM would be able to define their own rules to distinguish between feasibility and 

unfeasibility. 

 

Impact of demand uncertainty on the objective functions. At each stage we obtain 

several realizations (in our case several centroids for high demand and several 

centroids for low demand) through the clustering procedure presented above (Table 

3). Once an acceptable clustering is found, it is necessary to represent each cluster by 

a single point to be used in the scenario tree. If the centre of the cluster does not 

correspond to any obtained point (e.g., in the case where the cluster of points is quite 

sparse), the centroid should be the closest point to the cluster centre. The probability 

of each centroid is proportional to the number of elements in the respective cluster. 

This process starts with the generation of a sample of size 100 from the normal 

distribution [20] based on the Central Limit Theorem (CLT). Moreover, we assume 

that the probability distributions at the three stages are independent.  

 

Table 3. Centroids of the stochastic demand 

 Stage 1 Stage 2 Stage 3 

  
 h

ig
h
 d

em
an

d
 

N(2000,200) N(2500,250) N(1500,150) 

demand value probability demand value probability demand value probability 
2146 0,37 2245 0,26 1367 0,15 

2356 0,12 2834 0,18 1828 0,10 

1906 0,36 2537 0,56 1612 0,31 

1721 0,15   1487 0,34 

    1233 0,10 

lo
w

 d
em

an
d
 N(1000,100) N(1500,150) N(500,50) 

873 0,20 1698 0,15 436 0,23 

1046 0,26 1409 0,35 545 0,29 

973 0,37 1847 0,8 494 0,48 

1128 0,17 1550 0,32   

  1240 0,10   

 

In terms of production costs we are assuming the VBE companies benefit from a 

quantity discount depending on the demand level that follows a discrete uniform 

distribution.  
The algorithm found 18 non-dominated solutions for the project, with capacity and 

time windows constraints. It should be noted that for activity D, only 5 companies 

have an adequate production capacity, this leading to the formation of a consortium 
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between some of them. Table 4 shows the ranking and composition of the alternative 

configurations. These coalitions are those that prove to be more “robust” to face the 

demand uncertainty with impact on the objective function and on the constraints. 

 

Table 4. Results 

 Project activities 

Rank VE 
+

id
~

 

−

id
~

 iR
~

 
A B C D E F 

1 5 307.975 152.146 0.0470763 35 71 14 31 47 71 

2 10 308.717 137.358 0.0425979 21 44 20 101 72 44 

3 4 308.682 134.007 0.0416065 21 28 14 90 95 28 

4 2 309.287 132.176 0.0409843 35 6 14 26 72 6 

5 14 309.216 127.847 0.0397040 21 97 14 26 72 44 

6 3 309.221 127.776 0.0396821 21 97 14 26 72 97 

7 18 309.221 127.776 0.0396821 21 97 14 26 72 97 

8 6 309.640 118.609 0.0368921 74 44 20 90 57 44 

9 11 309.822 115.400 0.0359096 74 44 20 101 72 44 

10 8 309.967 115.299 0.0358630 7 44 20 26 72 44 

11 9 309.762 114.749 0.0357210 46 44 20 101 72 44 

12 7 310.010 110.672 0.0344689 74 44 20 101 39 44 

13 16 310.243 106.676 0.0332415 74 97 14 26 72 94 

14 17 310.320 104.907 0.0327005 74 97 14 26 72 6 

15 12 310.320 104.613 0.0326120 74 97 14 26 72 44 

16 15 310.320 104.613 0.0326120 74 97 14 26 72 44 

17 13 310.260 103.886 0.0323986 46 97 14 26 72 44 

18 1 310.459 975.056 0.0304506 46 97 14 101 39 97 

Note: the company nº 101 consists in one consortium formed by 7 individual companies (company nºs: 9, 

13, 43, 49, 55, 68, 79)  

5   Conclusions 

The approach developed in this work creates a quite general and flexible research 

framework that can be used to analyse numerous partner selection scenarios. With this 

framework the decision maker is able to easily change the objectives and constraints 

in order to obtain a satisfactory solution, and allowing the use of a mix of variable 

types to express his/her preferences. All types of evaluation criteria can be used and, 

in a real situation, the decision maker should use criteria that are in accordance with 

the available (or obtainable) information. 

The proposed algorithm includes an innovative multiobjective directional 

stochastic tabu search metaheuristic. The flexibility provided by this approach 

becomes even more important if we think in the uncertainty propagation within the 

network and/or in the specificity of the virtual environment. This efficient quantitative 

tool should be able to provide an adequate, useful support, in simulating and assessing 

different alternative solutions for the uncertain business environments associated to 

VE formation or re-organization. 
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