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Abstract   When dealing with precision in tolerancing of assembly systems, the 
modelling complexity of the mechanism increases. At first, one can distinguish the 
1D tolerancing approach that only concerns variations of dimension. Then, several 
models are defined to set 3D tolerances, considering that the form error is negligible 
compared to the orientational and translational variations. Finally, some approaches 
are proposed to take into account the form variations in the tolerancing of 
mechanisms. However, some modelling approaches considers the form error as a 
tolerance zone to add to the 3D tolerances as defined by Rule#1 of the ASME 
standard, or ISO 8015. This paper proposes another point of view, considering the 
positioning of parts through contact points of their rigid deviation shapes under a 
defined assembly force and set-up. Rather than considering the positioning of a 
single part, here is proposed an approach of batch parts assembly by a statistical 
description of shapes. The result of the method is a statistical positioning error of 
one part on the other considering the form deviations of parts.  
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1   Introduction 

The tolerancing of an assembly system is based on a model of the mechanism. 
Depending on the complexity of this model large errors can be obtained on the parts 
positioning. The most simple modelling that can be identified only considers the 
dimensional variations as presented by Graves [1] for example. More complex 
models of the mechanism are developed to exploit the 3D tolerance zone. Many 
methods are proposed such as the vector chain of Chase [2], the T-Maps of 
Davidson and his team [3], the small displacement torsor (SDT) of Bourdet [4], and 
the clearance and deviation domains of Giordano and his team [5]. But as the 
precision of the mechanism increases, the form deviation of shapes has to be 
considered. Ameta [6] proposes a model in the T-Maps space to study the influence 
of the form deviation based on the tolerance zone, but only one form deviation is as 
yet considered. Radouani [7] presents an experimental study of the positioning of 
one part on another regarding the size of their form deviations. Neville [8] gives an 
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algorithm to determine the positioning error of a butting assembly of two 
components considering their form roughness and dimensional error with or 
without an auxiliary surface. Our solution [9] is based on the identification of the 
contact points of the two faces given by a mechanism defined by external face data 
and a positioning torsor expressed by a F force located on an axis. Our method 
allows the prediction of the positioning error into the SDT space. 
    Figure 1 below shows the chosen example for this paper. We reduce the study to 
a two dimensional profile assembly. The two parts are linked by the "Ai" joint and 
the functional requirement "Cf" is given by the clearance between the "Bi" faces. Bi 
faces are supposed to be perfect in this example. The point of interest is their 
relative displacements according to the assembly variations due to the Ai faces.  
 
 

 
Fig. 1.  2D assembly and its functional requirement 

2   The proposed method and background 

2.1 A single assembly  

Our approach consists of identifying all the possible contact points of the two faces 
regarding their form deviations and a given pre-positioning mechanism. The final 
contact points that define the stable positioning are identified by a positioning force.  
    The first step of the method is the identification of the possible contact points. To 
do so, the difference surface is introduced. This surface corresponds to the 
difference of the form deviations, and represents point to point distances. This 
difference surface can be found by a point to point distance computation, but the 
modal analysis of form deviation is recommended. Figure 2 presents the difference 
surface computed point to point. One can observe the roughness of the measured 
shapes that is filtered by the use of the modal characterisation.  
    The second step of our approach is the identification of all the possible contact 
points between the two parts surfaces. The proposed solution is the use of the 
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convex hull that identifies contact faces, hence the contact points. Figure 2 shows 
the convex surface of the difference surface and the identified potential contact 
points. 

 
 
 

 

 

 

 
Fig. 2 a) parts form deviations A1 and A2,  b) relative distance surface 

 
 

 
Fig. 3 a) Convex surface, b) positioning deviation according to the positioning force location 

    The third and last step is the identification of the contact facet, giving the contact 
points. A solution is the use of a positioning force, whose location of the direction 
identifies the contact facet. As a rigid model is considered, the force intensity is not 
used. The identified contact facet corresponds to the opposite of the positioning 
error. Figure 3 shows the identified contact facet for a given position force location 
and the parts assembly corresponding. The positioning deviation corresponds to the 
deviation of the identified facet to the theoretical contact position.  
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2.2 Modal analysis  

Introduced by the team of Samper [10-11], the modal analysis of form deviations is 
a generic approach to building a basis of form errors for any shapes. Hence any 
form deviation can be analysed in this modal basis and described as a set of 
coefficient as for the Fourier transform. The modal analysis method is based on the 
modal shapes of vibrations for the ideal geometry. These shapes have interesting 
properties such as: 

- it is a vectorial basis of form errors,  
- modals shapes are naturally sorted by growing complexity, 
- modal shapes are easily calculated for any kind of geometry (use of the 

Finite Element Model to solve complex shapes) 
The method is based on the space solution of the natural vibrations of forms. 

The following equation 1 is the d’Alembert equation of vibrations.  

�(U) = 0 ⇔∇²U= Error! 

 

   

   

   
Fig. 4.  First nine modal basis of our Ai contact 2D profiles 
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     This equation can be solved by an analytical way for simple cases or by a 
numerical way for most of cases. The obtained vibration modes are considered as 
form deviations Φi. These Φi shapes are modified to obtain a orthogonal basis, and 
in order to have a metric meaning of the modal coefficients, the modal shapes 
amplitude are set to the unit [11]. Figure 4 shows the first nine form errors of the 
modal basis of our case of application. 

2.2.1 Analysis of a single shape 

    The first interest of the use of the form deviation modal analysis is the filtering of 
the form roughness, and the reduction of the number of characteristics that 
describing the form deviation. The following figure 5 shows the modal 
characterisation of an error shape, called the modal signature of the form deviation 
in the modal basis, and the recomposed form corresponding to the filtered shape. 
The result of the modal characterisation of a measured form deviation V on the B 
modal basis is the modal signature Λ. This Λ modal signature is composed of the λi 
modal coefficients calculated by the following relation. 

λi = B . Φi / ||Φi||² 

The recomposed shape with the rigid modes (translation and rotation) corresponds 
to the rigid shape and is equivalent to the Least Square associated shape. The 
recomposed shape R is obtained by the following relation: 

R = Λ.B 

 
Fig. 5 a) modal signature, b) recomposed shape 
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2.2.2 Simulation of shapes  

    The modal characterisation of form errors can be used to create simulated shapes. 
A random draw of the modal coefficients creates a random shape which form 
complexity depends on the number of considered modes. Based on the observation 
of shapes analyses, we consider that the amplitude of the modal coefficients is 
given by the following law: 

A(i) = A0 / i 

Where A0 is initial amplitude, i is the order of the modal coefficient and A(i) is the 
maximum amplitude of the ith modal coefficient. The following Figure 6 shows the 
amplitude law of the coefficients and a random draw of a modal signature. 
 

    
Fig. 6 a and b) random modal signatures , c) batches of simulated form deviations 

The simulation of a batch of form deviations can be obtained from an initial modal 
signature, on which are added random modal variations. The amplitude of these 
modal form variations has the same type of law as the initial form deviation. 
Another random variation can be added on the on the recomposed shapes that can 
represent roughness or measurement error. A set of 50 simulated shapes are 
presented in figure 6.  

2.2.3 Statistical analysis of a set of shapes 

    The second interest of the modal analysis method is the statistical description of a 
set of deviation shapes. Presented in CIRP-CAT 2007 [12-13], the modal analysis is 
extended to the qualification of a batch of form deviations. From the batch of modal 
signatures Λi (characterizations of the shapes), one is able to compute the mean 
modal signature µΛi and the covariance matrix ΣΛi, whose root of the diagonal 
represents the standard deviation modal signature σΛi. It is also possible to have a 
geometrical representation of this statistical qualification. The following relation 
links the mean form deviation of the batch to the mean modal signature: 

µV = B.µΛ
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The following relation links the covariance matrix of the form deviations to the 
covariance matrix of the modal signatures:  

ΣV = B.ΣΛ.B' 

     
Fig. 7 a) mean modal signature, b) covariance matrix of the modal coefficients 

3   The statistical assembly of form deviations 

This section details our proposed method to deal with the assembly of a batch of 
components. A first solution is to use the approach of the first part to compute 
single assembly. This method will be used to confirm the following proposition. 
The idea of the statistical assembly is to find the mean positioning of the batch, and 
then the standard deviation around this mean positioning. 

3.1 Mean positioning and contact points 

The first step of our approach is to determine the mean positioning and the contact 
points associated. These mean contact points are used to determine the mean 
positioning and its standard deviation linked to the means and standard deviations 
of the parts form deviations.  
This first step consists of solving the positioning of the two mean shapes of the two 
parts batches. This is achieved by the previous approach of assembling single parts, 
except that parts are mean forms. One hence obtains the mean positioning error of 
the parts batches, and more important is the identification of the contact points. 
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Fig. 8 a) identified mean contact facet, b) mean positioning 

3.2 Standard deviation of the positioning error 

Thanks to the identification of the contact points, standard deviation surfaces of the 
parts form errors can be linked to the standard deviation of the positioning error. 
The solution we choose is to consider the covariance matrix of the contact points, 
given by the covariance of the measured form deviations or by the modal 
characterisation. As parts are independent, the covariance matrix of the positioning 
error is the sum of the covariance matrices of the parts form deviations. In our case, 
the two contact points are identified as the 1st and the 91st measured points. Hence, 
it is possible to predict the positioning covariance matrix from the covariance 
matrix of the contact points.  
The following Figure 9 shows a particular positioning of shapes from the two 
batches. It can be observed that the contact points of this particular assembly are not 
identical to the contact points of the mean shapes positioning. 
  

 

  
Fig. 9 a) a particular assembly from the batches, b) the positioning results and prediction 
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    However, the positioning result of the batches is showed by the blue dots in 
Figure 9. The red dot corresponds to the mean positioning error of the results and 
the red ellipse corresponds to 3 times the covariance of the results. The prediction 
of our approach is represented by the green parts. The green dot corresponds to the 
predicted mean positioning error, and the green ellipse is 3 times the predicted 
positioning covariance. It can be observed on this simulation that the predicted 
results are similar to the simulated ones.  
Another simulation with a larger shape variations and another location of the 
positioning force is showed in the next figure.  

 
 

  
Fig. 10 a) batches of shapes, b) associated positioning results and prediction 

    With the new simulation, as the shape variation is more important, the 
identification of the contact points is less accurate. However the predicted result is 
close to the statistical characterisation of the simulations.  
The results are presented in the modal coordinates that can be transcribed into a 
small displacement torsor as follows. Thus, the positioning deviation of the A2 
shape can be transferred to the B2 shape to check the respect of the functional 
requirement "Cf". 

4   Conclusion 

Surface assembly considering the form error is treated by the use of the modal 
parameterisation. This method allows us to describe form errors of all geometries in 
an exhaustive way. It also provides a filtering of the form deviation to keep influent 
modes and reject roughness. 
The problem of non determination of the assembly is solved using the force torsor. 
Its location allows us to find the contact points of both faces by the use of the 
distance surface. The characterisation of the contact facet gives positioning 
deviation of surface 2 on surface 1. 
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     The proposed approach to deal with statistical assemblies of form errors is 
interesting in the way that form deviation of shapes are transcribed into positioning 
error. This positioning deviation is expressed in the modal space in our case, but 
can also be described in small displacement torsor of T-Map.  
     The next step of our approach is the simulations on more complex cases (more 
variation, and 3D components), and the confrontation of our theory to measured 
assemblies.  
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