
Hypergraph of Services for Business Interconnectivity
and Collaboration

Alida Esper, Youakim Badr, Frédérique Biennier
INSA-Lyon, LIESP, F-69621, Villeurbanne, France

{alida.esper, youakim.badr, frederique.biennier}@insa-lyon.fr

Abstract. Due to the impacts of structural market evolution (globalization,
sustainable growth, mass customization, product-service development…)
enterprise are more and more focusing on their core business, developing
outsourcing and collaborative strategies to support value-added customized
product-service for the customers. This involves developing agile and
interoperable information system. To achieve this goal, Service Oriented
Architecture has been introduced to support systems interconnection by mean
of service composition. Nevertheless, this approach do not integrate service
contextual configuration so that different services must be defined according to
the context, leading to un-consistent systems. To overcome this limit, we
propose a Model Driven Engineering approach to support contextual service
refinement. Thanks to an hypergraph organization of the different partial
models, services can be contextually instantiated and contextual information
can be either inherited from the global model or propagated through the service
chain.

Keywords: SOA, Interoperability, dynamic context, service modeling, graph,
collaboration.

1 Introduction

The need for increased customization and service-oriented products has forced firms
to adapt their organizational strategy. While focusing on their core business
competencies, outsourcing and collaborative strategies are developed making an
heavy use of ICT. Unfortunately, enterprise information systems consist in several
support systems devoted to different business areas (ERP for the management part,
CRM for customer management, MES at a workshop level…), exhibiting poor
interconnection and agility abilities.

To overcome these limits, the Service-Oriented Architectural style (SOA) [1] has
bee introduced. Thanks to standardized component interface definition and
publication, processes can be built by service selection and composition mean [2] to
provide a basic technologically interoperable IT support.

Despite these intrinsic openness, SOA infrastructures are mostly designed to
support intra-enterprise processes as they use only mono-contextual business
processes without taking into account actor preferences, underlying resources, service
delivery channels or business agreements.

Mis en forme : Français
France

 2

As far as collaborative processes are concerned, a multi-contextual service
environment is required, paying attention on information mediation, access rights
management, business rules adaptation and user preferences. For example, different
actors (final client, transportation firms, hotels or travel agencies) may use the same
flight booking service but each of these actors will execute it in a given context,
requiring different information, billing policies...

Our solution is based on a model-driven architecture: services are associated to
contextualized models organized in an hypergraph so that model selection and service
instantiation is achieved dynamically depending on the context: services properties
and contextual parameters are either propagated among the service chain or inherited
from higher levels models, taking advantage of the object-oriented paradigms [3].

After stating the context and current works, (section 2), we propose our solution
globally before describing more precisely the propagation and inheritance
mechanisms.

2 Business Collaboration

The growth of the internet appears as a driving force for enterprises to develop direct
collaborations with their “professional” partners and customers. Several companies
have already moved their operations onto the Web to collaborate with each other,
where collaboration between enterprises means the interconnection and coordination
of their business processes.

Corporate processes interconnection has been studied for several years. The old-
fashion EDI standards ([4], [5], [6]) have been worthy introduced to support inter-
organizational application-to-application transfer of business documents (e.g.,
purchase orders, invoices, shipping notices). As this approach is associated to
interchange contracts, it is well suited for formal and administrative exchanges but it
involves complex support systems and lacks of agility. More recently, Web Services
have been introduced to support technological interoperability and seem to be the
most popular implementation of the service oriented architecture. Web services are
defined as a “business function made available via the Internet by a service provider,
and accessible by clients that could be human users or software applications” [7] and
are associated to a set of standards so that technological interoperability requirements
can be fulfilled: WSDL (Web Services Description Language) [8] is an XML-based
language for describing operational features of Web services, UDDI (Universal
Description, Discovery, and Integration) [9] is used to support service publishing and
discovery features, SOAP (Simple Object Access Protocol) [10] also messaging
abilities between services….

Organising collaboration process involves taking into account the way tasks and
activities are organised and coordinated as well as defining the actors involvement
(role played…). Workflow process models provided by the Workflow Management
Coalition (WfMC) and the Workflow Management Systems (WfMSs) provide
convenient frameworks. Based on a predefined activities organisation and on a
centralised organisation, they lack of agility. As far as distributed systems are
concerned, another strategy consists in focusing on messaging flows. Both of these

 3

approaches have bee taken in the web-service environment. On one hand, WSFL
[11][12] is based on a flow model, specifying data exchanges as the execution
sequence between component services. As WSFL exposes a WSDL interface,
recursive composition is allowed. On the other hand, XLANG[13][12] supports a
behavioural description of Web services. It also provides features to combine those
services to build multi-party business processes and to support message exchange
among services. Lastly, BPEL4WS [14][12] combines both WSFL and XLANG
features for defining business processes, consisting in different activities. BPEL4WS
defines a collection of primitive activities (such as invoking a Web service operation.)
that can be combined into more complex primitives. It includes the ability to: (1)
define an ordered sequence of activities (sequence); (2) have branching using the now
common "case-statement" approach (switch); (3) define a loop (while); (4) execute
one of several alternative paths (pick); and (5) indicate that a collection of steps
should be executed in parallel (flow).

Nevertheless, these works do not provide multi-contextual execution support.
Moreover, they lack taking into account environmental requirements (as security or
other non functional requirements for example). To overcome these limits, service
description, selection, composition and orchestration must be enriched to take into
account environmental and contextual descriptions.

3 Contextual Collaborative Process organisation

To support collaborative process enactment, we propose to enrich the traditional
service architecture to manage multi-context service execution. Our solution is based
on the Model Driven Engineering approach to generate dynamically contextual
services. Each process is defined by a set of views, related to enterprise policies such
as security issues, management strategy and mediation constraints. These models are
gathered in the Enterprise Meta-Model Architecture (EMMA), providing classes used
to generate the convenient contextual service, linking the core-process services to
technological services supporting security or mediation functions (Figure 1). Mis en forme : Police :10 pt,

Anglais Royaume-Uni

Mis en forme : Police :10 pt,
Anglais Royaume-Uni, Vérifier
l'orthographe et la grammaire

Supprimé : Figure 1

 4

Figure 1: Principle of the Dynamic Service Generation

The Enterprise Meta-Model architecture we propose gathers different kinds of
models:

Conceptual service models: these models are associated to generic conceptual
activities (ordering, billing,…). They are used to set generic classes description,
focusing on common functional properties (namely data and operations) and can be
defined recursively as a combination of other generic conceptual models.

E-services models are instances from the previous models. They can inherit
functional properties from the class they belong to so that the interface benefits from a
global consistency.

Preferences oriented models are used to store in a similar way actors preferences
and contextual policies. Generic models are used to define classes so that models that
will be applied during the generation process will be instantiated according to the
context.

Each enterprise publishes its conceptual and real models in its own service
repository. Then, the services that can be used in inter-enterprise collaborative
processes are also published in a common repository as well as pre-defined
collaborative processes (Figure 2)

This approach allows to organise a service-chain according to the following steps:
Conceptual services are selected depending on the activities involved in a generic

workflow
Actors preferences and contextual information is used to identify both e-services

and contextual non-functional models
The convenient models are extracted from the repositories and are used to

“instantiate” the global service chain. This is achieved thanks to a service mediator in
charge of selecting and generating the convenient service depending on the context.
For example, while buying a train ticket, different billing services can be instantiated
(“internal billing service” for a ticket bought at the station, on-line e-card billing for
Internet based transactions or phone-card based billing…). This leads to a hierarchical

Supprimé : Figure 2

 5

organisation of the billing activities in a tree where the conceptual “billing service” is
a root and the different billing e-services are the instantiation.

–

–
 Figure 2: presentation repertory common

In order to integrate the different models involved in the service generation in a
common repository, we use an hypergraph structure:

The hierarchical service model organisation is used to support the model / service
instantiation mechanism by applying specialisation rules. Inheritance relationships are
used to support consistent interface definition

Different “horizontal relationships are introduced”:
o Equivalence relationships are used to link models from different

enterprises offering the same “conceptual service”. By this way,
context-dependant partnership selection can be improved by
developing “service substitution” mechanisms

o Context relationships are used to combine different kinds of models
(for example security policies coupled with conceptual services) so
that context application can be simplified

o Service-chain relationships are used to store well-identified service
chain so that already defined service chains can be reused more
efficiently.

Due to this hypergraph organisation, classical inheritance mechanisms can not be
implemented directly. Consequently, we’ll detail in the next section the inheritance
mechanism.

4 Service Refinement and Constraint Propagation

The inheritance relationship favors reusing abilities between class and subclass,
allowing the transmission of properties (attributes and methods) from a super class to
its subclasses. Subclasses may re-define an attribute or change a method by
“overloading“.

As far as functional properties are concerned, the inheritance mechanism allows
the transfer of properties (attributes and methods) of the object which are in the super

class to the objects that are subclasses. In our case when the service 2S (object 2o)

inherits of service 1S (object 1o) we can keep the parameters or we can add another

parameter, for example if we have both service (consult account) and (consult account

 6

in another country) the inheritance between 2S and 1S impose to take into account a

new parameter (country) (Figure 3).

 Figure 3: Contextual inheritance

Taking into account non-functional properties can provide additional information
on the service. These attributes include security, reliability, messaging facilities,
response time, availability, accessibility… [15] defines the Quality of Service as
“quality is expressed referring to observable parameters, relating to non-functional
property“, ,including runtime quality and business quality [16]. By developing a late-
binding process, quality of service parameters (including both business oriented
parameters (price, delay, performance level) and technical parameters (execution
delay, security requirements, resources required…) can be worthy used to select (and
then instantiate) the best service to fit the contextual user’s needs.

To interconnect the different services in a consistent service chain, we define the
following inheritance algebra:

Each conceptual model is associated to a tree hc. The classes (associated to the
different e-service models) ci are gathered in a set c= {ci}. Hierarchical links between
classes (ciacj=(ci,cj) from ci à cj) are gathered in a set a={ciac}. We call
(Aip,p=1,2, ….n,) the set of the attributes of the class ci. Each class ci inherits the
attributes from the preceding classes in the hierarchy (Figure 4).

Figure 4: Class and object attributes organisation in the hypergraph structure

Mis en forme : Police :10 pt

Mis en forme : Police :10 pt,
Vérifier l'orthographe et la
grammaire

Supprimé : Figure 3

Supprimé : Figure 4

 7

We call oi
m an object of the class ci, oi={ oi

m } is the set of objects of class ci, oi
m ∈

oi. We call aip
m the attributes of the object oi

m. Instantiating the object oi
m involves

merging the attributes from the preceding classes (from set a) leading to ai
m of the

attributes of this object oi
m .

After the instantiation process, the object is linked to le classes it has inherited
from so that any change in a class will be achieved “on line” on this object.

Consequyently, we establish an arc
n
j

m
i

o
cj

o
ci a with the condition that the vertice oj

n has

the same set ai
m comme the oi

m, O={ oi
m },

n
j

m
i

o
cj

o
ci a =(oi

m, oj
n),a=

n
j

m
i

o
cj

o
ci a ∈o2,ho=<o,a>,

Figure 5: Object integration in the hypergraph organisation

“Horizontal” relationships between nodes from different hierarchies are organised
in a “preceding list” so that predecessors can be found automatically and “horizontal
inheritance” mechanism can be processes in a similar way (Figure 5).

5 Conclusion and Further works

In this paper, we presented an approach that allows dynamic enactment for inter-firms
collaboratice process. Thanks to an hypergraph repository organisation, service
composition can be achieved contextually. Inheritance mechanisms are used to
provide a consistent support as objects are generated according to the context and
inherits the attributes of both conceptual models (seen as super-class) and of
preceding objects in the service chain.

Next steps will focus on business transaction orchestration in order to improve late-
binding facilities.

References

[1] Thomas, E.: Service-Oriented Architecture: Concepts, Technology, and Design, Prentice
Hall, (2005)

Supprimé : Figure 5

 8

[2] Kuppuraju, S., Kumar, A., and Kumari, G.P.: Case Study to Verify the Interoperability of a
Service Oriented Architecture Stack, IEEE International Conference on Services
Computing, (2007)

[3] Esper, A., Sliman, L., Badr, Y., and Biennier, F.: Towards Secured and Interoperable
Business Services, Enterprise Interoperability III, pp. 301-312,

(2008)
[4] X12EDI (Electronic Data Interchange), http://www.x12.org/
[5] Huemer, C., Quirchmayr, G., and Tjoa, A.M. : A Meta Message Approach for Electronic

Data Interchange (EDI), Proceedings of the 8th International Conference on Database and
Expert Systems Applications, pp. 377-386, Springer-Verlag, (1997)

[6] EDIFACT, http://www.edifact.fr/, last visited (2009)
[7] Casati, F., and Shan, M.: Models and Languages for Describing and Discovering E-services,

Proceedings of the ACM SIGMOD International Conference on Management of Data,
Santa Barbara: ACM, p. 626,(2001)

[8] W3C, Web Services Description Language (WSDL), (2003),
http://www.w3.org/TR/wsdl

[9] W3C,Universal Description, Discovery, and Integration (UDDI), (2003),
http://www.uddi.org.

[10] W3C , Simple Object Access Protocol (SOAP), (2003),
http://www.w3.org/TR/soap.”

[11] IBM ,Web Services Flow Language (WSFL), (2003),
http://xml.coverpages.org/wsfl.html.

[12] Peltz, C.: Web Services Orchestration and Choreography, Computer, vol. 36, pp. 46-52,
(2003)

[13] Thatte , S.: XLANG : Web Services for Business Process Design, Microsoft. (2001),
http://xml.coverpages.org/XLANG-C-200106.html

[14] Business Process Execution Language for Web Services, http://msdn.microsoft.com/en-
us/library/aa479358.aspx

 [15] Ludwig, H.: Web Services QoS: External SLAs and Internal Policies or How Do We
Deliver What We Promise?, Web Information Systems Engineering Workshops, 2003,
Proceedings Fourth International Conference on pp. 115-120 (2003)

[16] Yu, Q., Liu, X., Bouguettaya, A., and Medjahed, B.: Deploying and Managing Web
Services: Issues, Solutions, and Directions, The VLDB Journal, vol. 17,, pp. 537-572
(2008)

