

NSME: A Framework for Network Worm
Modeling and Simulation

Siming Lin1, 2, Xueqi Cheng1
1 Software Lab, Institute of Computing Technology, Chinese Academy of

Sciences, Beijing
2 Graduate School of the Chinese Academy of Sciences, Beijing

linsiming@software.ict.ac.cn, cxq@ict.ac.cn

Abstract. Various worms have a devastating impact on Internet. Packet level
network modeling and simulation has become an approach to find effective
countermeasures against worm threat. However, current alternatives are not fit
enough for this purpose. For instance, they mostly focus on the details of lower
layers of the network so that the abstraction of application layer is very coarse.
In our work, we propose a formal description of network and worm models,
and define network virtualization levels to differentiate the expression
capability of current alternatives. We then implement a framework, called
NSME, based on NS2 for dedicated worm modeling and simulation with more
details of application layer. We also analyze and compare the consequential
overheads. The additional real-time characteristics and a worm simulation
model are further discussed.

1 Introduction

Internet worms have become a serious threat to the Internet infrastructure and
users. It is important to study worm behaviors in order to find the effective
countermeasures. An ideal approach is to create a realistic mathematical model that
allows behavior prediction in a closed form. But in fact it is impossible to create such
a model because there are a number of random factors difficult to be introduced in.
For example, the epidemic model [1] greatly simplifies the details of the networks
and worms.

Much literature, such as [2-4], has taken a bottom-up approach which utilizes
packet level network simulators to simulate worms in detail. They model every
individual entity of the network, including hosts, routers and links, as well as every
worm entity. Each entity has its own attributes and interactive behaviors which can
be implemented by simulators. This approach can match the realistic topologies and
protocols, so it can provide more accurate data. The worm related countermeasures
can even be developed and tested directly on this kind of simulation models.

202 Siming Lin1, 2, Xueqi Cheng1

The alternatives of network modeling and simulation have been studied for many
years. Some famous simulators/emulators, such as NS2 [5] and ModelNet [6], have
come forth. In our work, according to the theory of automata and discrete event
system, we propose a formal description of network and worm models. By defining
the virtualization levels, we then find different alternatives of network modeling and
simulation have different expression capability. As mentioned above, current worm
related research is mainly based on existing network simulators. However, these
simulators mostly focus on the details of lower layers of the network so that the
functions of application layer are greatly simplified. In addition, it is possible that
packet level worm simulation will degrade the performance of these simulators.

We have developed a framework, called Network Security Modeling
Environment (NSME), based on NS2 for dedicated worm modeling and simulation.
We remove some inherent structures in NS2, such as Agent, and add some new
features, such as host TCP/IP protocol stack, IP address supporting and external
interfaces. These features make our framework support realistic application layer
logic and make it achieve stronger expression capability, which means that it can be
used in all worm related research, such as propagation simulation, honeypot and IDS
test.

The remainder of this paper is organized as follows. Section 2 provides
information on packet level worm simulation by others. Section 3 formalizes the
problem. Section 4 describes our implementation in detail. Section 5 analyzes the
performance of NSME and shows a worm simulation model based on it. Section 6
gives some conclusions and future directions.

2 Related Work

At present, there is much related work on packet level worm simulation. Riley et
al [2] implement a worm model propagating with TCP and UDP protocols by using
the GTNetS simulator [7]. In their work, the entire design of the worm model
depends closely on many inherent and excellent features of GTNetS. However, a lot
of attack packets with random destination IP Address generated by this model trend
to degrade the performance of the NIx–Vector routing mechanism of GTNetS. To
solve this problem, they take some enhancements, such as Routing Proxy, NIx–
Vector Aggregation and so on. They have successfully simulated more than 50,000
nodes without exploiting the parallel and distributed simulation features of GTNetS.

Another significant work in this field is made by Liljenstam et al [3]. They point
out that worm simulation is a challenge to the scale and performance of packet level
simulators. They extend the SSFNet simulator [8] to implement a mixed abstraction
worm simulation model. In this work, they use both epidemic model and packet level
network model consisting of BGP routers. A pseudo-protocol is used to link the two
parts. Although less accurate, this hybrid method can achieve a scale of 102~103
autonomous systems (ASes) under the assumption that one BGP router represents
one AS.

In [4], Sewani et al discuss the difference among analytical model, testbed
emulation and packet level simulation. They use PDNS [9], a parallel version of NS2,

NSME: A Framework for Network Worm Modeling and Simulation 203

to simulate 15,000 nodes on 8 machines. In this work, they extend a lightweight TCP
protocol to simplify computing. In addition, they point out some advantages and
disadvantages of PDNS for worm simulation.

We find that most simulators usually cannot support the expression of application
logic. For instance, NS2 does not have the functions related with IP address. Its
Agent structure makes it static and trivial to configure protocols and connections in
Otcl [5], which means all behaviors in NS2 are semiautomatic. These even affect its
emulation function. Our framework will solve these problems.

3 Problem Formalization

3.1 Network Model

Given that R is a set of routers in the network, H is a set of hosts, L is a set of
point to point data links, and C is a set of shared data links, the network topology can
be defined as (T R, L,)ϕ= , where : L R Rϕ → × represents the adjacent relationship.
If both set H and set C are not empty, their partitions {H
and exist, which makes

, H , ,H }"1 2 n

{C , C , ,C }"1 2 n [1,]∀ ∈i n , R∃ ∈r , { }()LAN H ,C ,ϕ= ∪i i ir i

M Q, V, , , , q , F= Σ Γ ϒ

Q∈

form the completely connected graphs, where n is the number of LANs.

Furthermore, characteristics of discrete packets transmission in computer
networks are conform to the discrete event system (DEVS) [10]. Therefore,
according to the theory of automata and discrete event system, we can get the general
representation of the network modeling alternatives. We define a structure:

() 0

①Q is a set of states;
, where:

② V is a set of functional nodes;
③ Σ is a set of external events;
④ Γ is a set of internal events;
⑤ is a set of transition functions, and ϒ

⑥ q is the initial state; 0

⑦ F is a set of termination states. Q⊆
The elements in V denote the handlers. Therefore, V R . is the

set of packets caused by the interaction between M and the external. A list is used to
deal with the internal events. The elements in the list can be represented as

. It means the internal event with value

H L C⊆ ∪ ∪ ∪ Σ

(), ,λ ∈Γv t λ will be received and processed
by at the time of t . The ability of M to generate a variety of simulated behaviors
vastly depends on its abundant transition functions, e.g.:

v

() (), , , ,δ =ext 2 denotes that receiving the external event under the state
1 from at the time of t will lead to the state transition to q , and generate the

internal event e .

1q p v t q e
v

)q e t q E P

p
q 2

() (, , , ,δ =int1 1 1 2 denotes that receiving the internal event 1e under state 1
at the time of t will cause the state transition to q , and generate a set of internal

q
2

() ()
()

: Q V Q
: Q Q
: Q Q

ext

int1

int2

δ
δ
δ

× Σ × × → ×Γ
×Γ× → × Γ × Σ
× Γ → × Γ ×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

`
`

`
P P

P

{ }
{ }

,
,ext int1

int2

δ δ

δ

Σ ≠∅
ϒ =

Σ =∅

⎧
⎨
⎩

204 Siming Lin1, 2, Xueqi Cheng1

events and a set of external events E P .
() (, ,δ =int2 1 1 2 1q e q E t), denotes that receiving the internal event will cause the

state transition from to , and generate a set of internal events , with the time
going to .

1e
1q 2q E

1t
In δint1 and δ int2 , the received event 1e should be the one in the event list with the

minimum t and it will be removed from the list after the state transition is completed.
In addition, whether Σ is empty determines the values and natures of the set of
transition functions ϒ . δ int2 depends on the value of t in the event 1e to maintain a
simulation clock, so it is not constrained by the real-time condition, while δext and
δint1 meet the real-time constrains, which are:

1 : () δδ <c rt t , where ()δrt is the time after δ is executed, (), ,δ δ δλ v t is the event
with minimum in the event list after t δ is executed;

()() ()2 : , , , , , ,δ λ =int1 1 1 1 1 2c q v t t q E P holds if and only if 0 ε≤ − ≤1t t , where t is the
current time and ε is the adjustment factor.

3.2 Virtualization Levels

For , we give the following 3 definitions: (0M Q, V, , , , q , F= Σ Γ ϒ)
Definition 1: When V R L= ∪ and Σ ≠ ∅ , M can create a network model in low

virtualization level. The receivers of the internal events in the model are limited to
the virtual routers and data links. That is, the model only simulates the
communication network. The hosts are outside the model and interact with it.

Definition 2: When V R H L C= ∪ ∪ ∪ and Σ ≠ ∅ , M can create a network
model in medium virtualization level. The receivers in the model are extended to all
layers of the network. Furthermore, since Σ is not empty, the model must support
the communication between the external hosts and the internal virtual hosts.

Definition 3: When V R and H L C⊆ ∪ ∪ ∪ Σ = ∅ , M will create a network
model in high virtualization level. Since Σ is empty, the model implements full
abstraction from physical data link, routing mechanism to data generation and
response. Thus, it is a closure system.

The existing alternatives usually can only create models in one of the
virtualization levels. The network emulators, such as ModelNet and Netbed [11], can
reach low virtualization level. The network simulators, such as NS2 and SSFNet, can
reach high virtualization level. The medium virtualization level is rigorous but less
useful for traditional network research. Only few emulators, such as IP-TNE [12],
can reach it.

It is significant for worm related research to get models in both high and medium
virtualization levels. Using a high level model, the worm propagation can be
simulated, and using a medium level model, living honeypot [13], another
countermeasure against worms, can be constructed.

3.3 Behaviors of Worm-Daemon

Using the methods described in section 3.1, we can also formalize the worm
behaviors. Since the real OS environment does not exist, the method to simulate the

NSME: A Framework for Network Worm Modeling and Simulation 205

(el,1,{el})

(ε,1-pv,Φ)

(ε, pv,{eu})

(ea,1,{el,er,es})

(el,1,{ea,ei,el})

(eu,pu,Φ)
qw0

qr

qv

ql
qi

(es,ps,Φ)

(es,ps,Φ)
(ei,1,{ea,ei})

(er,pr,{eu})

(er,pr,{eu})

Fig. 1. The state transition graph of a daemon

worm propagation is to run a virtual daemon, which can simulate how a host
interacts with the worms. We define the daemon as ()0Q , H, , ,qδΓw w w w , where:

①Q is a set of states; 0 s v h

② H is a set of hosts;
{q , q , q , q , q }=w w i

③ Γ ⊂ is a set of internal events; Γw

④ δw is similar to δ int2 , but there is an probability parameter prob in it.
() (), , , ,δ =w 1 1 2 1 means it will happen with the probability q e prob q E t prob that

receiving the internal event 1e under the state 1 will cause the state transition to ,
and generate a set of internal events , with the time going to t ;

q 2q
E 1

⑤ q is an initial state. 0w w

Let state qr denotes a robust host that cannot be infected by any worms; qv
represents a host with vulnerabilities; ql is the latent state after the host has been
infected; and is the propagating state. We can also define the following behaviors.

Q∈

qi

A host is vulnerable with
the probability v and it can
be upgraded by patches to
become a robust host with
the probability u . An
infected host can become a
robust host by upgrading
with the probability

p

p

sp , or
resume the vulnerable state
with the probability r .
Worms do not infect the
same victims, and they
alternate between the latent
and propagating states.
Based on these assumptions,
Figure 1 shows the state
transition graph of a worm-
daemon.

p

4 Implementation

4.1 Topology and Event Scheduling

The topology basically consists of virtual hosts, virtual routers and related data
links. In low or medium level models, the mapping hosts and interface routers can be
additional used, acting as the interfaces between NSME model and the real network.
Like a virtual host, an abstract subnet can handle all the data streams within a sub-
network with a uniform protocol stack. By this way, it is flexible to control over the
scale and the complexity.

When being transmitted in a network model, the packets are treated as the
timestamp events, scheduled by kernel. The links will calculate a new timestamp for
every packet handled by them, according to the packet size, their bandwidth and

206 Siming Lin1, 2, Xueqi Cheng1

Event handler
virtual-host

mapped-host

virtual-router
Interface-router

abs-subnet
scheduler

real time

re
al

 n
et

w
or

k Network
Reader

Network
Writer

Event list

Fig. 2. The architecture of the topology and the event scheduling in NSME framework

delay. Figure 2 shows the architecture of the topology and the event scheduling in
NSME framework.

4.2 Communication Architecture

4.2.1 Packet and Routing

The packet headers in NSME follow the structures in the real network protocols
instead of the inherent structures in NS2, such as ns_addr_t. Furthermore, in order to
generate low or medium level models, the real data field has been supported.
However, for generating high level models, the abstract packets are also used, which
means the size of a packet can be greater than the sum of the actual size of its header
and data field.

We use the classical algorithm, Dijkstra, to compute routes and implement a
RadixTreeClassifier class which inherits from the NSObject class to perform IP
packet forwarding. In this class, the routing table is constructed with realistic Radix
tree structure. Therefore, it is available to allocate IP addresses and partition the
network segments in the simulation model.

4.2.2 Protocol Stack

The major difference from NS2 is that each NSME virtual host has a mini but
fully functional TCP/IP protocol stack. Therefore, the application layer is no longer a
dispensable structure. Virtual application programs can gain the ability to access the
network model via Virtual Sockets which replace NS2 Agents to process the
protocols in lower layers. These sockets are no longer pre-configured, but controlled
jointly by the protocol stack and virtual programs. The main benefit from this change
is that virtual programs can directly use the real data and protocols to communicate
without caring about whether the other end is a virtual host or an external real host.

In order to support the programming logic in application layer, we imitate Visual
C++ (MFC) socket classes to implement a set of Virtual Socket classes, including
RawSocket, UDPSocket, TCPListenSocket, and TCPSocket. RawSocket provides
the ability to access the network layer. It can not only send the packets with any
protocols, but also intercept the packets arriving at the local host. UDPSocket is
responsible for the UDP packet encapsulation on the transportation layer. The more

NSME: A Framework for Network Worm Modeling and Simulation 207

complicated TCP connections are managed by both TCPListenSocket and
TCPSocket. TCPSocket, derived from FullTCPAgent in NS2, provides the ability of
flow control, packet assembly and retransmission. TCPListenSocket is used to
manage passive connection requests. These socket classes are not associated with the
Otcl classes. The developers do not need to care about the details of the connections
and protocols. In a word, programming with Virtual Sockets in NSME is the same as
writing a normal network program except that the Socket APIs are different.

Furthermore, ip_local_deliver is used to replace the old PortClassifier class to
dispatch packets locally. Figure 3 shows the design of NSME protocol stack. It is
easy to find our stack is quite similar to that in real systems (e.g. Linux). When a
Virtual Socket is created, it will be registered on ip_local_deliver. When any packets
arrive, ip_local_deliver will send them to rawip_filter for filtering. If an instance of
RawSocket derived class is registered to intercept a certain protocol, rawip_filter will
replicate the related packets and send them to it. Rawip_filter will also forward all
packets to protocol handler entries
according to their protocol types,
and the packets that are not
matched will be discarded.
Icmp_handler will directly process
ICMP packets without forwarding
them to the upper layers. However,
tcp_demuxer and udp_demuxer are
more complicated. They need to
create quick indices for all the
registered sockets. In addition,
tcp_demuxer needs to distinguish
active and passive connections.
Our protocol stack can response
UDP or TCP requests that are not
matched by sending special packets,
such as ICMP destination-
unreachable packets and TCP RST
packets. It will be also possible to
imitate the stack fingerprint of a
certain OS.

TCP socket

UDP socket raw socket

TCP
listen
socket tcp socket

tcp socket create

ip_local_deliver

rawip_filter

 in_point out_point
icmp_handler

udp_demuxer

445 1322

tcp_demuxer

80 23
dport_BBTree

7240
sport_BBTree

sip_BBTree
202.118.1.82

virtual socket layer

dport_BBTree

Fig. 3. NSME protocol stack

virtual application logical layer

4.3 External Interfaces

Based on NS2, two types of external interfaces are implemented in NSME. One
of them is the file interface which saves the packets in the network model to files in
tcpdump format. The other is the interface for communication between the network
model and the real network. For example, the interface routers can connect the model
with the real network, and the mapping hosts can logically map the real hosts into the
network model. Meanwhile, the proper routing configuration and IP address
allocation strategy are needed. It should be compatible with the management of the
real network. Below is an example of the possible configuration for communication

208 Siming Lin1, 2, Xueqi Cheng1

between the real network and the model network.
We run NSME on host A with IP address 202.118.19.128, and there is another

host B with IP address 202.118.19.132. First, we deploy two class C sub-networks
(210.120.2.0, 202.118.19.0) connected by a virtual router into NSME model. Second,
we allocate IP address 202.118.19.132 to a mapping host in this simulation model.
Finally, we add a new routing entry to host B:

route add 210.120.2.0 mask 255.255.255.0 202.118.19.128
Now, host B has been partially mapped to the above mapping host so that it can

communicate with the sub-network 210.120.2.0 in this model. However, it can still
communicate with other real local hosts. We then add another routing entry to host B:

route add 202.118.19.0 mask 255.255.255.0 202.118.19.128
Now, host B is fully mapped into the simulated sub-networks (both 210.120.2.0

and 202.118.19.0), and can no longer communicate with other real local hosts,
except host A.

5 Experiment and Analysis

In this section, we will analyze and compare the related overheads between our
framework and NS2, then discuss real-time characteristics of our framework. Finally,
we simulate a random scanning worm.

5.1 Routing Overheads

Figure 4 shows the comparison of the look-up time overhead (LTO) and basic
memory overhead (BMO) between NSME routing and NS2 routing (The
experimental hardware is a PC with a P4, 2.6GHz CPU and 4GB memory). On axel
x, different scales of 1~10,000 are drawn in order to illuminate the issue of scale. It
is easy to see that the LTO approximates a constant (0.96 us) in NS2. The BMO is
about 2GB when it obtains the maximal scale of 5,000 nodes. The LTO and BMO in
NSME are both close to those in NS2 when the number of nodes is less than or equal
to 1,000. But the up-limit in NSME is 4,000 nodes with the LTO of 1.2 us and the
BMO of about 2GB.

When greater than 1,000 nodes, BMO is very high either in NS2 or in NSME.
The reason is that a routing table must be maintained for each router, whose space
complexity is O(n2). In NSME,
the routing table is implemented
by Radix tree but not linear
array, which makes the LTO
and BMO are higher than those
in NS2. Note that in this
experiment, we only use virtual
routers in NSME (for the ease of
comparison). In fact virtual
hosts do not need routing tables
in NSME, which makes it Fig. 4. Routing overheads

100 101 102

Nodes
103

100

104

102

101

B
M

O
(M

B
)

103

0.2

0.4

0.8

0.6

LTO
(us)

1.0

1.2

1.4

NSME (mm)
NS2 (mm)

NSME (time)
NS2 (time)

0

NSME: A Framework for Network Worm Modeling and Simulation 209

different from NS2.

5.2 Structure Overheads

With the same experimental hardware, we measure the overheads brought by the
Virtual Socket structure in NSME and the Agent structure in NS2 respectively.
Figure 5 shows both time and memory overheads when the TCP connections are
assigned in the phase of initialization. In NSME, two virtual hosts, Hv1 and Hv2, are
configured, and N (1 N) virtual clients with TCP sockets on H10,000≤ ≤ v1 are
assigned to prepare for connections to the virtual server on Hv2. Corresponsively, the
similar configuration is given in NS2, in which FullTcpAgents are used and the
number of them is equal to that of virtual clients.

As we can see in Figure 5, the time and memory overheads are both linear to the
number of the connections in the phase of initialization. In NSME, however, the
average time (about 1.7ms) is apparently less than that in NS2 (about 13.9ms). And
its average memory consumption (about 2.93KB) is also less than that in NS2 (about
3.74KB). These differences are
due to the fact that in NS2 each
Agent must be created in Otcl
space, and then Otcl translator
creates a core instance of it in
C++ space by invoking the
splitting object model, which
brings huge time and memory
consumption. This proves that
some structures in NS2, such
Agent, Otcl, are not appropriate
enough for achieving better
performance.

10000
0

60000 40002000 8000

Fig. 5. Structure overheads
TCP connections

140

100

60

40

80
Initialization

tim
e(s)

120

20

40

30

20

10

M
em

ory overhead(M
B

)

NSME (mm)
NS2 (mm)

NSME (time)
NS2 (time)

0

5.3 Real-time Characteristics

We designed five scenarios in order to observe the real-time characteristics in
NSME. Scenario 1 includes a 1,000Mbps (0.1ms delay) LAN L1, where mapping
hosts Hs1, Hs2 and virtual host Hv1 are deployed. An additional LAN L2 exists in other
4 scenarios, where L1 and L2 are
connected through one-hop or
ten-hop link(s) respectively, and
the delay of each hop is 0.1ms or
1ms respectively (1,000Mbps
bandwidth). In the 4 scenarios,
the difference from scenario 1 is
that we deploy Hs1, Hs2 in L1 and
Hv1 in L2 (for medium
virtualization), or Hs1 in L1 and
Hs2 in L2 (for low virtualization).

 10hops; 10ms

50

Low
 virtualization(M

bps)

40

10

20

30

120 100
0

M
u

rt
za

 (
p

60

M
b 10

tion 20

uali 30

m
 vi 40

edi 50

Fig. 6. Real-time characteristics
TCP connections

80 60 20 0 40

LAN; 0.1ms
1hop; 0.1ms
10hops; 1ms
1hop; 1ms

s)

0

210 Siming Lin1, 2, Xueqi Cheng1

The experimental environment consists of 3 PCs (P4 2.8GHz, 256M memory) in a
100Mbps LAN. Host A runs NSME and hosts B, C are mapped to Hs1, Hs2
respectively.

For medium virtualization, clients on hosts B and C request TCP connections to
server on Hv1. Each connection utilizes a timer to try to send data at 0.78Mbps. For
low virtualization, clients on hosts B and C communicate with each other. The solid
line in Figure 6 illustrates the transmission rate of all the connections in medium
virtualization level and the dashed line shows the situation in low virtualization level.
We can see the rate increases linearly when the number of connections is less than 60,
which means the good real-time performance. When the number of connections is
more than 60, the performance drops if the number of hops increases. Meanwhile,
the link delay affects the real-time performance. When the number of connections is
greater than 80, the utility rate of CPU of host A generally drops to 90% and below,
which means the performance of the network interfaces should be improved. In
addition, since NSME model actually acts as a relay between host B and host C in
low virtualization level, it is more sensitive to the bandwidth of the physical links
and the performance of the network interfaces. Consequently, application layer can
only achieve a lower transmission rate in this situation.

5.4 Worm Experiment

In order to observe the runtime characteristics of worm simulation, we used
NSME to simulate a random scanning worm like Slammer which duplicates itself by
transmitting in UDP. Without concerning whether the target hosts exist or not,
Slammer has a very fast propagating speed and has been the top threat for the recent
two years [14]. We write a
daemon and simplify its
actions (no update and no
recovery). This worm model
exploits random scanning
strategy to select target, and
then sends it a single attack
packet. If the target is
vulnerable and has not been
infected, it will be infected a
short time later after
receiving the attack packet.
We list in table 1 several
major parameters for this
worm model.

This worm model is
deployed to 10 abstract class
B subnets interconnected by
virtual routers (1,000Mbps
bandwidth, 1ms delay). Each
available IP address is

0 20 80 70 50 10 30 60 40
Simulation time (s)

(a) Infected rate vs. Simulation time

90 100

20%

60

40%

%

80%

100%
s=5; w=100%
s=5; w=70%
s=10; w=70%

s=5; w=100%
s=5; w=70%
s=10; w=70%

s=5; w=100%
s=5; w=70%
s=10; w=70%

0

10

10
10

10
10

10

10

Events (per sim
-second)

3

6

108

100

1

2

4

5

7

20 80 70 50 90 10 30 60 40
Simulation time (s)

(b) Events (per sim-s) vs. Simulation time
Fig. 7. Worm experiment

100
10

102
103
104

100
101

10-1

10-3
10-2

10-4

-5

Infection rate

0%

R
un tim

e (s)

NSME: A Framework for Network Worm Modeling and Simulation 211

occupied by a virtual host. The scanning strategy is random scanning in 226 addresses
space. We find that the parameter t has no obvious effects on the propagation of the
worm. The parameter i does affect the propagation, but it is not essential. Figure 7(a),
where t=0.1s and i=1, illustrates the variation of the infection rate vs. simulation time
brought by different s and w. Increasing either one will obviously aggravate the
infection rate. In contrast to (a), figure 7(b) shows the relationship between NSME
events (run time) and simulation time. It illustrates that the scan rate and weak
degree will also affect the number of events which eventually determines the run
time of the worm model. It is obvious that the large scale worm simulation will be a
challenge to the discrete event simulators.

Table 1. Parameters for the worm experiment

Parameter Description
s the scan rate of the worm
w the weak degree which is a percentage of vulnerable hosts in a subnet
t the time delay when a host is infected
i the number of the initial infected hosts

6 Conclusion and Future Work

In this paper, we propose a formal description of network and worm models. We
then implement the NSME framework based on NS2 for dedicated worm modeling
and simulation. Our framework extends the details of the network modeling and
simulation, so it is unavoidable to consume more memory and CPU time. Therefore,
we must trade off between the accuracy and scale. In our worm model, we use
abstract subnets to achieve large scale simulation, but it is not accurate. Furthermore,
the flat routing mechanism is a bottleneck of the memory utility.

Our future work is to improve the scale and performance of the NSME
framework. The approach mentioned in literature [15] is valuable for us. However,
the technology of parallel and distributed simulation is essential to enhance the scale
and performance, so we will focus on it. In this aspect, PDNS will be naturally
compatible with our framework.

References

1. H. Andersson, T. Britton, and K. Krickeberg et al, Stochastic Epidemic Models
and Their Statistical Analysis, Springer-Verlag, New York, 2000

2. G. F. Riley, M. I. Sharif, and W Lee, “Simulating Internet Worms”, In
Proceedings of the 12th Annual International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunications Systems (MASCOTS'04),
IEEE Computer Society, Washington DC, 2004, pp. 268-274

3. M. Liljenstam, Yougu Yuan, and BJ Premore, et al, “A Mixed Abstraction Level
Simulation Model of Large-Scale Internet Worm Infestations”, In Proceedings of

212 Siming Lin1, 2, Xueqi Cheng1

the 10th IEEE Int'l Symp. on Modeling, Analysis and Simulation of Computer and
Telecommunications Systems (MASCOTS'02), IEEE Computer Society,
Washington DC, 2002, pp. 109-116

4. Anil Sewani, Bowei Du, “Packet Level Worm Simulation and Analysis”,
http://www.eecs.berkeley.edu/~anil/, 2004

5. L. Breslau, D. Estrin, and K. Fall, et al, “Advances in Network Simulation”, IEEE
Computer, 2000, pp. 59-67

6. A. Vahdat, K. Yocum, and K Walsh, et al, “Scalability and Accuracy in a Large-
Scale Network Emulator”, In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, ACM Press, New York, 2002, pp. 271-284

7. G. F. Riley, “The Georgia Tech Network Simulator”, In Proceedings of the ACM
SIGCOMM workshop on Models, methods and tools for reproducible network
research, 2003, pp. 5-12

8. SSFNet, “Scalable Simulation Framework Network Models”,
http://www.ssfnet.org/homePage.html, 1999

9. G. F. Riley, M. H. Ammar, and R. Fujimoto, “A Federated Approach to
Distributed Network Simulation”, ACM Transactions on Modeling and Computer
Simulation, 2004, pp. 116-148

10. B P Zeigler, Theory of Modeling and Simulation, Wiley, New York, 1976
11. B. White, J. Lepreau, and L. Stoller, et al, “An Integrated Exerimental

Environment for Distributed Systems and Networks”, In Proceedings of the 5th
Symposium on Operating Systems Design and Implementation, ACM Press, New
York, 2002, pp. 255-270

12. R. Simmonds, R. Bradford, and B Unger, “Applying Parallel Discrete Event
Simulation to Network Emulation”, In Proceedings of the Fourteenth Workshop
on Parallel and Distributed Simulation, IEEE Computer Society, Washington DC,
2000, pp. 15-22

13. I. Kuwatly, M. Sraj, and Z. A. Masri, et al, “A Dynamic Honeypot Design for
Intrusion Detection”, In Proceedings of the IEEE/ACS International Conference
on Pervasive Services (ICPS'04). IEEE, 2004, pp. 95-104

14. Symantec Corporation, “Symantec Internet Security Threat Report”, http://enter-
prisesecurity.symantec.com, 2004

15. K. Walsh, E. G. Sirer, “Staged simulation: A General Technique for Improving
Simulation Scale and Performance”, ACM Transactions on Modeling and
Computer Simulation (TOMACS), 2004, pp. 170-195

	Introduction
	Related Work
	Problem Formalization
	Network Model
	Virtualization Levels
	Behaviors of Worm-Daemon

	Implementation
	Topology and Event Scheduling
	Communication Architecture
	Packet and Routing
	Protocol Stack

	External Interfaces

	Experiment and Analysis
	Routing Overheads
	Structure Overheads
	Real-time Characteristics
	Worm Experiment

	Conclusion and Future Work
	References

