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Abstract. This work presents a multiobjective algorithm for multicast traffic 
engineering. The proposed algorithm is a new version of MultiObjective Ant 
Colony System (MOACS), based on Ant Colony Optimization (ACO). The 
proposed MOACS simultaneously optimizes the maximum link utilization, the 
cost of the multicast tree, the averages delay and the maximum end-to-end 
delay. In this way, a set of optimal solutions, known as Pareto set is calculated 
in only one run of the algorithm, without a priori restrictions. Experimental 
results obtained with the proposed MOACS were compared to a recently 
published Multiobjective Multicast Algorithm (MMA), showing a promising 
performance advantage for multicast traffic engineering. 

1 Introduction 

Multicast consists of simultaneous data transmission from a source node to a subset 
of destination nodes in a computer network [1]. Multicast routing algorithms have 
recently received great attention due to the increased use of recent point-to-
multipoint applications, such as radio and TV transmission, on-demand video, 
teleconferences and so on. Such applications generally require optimization of 
several quality-of service (QoS) parameters such as maximum end-to-end delay and 
minimum use of bandwidth resources in a context of traffic engineering.  

When a dynamic multicast problem considers several traffic requests, not only 
QoS parameters must be considered, but also load balancing and network resources 
must be taken into account. In order to avoid hot spots and to balance the network 
load, a common approach is to minimize the utilization of the most heavily used link 
in the network (α) or maximum link utilization [2]. At the same time, cost 
minimization of the tree of each multicast group, which is given by the sum of the 
cost of the used links, is also desired. It is known that the complexity of computing 
the minimum cost tree for a given multicast group is NP-hard [3]. Then, this paper 
presents a new MultiObjective Ant Optimization System (MOACS) [4], which finds 
a set of optimal solutions by simultaneously minimizing the maximum link 
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utilization, the cost of the tree, the maximum end-to-end delay and the average delay. 
In this way, a whole Pareto set of optimal solutions can be obtained in only one run 
of the proposed algorithm.  

The remainder of this paper is organized as follows. Section 2 describes related 
works. A general definition of an Optimization Multiobjective Problem is presented 
in Section 3. The problem formulation and the objective functions are given in 
Section 4. The proposed algorithm is explained in Section 5 while a brief description 
of MMA algorithm is given in Section 6. The experimental environment is shown in 
Section 7 and experimental results are present in Section 8. Finally, conclusions and 
future works are presented in Section 9. 

2 Related work 

Several algorithms based on ACO consider multicast routing as a mono-objective 
problem, minimizing the cost of the tree under multiple constrains. In [5] Liu and 
Wu proposed the construction of a multicast tree, where only the cost of the tree is 
minimized using degree constrains. On the other hand, Gu et al. considered multiple 
parameters of QoS as constrains, minimizing just the cost of the tree [6]. It can be 
clearly noticed that previous algorithms treated the Traffic Engineering Multicast 
problem as a mono-objective problem with several constrains. The main 
disadvantage of this approach is the necessity of an a priori predefined upper bound 
that can exclude good trees from the final solution. In [3], Donoso et al. proposed a 
multi-tree traffic-engineering scheme using multiple trees for each multicast group. 
They took into account four metrics: (i) maximum link utilization α, (ii) hop count, 
(iii) bandwidth consumption and (iv) total end-to-end delay. The method minimizes 
a weighted sum function composed of the above four metrics. Considering the 
problem is NP-hard, the authors proposed a heuristic algorithm consisting of two 
steps: (1) obtaining a modified graph, where all possible paths between the source 
node and every destination node are looked for, and (2) finding out the trees based 
on the distance values and the available capacity of the paths, in the modified graph. 
Crichigno and Barán [7] have proposed a Multiobjective Multicast Algorithm 
(MMA), based on the Strength Pareto Evolutionary Algorithm (SPEA) [8], which 
simultaneously optimizes the maximum link utilization, the cost of the tree, the 
maximum end-to-end delay and the average delay. This MMA algorithm finds a set 
of optimal solutions, which is calculated in only one run, without a priori 
restrictions. 

3 Multiobjective Optimization Problem 

A general Multiobjective Optimization Problem (MOP) [9] includes a set of n 
decision variables, k objective functions, and m restrictions. Objective functions and 
restrictions are functions of decision variables. This can be expressed as: 

Optimize         y = f(x) = (f1(x), f2(x) ..., fk(x)). 
Subject to       e(x) = (e1(x), e2(x), ... ,em(x))≥0, 
where              x = (x1, x2, ..., xn) ∈ X is the decision vector, 
and                  y = (y1, y2, ... , yk) ∈ Y is the objective vector. 

(1) 
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X denotes the decision space while the objective space is denoted by Y. Depending 
on the kind of the problem, “optimize” could mean minimize or maximize. The set of 
restrictions e(x)≥0 determines the set of feasible solutions Xf ⊆  X and its 
corresponding set of objective vectors Yf ⊆  Y. The problem consists in finding x that 
optimizes f(x). In general, there is no unique “best” solution but a set of solutions, 
none of which can be considered better than the others when all objectives are 
considered at the same time. This derives from the fact that there can be conflicting 
objectives. Thus, a new concept of optimality should be established for MOPs. 
Given two decision vectors u, v ∈ Xf: 

f(u) = f(v)     iff:    �i∈{1,2,...,k}: fi(u) = fi(v) 
f(u) ≤ f(v)     iff:    �i∈{1,2,...,k}: fi(u) ≤ fi(v) 
f(u) < f(v)     iff:     f(u) ≤ f(v) �  f(u) ≠ f(v) 

(2) 

Then, in a minimization context, u and v comply with one and only one of the 
following three possible conditions: 

u ≻  v (u dominates v),    iff:    f(u)<f(v) 
v ≻  u (v dominates u),    iff:    f(v)<f(u) 
u ~ v (u and v are non-comparable),    iff:    f(u)�f(v)�f(v)�f(u) 

(3) 

Alternatively, for the rest of this work, u�v will denote that u≻v or u~v. A 
decision vector x∈Xf is non-dominated with respect to a set Q�Xf iff: x�v, �v∈Q. 
When x is non-dominated with respect to the whole set Xf, it is called an optimal 
Pareto solution; therefore, the Optimal Pareto set Xtrue may be formally defined as: 

Xtrue ={x∈Xf | x is non-dominated with respect to Xf} (4) 
The corresponding set of objective vectors Ytrue=f(Xtrue) constitutes the Optimal 
Pareto Front. 

4  Problem Formulations 

For this work, a network is modeled as a direct graph G= (V, E), where V is the set 
of nodes and E is the set of links. Let: 

(i,j)  ∈  E  : link from node i to node j; i, j ∈ V. 
cij  ∈  ℜ+  : cost of link (i,j). 
dij  ∈  ℜ+  : delay of link (i,j), in ms. 
zij  ∈ ℜ+  : capacity of link (i,j), in Mbps. 
tij  ∈  ℜ+  : current traffic of link (i,j), in Mbps. 
φ  ∈ ℜ+ : traffic demand, in Mbps. 
s   ∈  V  : source node of a multicast group. 
Nr  ⊆ V-{s} : set of destinations of a multicast group. 
T     : multicast tree with source in s and set of destinations Nr. 

Also, let p(s,n)⊆T be the path that connects the source node s with a destination node 
n∈Nr. Finally, let dp(s,n) represent the delay of the path p(s,n), given by the sum of the 
link delays that conform the path, i.e.: 
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Using the above definitions, a multicast routing problem for Traffic Engineering 
may be stated as a MOP that tries to find the multicast tree T that simultaneously 
minimizes the following objective functions: 
1- Maximum link utilization of the tree: 
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2- Cost of the multicast tree: 

∑
∈

∗=
Tji
ijcC

),(
φ  

(7) 

3- Maximum end-to-end delay of the multicast tree: 
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4- Average delay of the multicast tree: 
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where |Nr| denotes the cardinality of Nr. 
The problem is subject to a link capacity constraint: 

1≤ijα   ∀(i,j)∈T (10) 

A simple example follows to clarify the above notation. 
Example 1. Given the NSF network topology of Fig. 1 [7], the number over each link 
(i,j) denotes dij in ms, cij, and tij at a given time (in Mbps). NSF network consist of 14 
nodes and for each link, zij=1.5 Mbps. Let suppose a traffic request arriving with 
φ=0.2 Mbps, s=5, and Nr= {0, 2, 6, 13}. Fig. 1 shows a multicast tree (T) while Table 
1 presents the objective functions calculated for this tree. 

 
Fig. 1. The NSF Net. αm=0.73; C=6.4; Dm=23; Da=16.5. 

 
Table 1. Objective Functions Calculated for Example 1. 

Tree 
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(i,j) (5,4) (4,2) (2,0) (5,6) (6,9) (9,13) 
dij 7 7 9 7 7 8 
cij 6 4 2 1 10 9 
tij 0.1 0.1 0.9 0.6 0.7 0.8 
zij 1.5 1.5 1.5 1.5 1.5 1.5 
αij 0.2 0.2 0.73 0.53 0.6 0.53 

Delay paths 
dp(5,2) d5,4+ d4,2 =7+7 = 14 
dp(5,0) d5,4+d4,2+d2,0 =7+7+9 = 23 
dp(5,6) d5,6  =   7 
dp(5,13) d5,6+d6,9+d9,13 =7+7+8 = 22 

 Metrics of the solution Tree 
αm α2,0  = 0.73 

C φ*(c5,4 + c4,2 + c2,0 + c5,6 + c6,9 + c9,13) = 0.2*(6+4+2+1+10+9) 
=   6.4 

Dm dp(5,0)  =    23 
Da (dp(5,2)+ dp(5,0)+ dp(5,6)+ dp(5,13)) / |Nr| = (14+23+7+22) / 4 = 16.5 

For the same example, Figure 2 presents in (a), (b) and (c) three different 
alternative solutions, for the same multicast group, to clarify the concept of non-
dominance. Notice that each tree is better than any other in at least one objective. 

It is important to notice, from the mathematical formulation that the four 
objective functions are treated independently and should be minimized 
simultaneously. They are not combined to form a scalar single-objective function 
through a linear combination (as weighted sum) nor are any of them treated as a 
restriction. This way, using the concept of dominance, a whole set of optimal Pareto 
solutions is calculated. 

Table 2. “Optimal Pareto Set” and “Optimal Pareto Front” for Example 1. 

 Optimal Pareto Set  
(Trees) 

Optimal Pareto Front  
(Objective Vectors) 

αm C Dm Da 
S1 (5,6),(5,4),(4,2),(4,10),(2,0),(10,12),(12,13) 0.73 5 20 36 
S2 (5,6),(5,4),(6,1),(6,9),(4,2),(1,0),(9,8),(8,12),(12,13) 0.6 8.6 21.75 36 
S3 (5,6),(5,4),(6,1),(6,9),(4,2),(1,0),(9,13) 0.67 7.6 19.75 36 
S4 (5,6),(5,4),(6,9),(4,2),(9,13),(2,0) 0.73 6.4 16.50 23 
S5 (5,6),(5,4),(6,1),(4,2),(4,10),(1,0),(10,12),(12,13) 0.73 4 26.75 63 
S6 (5,6),(5,4),(6,1),(4,2),(4,10),(1,0),(10,12),(12,13) 0.6 6.2 23.25 36 
S7 (5,6),(6,1),(1,0),(0,3),(0,2),(3,10),(10,12),(12,13) 0.73 3.6 41 76 
S8 (5,6),(5,4),(6,1),(4,2),(1,0),(2,7),(7,13) 0.53 7 23.75 38 
S9 (5,6),(5,4),(4,2),(4,10),(10,12),(10,3),(12,13),(3,0) 0.6 5.2 24.25 4 
S10 (5,6),(5,4),(4,10),(10,3),(10,12),(3,0),(12,13),(0,2) 0.73 4.8 33 49 
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(a) 

 
(b) 

 
(c) 

Fig. 2. The NSF Net. (a) to (c) show different Pareto solutions for the same multicast 
group of example 1. 

For the presented example, the set of optimal Pareto set and corresponding 
objective functions are shown in Table 2. Notice that solution S1 corresponds to 
Figure 2(a), S2 corresponds to Figure 2(b) and S3 corresponds to Figure 3(c). 
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5 Ant Colony Optimization Approach 

Ant Colony Optimization (ACO) is a metaheuristic inspired by the behavior of 
natural ant colonies [10]. In the last few years, ACO has received increased attention 
by the scientific community as can be seen by the growing number of publications 
and different application fields [4]. Even though, there are several ACO variants that 
can be considered, a standard approach is next presented [11]. 

5.1  Standard Approach 

ACO uses a pheromone matrix τ = {τij} for the construction of potential good 
solutions. The initial values of τ are set as τij = τ0 ∀(i, j), where τ0 > 0. It also takes 
advantage of heuristic information (known as visibility) using ηij = 1/dij. Parameters 
α and β define the relative influence between the heuristic information and the 
pheromone levels [10]. While visiting node i, Ni represents the set of neighbor nodes 
that are not yet visited. The probability (pij) of choosing a next node j, while visiting 
node i, is defined by equation (11). At every iteration of the algorithm, each ant of a 
colony constructs a complete solution T using (11), starting at source node s. 
Pheromone evaporation is applied for all (i, j) of τ, according to τij = (1 - ρ) •τij, 
where parameter ρ ∈ (0; 1] determines the evaporation rate. Considering an elitist 
strategy, the best solution found so far Tbest updates τ according to τij = τij +Δτ, where 
Δτ = 1/l(Tbest) if (i, j) ∈ Tbest and Δτ = 0 otherwise. Where l(Tbest) represents and 
objective function to be minimized. 
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5.2  Proposed Algorithm 

Following the MultiObjective Ant Colony Optimization Algorithm (MOACS) scheme 
[4], which is a generalization of the ACS [10], the proposed algorithm uses a colony 
of ants (or agents) for the construction of m solutions T at every generation. Then, a 
known Pareto Front Yknow [9] is updated including the best non-dominate solutions 
that have been calculated so far. Finally, the gathered information is saved updating a 
pheromone matrix τij. Fig. 3 (a) presents the general procedure of MOACS. In 
general, if the state of Yknow was changed, the pheromone matrix τij is re-initialized 
(τij= τ0 ∀(i,j)∈V) to improve exploration in the decision space Xf. Otherwise, τij is 
globally updated using the solutions of Yknow to exploit the knowledge of the best 
known solutions. Note that only the links of found solutions T in Yknow are used to 
update the pheromone matrix τij. To construct a solution, an ant begins its job in the 
source node s. A non-visited node is pseudo-randomly [4] selected at each step. This 
process continues until all destination nodes of the multicast group are reached. 
Considering R as the list of starting nodes, Ki as the list of feasible neighboring nodes 
to the node i, Dr as the set of destination nodes already reached, the procedure to find 
a solution T is summarized in Fig. 3 (b). 
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Begin MOACS 
     read G, (s,Nr), φ and tij 
     initialize τij with τ0 
     while (stops criterion is not verified) 
          repeat (m times) 
               T=Build Solution 
               if (T⊀{Ty|Ty∈Yknow}) then 
                    Yknow=Yknow∪T-{Tz|T≻Tz} ∀Tz∈Yknow 
               end if 
          end repeat 
          if (Yknow was changed) then 
               Initialize τij with τ0 
          else 
               repeat (for every T∈Yknow) 
                    τij=(1-ρ).τij+ρ.Δτ   ∀(i,j) ∈T 
               end repeat 
          end if 
     end while 
     return Yknow 
end MOACS 

(a) 
Begin Build Solution 
     T = {∅}; Dr = {∅}; R = R ∪ s 
     repeat (until R = {∅} or Dr = Nr) 
          select node i of R and build set Ki 
          if (Ki = {∅}) then 
               R = R – i   /*erase node without feasible neighbor*/ 
          else 
               select node j of Ki /*pseudo-random rule*/ 
               T = T ∪ (i,j)    /*constructions of tree T*/ 
               R = R ∪ j        /*constructions list of starting nodes*/ 
               if (j ∈ Nr) then       
                    Dr = Dr ∪ j /*node j is node destination*/ 
               end if 
               τij=(1-ρ).τij+ρ.τ0  /*update pheromone*/    
          end if 
     end repeat 
     Prune Tree T             /*eliminate nor used links*/ 
     return T                     /*return solution*/ 
end Build Solution 

(b) 
Fig. 3. (a) General Procedure of MOACS and (b) Procedure to Build Solution. 

where: 

∑
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and ρ ∈  (0, 1] represents trail persistence. 
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6 Multiobjective Multicast Algorithm 

Multiobjective Multicast Algorithm (MMA), recently proposed in [7], is based on the 
Strength Pareto Evolutionary Algorithm (SPEA) [8]. MMA holds an evolutionary 
population P and an external Pareto solution set Pnd. Starting with a random 
population P of solutions, the individuals evolve to Pareto optimal solutions to be 
included in Pnd. The pseudo-code of the main MMA algorithm is shown in Fig. 4(a), 
while its codification is represented in Fig. 4(b). 

 

Begin MMA 
     Read G, (s,Nr), φ and tij 
     Build routing tables 
     Initialize P 
     Do { 
        Discard individuals 
        Evaluate individuals 
        Update non-dominated set Pnd 
        Compute fitness 
        Selection 
        Crossover and Mutation 
     } while stop criterion is not verified 
  end MMA 

(a) 
 

 
(b) 

Fig. 4. (a) Pseudo-code of main MMA algorithm (b) Relationship between a chromosome, 
genes and routing tables for a tree with s=0 and Nr={2, 3}. 

 
The MMA algorithm begins reading the variables of the problem and basically 

proceeds as follows (see pseudo-code in Fig. 4(a)): 
 

Build routing tables: For each ni ∈ Nr, a routing table is built. It consists of the ψ 
shortest and ψ cheapest paths. ψ is a parameter of the algorithm. A chromosome is 
represented by a string of length |Nr| in which each element (gene) gi represents a 
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path between s and ni. See Fig. 4(b) to see a chromosome that represents the tree in 
Fig. 4(b). 
Discard individuals: In P, there may be duplicated chromosomes. Thus, new 
randomly generated individuals replace duplicated chromosomes. 
 

Evaluate individuals: The individuals of P are evaluated using the objective 
functions. Then, non-dominated individuals of P are compared with the individuals 
in Pnd to update the non-dominated set, removing from Pnd dominated individuals. 
 

Compute fitness: Fitness is computed for each individual, using SPEA procedure [8]. 
 

Selection: Traditional tournament or roulette methods may be used [8]. In this works, 
a roulette selection operator is applied over the set Pnd ∪ P to generate the next 
evolutionary population P. 
 

Crossover and Mutation: MMA uses two-point crossover operator over selected pair 
of individuals. Then, some genes in each chromosome of the new population are 
randomly changed (mutated), obtaining a new solution. The process continues until a 
stop criterion, as a maximum number of generations, is satisfied. 

7  Experimental Environments 

MOACS and MMA have been implemented on a 350 MHz AMD Athlon computer 
with a 128 MB of RAM. The compiler used was Borland C++ V 5.02.  

In order to evaluate the proposed MOACS approach to a recently published 
algorithm as MMA [7], several test problems were used, but only two will be 
presented. Each test was divided into four sub-tests (or scenarios) where the 
networks are under different load level:  

 
• low    (0 ≤ αij ≤ 0.4),  
• medium   (0.4 ≤ αij ≤ 0.7),  
• high    (0.7 ≤ αij ≤ 0.9), and  
• saturation  (0.9 ≤ αij ≤ 1). 

 
MMA parameters were: 40 chromosomes and mutation probability of 0.3, 

suggested in [7], while MOACS parameters were: 40 ant, 0.95 pseudo-random 
probability, 0.95 trail persistence. The runs stopped after 2000 generations.  

For each sub-test an approximation of the Pareto Front corresponding to each 
multicast group is obtained using a procedure with the following three steps: 

 
1)  Each algorithm (MOACS & MMA) was run ten times to calculate average 

values. 
2)  A set solutions “Y” conformed by all solutions of both algorithms was 

calculated. 
3)  The dominated solutions were eliminated from “Y”, and an approximation of 

“Ytrue” was created. 
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7.1  Test Problem 1 

The first test problem was the NSF network of Example 1, with ten multicast groups 
(MG) shown in Table 3.  

The number of optimal solutions of the approximated Pareto Front Ytrue is 
presented in Table 4, for each multicast group and load level. 

Table 3. Multicast Groups for Test Problem 1. 

MG* {s},{Nr} |Nr| 

1 {0},{1,2,3,4,5,6,7,9,12,13} 11 
2 {12},{0,1,2,4,5,6,8,9,11,13} 10 
3 {0},{1,2,3,4,5,6,9,12,13} 9 
4 {6},{4,8,10,11,12,13} 6 
5 {4},{0,1,2,3,6,7,9,10,12,13} 10 
6 {13},{0,1,2,3,4,5,6,7,8,9,10,11} 12 
7 {12},{0,1,3,5,6,8,9,11,13 } 9 
8 {2},{0,4,5,7,9,10,12,13} 8 
9 {5},{0,4,6,7,8,9,10,11,12 } 9 

10 {1},{0,7,8,9,12,13} 6 
*MG = Multicast Group 
 
 

Table 4. Number of Optimal Solutions in Ytrue for each MG and load level for Test Problem 1. 

M
G 

|Ytrue| 
Low Half High Saturation 

1 62 51 62 26 
2 33 21 32 23 
3 19 25 25 13 
4 11 14 10 10 
5 20 15 9 17 
6 45 29 31 18 
7 20 19 13 13 
8 14 16 14 5 
9 18 16 19 15 

10 11 9 13 7 

7.2 Test Problem 2  

The second test was carried out using the NTT network topology [7] of Fig. 5, where 
a delay dij over each link (i,j) is shown. NTT network consists of 55 nodes and 144 
links.  

Multicast groups used in this test are shown in Table 5 and the number of optimal 
solutions of the approximated Pareto Front Ytrue is presented in Table 6. 
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Fig. 5. NTT network used in test problem 2. Numbers over links represent propagation delay 
in ms. 

 

Table 5. Multicast Groups for Test Problem 2. 

MG {s},{Nr} |Nr| 
1 {51},{0,3,4,8,13,15,16,22,30,31,40,41,44,47,50,54} 16 

2 {48},{2,3,5,6,7,8,9,10,11,12,14,15,16,20,24,25,28,29,30,31,33,34,40,43,4
4,46,49,50,51,52,54} 31 

3 {46},{0,3,5,6,7,12,14,15,16,17,20,23,24,26,28,29,31,32,34,35,37,39,47,48
,50} 25 

4 
{26},{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,27
,28,29,30,31,32,3334,35,36,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52
,53,54} 

52 

5 {36},{1,7,8,12,14,16,18,20,21,25,26,28,30,32,33,34,35,37,39,41,43,44,45,
46,48,49,50,51,52,53,54} 31 

6 {30},{0,5,10,12,15,25,29,31,36,42,44,46} 12 
7 {13},{4,6,10,11,14,17,18,19,23,28,30,34,37,38,42,44,53} 17 

8 {21},{0,1,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20,22,23,24,25,26,27,2
8,30,31,32,33,34,35,36,38,39,41,42,43,44,46,47,48,49,50,51,52,53,54} 48 

9 {51},{1,3,7,11,15,16,17,18,26,27,30,37,42,43,46,50,52} 17 

10 {11},{1,4,5,6,9,10,12,15,16,17,19,20,22,23,27,29,30,31,32,34,35,36,37,38
,39,40,42,43,45,4647,48,49,50,51,52,54} 37 
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Table 6. Numbers of Optimal Solutions Ytrue for each MG and load level, for Test Problem 2. 

M
G 

|Ytrue| 
Low Half High Saturation 

1 105 79 35 11 
2 140 182 130 25 
3 97 67 58 12 
4 56 50 27 23 
5 57 41 26 14 
6 27 86 23 2 
7 25 7 11 4 
8 83 14 17 44 
9 49 33 9 5 

10 24 35 80 48 

8 Experimental Results 

Next, the experimental results for each test problem and different load levels are 
presented separately, comparing the results using the proposed MOACS to the 
corresponding results using MMA. 

8.1 Test Problem 1 

In these tests using the NSF network with 14 nodes and 42 links, it can be easily seen 
that in general MOACS outperforms MMA finding a larger number of Pareto 
solutions (see averages in Table 7). Only in column “Average for each MG” for 
multicast groups 4 (42 %) and 9 (49.25%) MMA may seem better than MOACS, but 
in the rest of the tests, MOACS is widely superior.  

Table 7. Comparison of solutions in Ytrue for each MG and load level, for Test 
Problem 1. 

MG Low Medium High Saturation Average for each 
MG 

MOACS MMA MOACS MMA MOACS MMA MOACS MMA MOACS MMA 
1 80 % 1 % 96 % 0 % 86 % 0 % 100 % 0 % 90.50 % 0.25 % 
2 27 % 1 % 28 % 21 % 3 % 44 % 100 % 0 % 39.50 % 24.50 % 
3 95 % 1 % 96 % 0 % 88 % 2 % 94 % 0 % 93.25 % 0.75% 
4 36 % 41 % 21 % 43 % 10 % 34 % 50 % 50 % 29.25 % 42 % 
5 82 % 2 % 87 % 1 % 68 % 7 % 58 % 29 % 73.75 % 9.75 % 
6 76 % 0 % 59 % 2 % 87 % 0 % 91 % 0 % 78.25 % 0.50 % 
7 20 % 28 % 40 % 22 % 15 % 32 % 100 % 0 % 43.75 % 20.50 % 
8 100 % 0 % 91 % 4 % 93 % 1 % 100 % 0 % 96 % 1.25 % 
9 28 % 37 % 12 % 76 % 16 % 51 % 65 % 33 % 30.25 % 49.25 % 

10 55 % 19 % 89 % 11 % 77 % 16 % 57 % 43 % 69.50 % 22.25 % 
 Average for each Load Level Global Average 
 60% 16% 62% 18% 54% 19% 82% 15% 64.4% 17.1% 
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8.2 Test Problem 2 

In this seconds test, MOACS again demonstrates the best performance (see averages 
in Table 8). See in Table 8 column “Average for each MG”, that only for multicast 
group 5 (15 %) MMA is superior. Also notice that in the “Global Average” MOACS 
calculated 40 % of Ytrue solutions while MMA only found 3 %. Even more, 
considering “Global Average,” MOACS achieved 67.2 % of Ytrue solutions while 
MMA only reached 17.1 %.  

Table 8. Comparison of Solutions with Ytrue for each Multicast group and level load 
for test problem 2 

MG Low Medium High Saturation Average for each 
MG 

MOACS MMA MOACS MMA MOACS MMA MOACS MMA MOACS MMA 
1 42 % 5 % 46 % 1 % 59 % 5 % 89 % 0 % 59 % 3 % 
2 10 % 3 % 10 % 0 % 11 % 0 % 58 % 0 % 22 % 1 % 
3 27 % 0 % 25 % 0 % 27 % 0 % 65 % 0 % 36 % 0 % 
4 9 % 1 % 8 % 2 % 10 % 1 % 68 % 0 % 24 % 1 % 
5 7 % 6 % 2 % 14 % 3 % 7 % 4 % 34 % 4 % 15 % 
6 96 % 0 % 64 % 0 % 86 % 0 % 100 % 0 % 87 % 0 % 
7 70 % 1 % 36 % 7 % 60 % 1 % 75 % 25 % 60 % 9 % 
8 10 % 0 % 10 % 1 % 8 % 2 % 40 % 0 % 17 % 1 % 
9 64 % 0 % 85 % 0 % 42 % 7 % 100 % 0 % 73 % 2 % 

10 10 % 0 % 10 % 0 % 9 % 1 % 52 % 0 % 20 % 0 % 
 Average for Load Level Global Average 
 35 % 2 % 30 % 3 % 32 % 2 % 65 % 6 % 40 % 3 % 

 
It can be concluded from Tables 7 and 8 that MOACS outperforms MMA for this 

type of MOP, finding a larger number of Pareto solutions. 

From these experimental results, the following conjecture can be stated. ACO 
algorithms as MOACS build relatively good solutions using heuristic information 
(visibility) and avoiding not feasible solutions; therefore, in general, ACO algorithms 
are better suited for constructing good solution, compared to Multiobjective 
Evolutionary Algorithms – MOEAs [11] as MMA. However, the above algorithms 
are probabilistic; thus, MMA may eventually outperform MOACS, as shown in 
Table 8 (row 5 and column Average for each MG). 

9 Conclusions 

This paper introduces a new approach based on MOACS to solve the multicast 
routing problem. The proposed MOACS is able to optimize simultaneously four 
objective functions, such as, (1) maximum link utilization (αm), (2) cost of the 
routing tree (C), (3) maximum end-to-end delay (Dm) and (4) average delay (Da). 
This new proposal is able to solve a multicast routing problem in a truly 
multiobjective context, considering all four objectives at the same time, for the first 
time using an algorithm based on Ant Colony Optimization. The new approach 
calculates not only one possible solution, but a whole set of optimal Pareto solutions 
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in only one run. This last feature is especially important since the most adequate 
solution can be chosen for each particular case without a priori restrictions that may 
eliminate otherwise good solutions. To validate the new approach, MOACS was 
compared to the MMA, a representative algorithm for solving the multicast routing 
problem in a truly multiobjective context, for Traffic Engineering. The experimental 
results showed that MOACS is able to find a larger number of Pareto solutions than 
MMA for different network topologies, different load level and various multicast 
groups, i.e. MOACS found better solutions in average than MMA. 

As a future work, the authors will perform more tests over other network 
topologies and other metrics will be also considered to make sure that algorithms 
based on Ant Colonies are a promising approach for traffic engineering. At the same 
time, authors consider the study of convergence time for the proposed algorithm, as 
well as the control traffic load it causes.  
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