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Abstract. In the framework of the workshop ”Performance Evaluation of Com-
puter and Communication Systems: Milestones and Future Challenges”, this pa-
per proposes to address the emerging criteria of energy. Used since a long time in
embedded systems where battery operated devices needed a careful handling, the
energy metric is taking a large momentum in the last years on large scale systems
where thousands of nodes collaborate to serve high end infrastructures like web
servers, clouds and grids.

1 Introduction and motivation

Since the last 5 years, we witness the raise in interest for energy aware infrastructures
and computing in large scale systems. What appeared at its beginning as a hype is slowly
taking more importance in the everyday life when operating large scale systems. Beside
the ecological view coming from the carbon-related global warning concern, attraction
is also garnered by several other actors: CEOs and system administrators handling large
IT infrastructures caring for their electrical budget or their electricity cap, electricity
providers who need to serve optimally a growing demand, and finally computer and
mathematical scientists who see an opportunity to explore a new scientific field.

The demand in research in energy-efficiency in large scale systems is supported
by several incentives [29, 6, 33], including financial incentives by government or insti-
tutions for energy efficient industries / companies [28]. Indeed, studies like [4] report
that the IT consumption accounts between 5 to 10% of the global growing electricity
demand, and for a mere 2% of the energy. Data centers hosting web services or cloud
computing gather thousands of nodes and every single Watt saved on each machine ev-
ery second is making a huge difference at the end on the energy bill (either money ROI
or ecologically speaking).

While some investigate how to reduce the ecological impact [30], most of the works
are driving research for reducing electricity demands in terms of Watts. This paper is
focusing on this latter and puts in the perspective the new challenge of energy con-
sumption as a criteria for performances in large scale distributed systems. It is intended
to serve as an introduction to the relevant metrics and appropriate methods when one
address energy as a criteria to performance evaluation.



This paper is organized as follows. Section 2 reviews some of the standard metrics
for performance evaluation in large scale systems. Section 3 is concerned with energy
metrics and energy benchmarks before investigating the integration of energy concerns
in section 4. Section 5 concludes the paper.

2 Performance metrics in large scale systems

Since the early ages of computer science, performance evaluation is related to the num-
ber of operations being done during a certain duration. Manufacturers and computer
scientists have investigated ways to augment the performances of silicon chips and their
usage.

Since the conjecture of Moore in 1965 [26] and refined in 1975 [27] stating that the
number of transistors in a chip will double every two years, valid for over 40 years (now
we can see its limit), the emphasis is put on the number of operations that can be done
during one time interval. While MIPS (Million Instructions per Seconds) was a common
measure in first ages to measure the performances of processors it is not anymore that
important: Indeed, this measure does not take into account many aspects of a computer
not related to CPU, like memory hierarchies or input/output bandwidth, or real applica-
tion workflows. The preference is now to measure on benchmarks the performances of a
computer, from single mono-core node to multicore many-nodes architectures. Specific
benchmarks exist to stress the architectures on their CPUs, their memory, their net-
work, their disks. For CPU, we measure performances in terms of number of operations
per second (particularly floating point operations per second, or Flops), on well known
benchmarks. For instance, SPEC (Standard Performance Evaluation Corporation) [9]
and TPC (Transaction Processing Performance Council) [11] both have a collection of
benchmarks to evaluate different architectures and applications. Energy concerns are
present in these benchmarks as we will detail later in section 3.

The Linpack benchmark [13] is the building brick of the Top500 list [14] that enlists
every six months the most powerful operational (super-)computers. Even if not perfect
since it does not encompass all the applications characteristics (it is a matrix compu-
tation benchmark made for scientific and simulation codes), this benchmark has been
accepted by the high performance computing community to compare machines. As for
an example, the first in the list is reaching 1.7 Petaflops (1.7 ∗ 1015 flops). Another
benchmark proposed by J. Dongarra is the HPCC (High Performance Computing Chal-
lenge) [24], which encompasses more aspects than just Linpack (but still includes it).
Unfortunately, as we will see in section 3 it does not take into account the energy spent
for the calculation.

For some time largely ignored by the growing capacities of monocore CPUs, paral-
lelism is coming back on stage due to problems related to physical limits in the chips
design and the programmed end of Moore’s law. Indeed, smaller integrated chips us-
ing CMOS technology induce a heat dispersion problem, due to the existing relations
between speed, frequency, voltage and energy (thus heat). Multicore CPUs are now the
norm, with trends to build on hundred cores (already produced) or even thousand core
CPUs. All the knowledge gained in the late 80s from parallel computing garners a new
interest with these new highly integrated architectures.



Many metrics have been built in order to check different aspects of parallel comput-
ing and distributed systems.

In the field of parallel programming, the classical metric is the speed-up, which
gives the acceleration in terms of time to solution (TTS) of a parallel program using P
processors against the same program using 1 processor. It is simply the sequential time
over the parallel time. As a first approach, we can already see that the faster a program
completes, obviously the less energy it uses.

Another metric is the scale-up. This metric helps to figure out the impact of pro-
cessing bigger problems with more processors. In the best case, P processors should be
able to process a problem of size P ∗N in the same time than 1 processor is processing
a problem of size N . In terms of energy concerns, the scale-up translates to the fact that
obviously more processors will consume more energy than one.

Fairness is insuring that the different jobs are processed equally and if there is no
starvation. Most of the time a job is processed when allocated all its required resources.
Another mean is to allocate only part of the resources. The yield is characterizing how
much resources are allocated to a job in comparison with what was asked by this job.
Reaching a high minimum yield assures some fairness in the system. We will come
back to this notion later in section 3.1 since it allows to trade resources (thus time to
solution) for energy. A problem resides in the fact that the resource consumption have
to be monitored and may cause overhead when done dynamically.

Other criteria of performances include throughput, latency, user satisfaction, secu-
rity. Service Level Agreement (SLA) have appeared lately to handle the required level
of processing and resources that meets specified needs. In terms of energy awareness,
we will see how SLA translates in most common works.

3 Energy performance of large scale systems

While a major topic since several years in embedded systems with battery operated
devices, energy-awareness raised interest since only a few years for large scale systems
like super-computers, clusters, grids and clouds. For a long time, energy consumption
has simply been ignored in the performance evaluation in parallel architectures, parallel
programming, and lately grid computing.

For the sake of comparison, the first UNIVAC I (UNIVersal Automatic Computer)
machine in the 1950’s was consuming 125 kW for 1905 operations per second1. Today’s
best as mentioned before is reaching 1.7 Petaflops at a cost of 6950 kW.

In 2008, a survey looking back on the TOP500 list elaborates a classification for
today’s best [25]. The author proposes a new class of Power Efficient Systems with the
rise of architectures (and vendors) taking energy concerns seriously.

A common office computer consumes between 120 and 200 Watts while high end
servers consumes between 80 to 300 Watts. Several studies [16, 23] split the share of
the energy consumption in a computer as this: CPU accounts for 37% of energy con-
sumption, memory is 17%, PCI slots are 23%, motherboard is 12%, while disk at 6%
and fans with 5% are closing the list. Note here that this does not include the power

1 source: Wikipedia



supply (which is accounting for more or less 20% loss), the networking infrastructure
and all the cooling infrastructure. In data-centers for instance the cooling can consume
as much electricity than the computers themselves.

Energy consumption can be considered in mainly two directions: The energy effi-
ciency identifies the performance of the system with respect to the energy costs (Sec-
tion 3.1 on metrics, Section 3.2 on benchmarks). Another direction is to put either en-
ergy savings or performances metrics as optimization goals and others as constraints,
or to check for Pareto solutions taking into account both (for instance the power yield
in Section 3.1 or in placement and scheduling techniques, see Section 4.3), knowing
hardware possibilities (Section 4.1).

3.1 Energy metrics

The first immediate metric that has been used coming from Flops is Flops/Watt. The
idea is to measure the number of flops that can be achieved using one Watt. Simplistic
enough, this metric has the merit to be easily understandable and related to its ancestor
in Top500. It is used by the Green500 listing (see section 3.2). A problem mentioned
with this metric is that it measures the power, but not the energy spent. The power view
is instantaneous while energy E relates to power P over a period of time t: E = P ∗ t.

Hence, two obvious way can be used to reduce energy consumption: Either by re-
ducing power consumption of the computers, or by reducing time to produce the result.
When an infrastructure is always on with the same power consumption factor in aver-
age, the time is not an issue. In this situations the Flops/Watt metric makes sense. Less
related to number of Flops, a metric considers the number of operations (not only flops)
per Watt. Conversely, another approach is to measure the average power the infrastruc-
ture needs to achieve a given operation. The Spec-power and TPC-Energy benchmarks
(see section 3.2) are using these metrics, respectively.

Still a difficulty appears: Do the maximum power or the average power have to be
taken into account? Nowadays, many components have internal or software means to
reduce the power consumption (see section 4.1) hence the course of power consump-
tion over time can have big variations. Some infrastructures even rely on unused nodes
switch-off to zero power consumption of a set of nodes (see section 4.3).

Another metric used is the energy itself when accounting for the energy of finite ap-
plications. The idea is to measure the Time To Solution and the consumed (max, aver-
age) power. The result of the multiplication is expressed in Joules (Watts.s) or Watt.hour.

Metrics can be elaborated from other traditional metrics from parallel systems. We
can imagine speedup per Watt, scale-up per Watt or any combination of these.

Example of a metric: The power yield In [5] we extend for instance the yield defined
in [35] so that the most energy efficient machines for hosting a set of jobs are chosen.
The consumption reduction problem translates to multi-objective optimization problem,
where energy adds to CPU, memory (for this work), network bandwidth, and others as
constraints of the problem.

Our approach is to rely on the demands a job has on the infrastructure (in terms
of CPU and memory bounds), to satisfy at best these demands while minimizing the



energy. More formally, [35] defined the yield Yi of a job i as Yi =
∑H
j=1(

αij

αi
) where

H is the number of hosts, αi is the CPU demand of job i and αij is the allocated part
of the CPU of host j for job i. Hence, when a job is allocated what it demands, Yi = 1.
Yi reflects the satisfaction of job i. The memory of a job is considered a rigid need: No
allocation can be achieved if a memory need for a job can’t be satisfied because of lack
of memory.

We extended this definition using a power factor Eij , reflecting the power cost of
job i when running on host j. We defined Eij = λ(Cmaxj − Cminj ) × αij + (1 −
λ)
[
Aj(1−

∑J
i′=1,i′ 6=i(αi′j))

]
. The first term (Cmaxj − Cminj )× αij reflects the extra

power cost involved by the presence of job i on host j (with Cmaxj and Cminj being
the maximum and minimum power of host j at full charge and when idle). The second
term Aj(1−

∑J
i′=1,i′ 6=i(αi′j)) reflects the attraction of host j for job i at a given time,

when other jobs are already placed on it (with Aj an attraction factor that favors the
consolidation of the jobs to the (already used) hosts that are consuming less power, for
instance we took Aj = Cminj ). The parameter λ balances the effect of placement (first
term, favoring the most energy efficient hosts) and the effect of consolidation (second
term, favoring a minimal number of hosts switched-on).

Finally we defined Y Eij (the power yield) as Y Eij =
Y

(1−k)
i

Ek
ij

. The k parame-

ter balances between performance (satisfaction) and power Eij . This metric is used in
an optimization heuristic to minimize the number of hosts while guaranteeing a given
quality of service and/or energy reduction, taking into account additionally the memory
used by one job.

As we can see from this example, to capture the effects of the placement of jobs
on a set of hosts while still guaranteeing a level of performances is a tedious task:
The process must take into account the specificities of the jobs (their demands in CPU
and memory), the specificity of the infrastructure (the hosts characteristics, possibly
the interconnect), the interactions between jobs (possibly the communications). As for
now, an unique metric taking into account all the parameters for task allocation is not
existing.

Other metrics The GreenGrid alliance proposes to use the PUE for data centres in-
frastructures [34, 18]. The PUE (Power Usage Effectiveness) is computed by dividing
the amount of power entering a data center by the power used to run the computer in-
frastructure within it. It encompasses all the surrounding of the infrastructure, including
power supplies, chillers, air conditioning. For instance best practices data centres can
reach a PUE down to 1.1 while the average data-centers have a PUE of about 1.9.

Finally, one can either optimize the total energy used, or the energy cap. This latter
is related to the maximum power consumption over a small period of time. In all in-
frastructures, the electricity provided by the energy providers is limited, due to physical
constraints of the power (electricity) distribution network. A metric is to measure the
maximum electricity that can be used in the infrastructure, in case of high workload
and extreme situations (for instance when cooling is used at its maximum during hot
periods).



3.2 Energy benchmarks

The Green500 [8] initiative is challenging the most powerful machines in terms of
Flops/Watts. In the same manner than the Top500, Linpack is used to compute the
performance. The first 3 (numbers from October 2010) in the ranking achieve a 773
MFlops/Watt, with a total consumption of the corresponding machines of 57.54 kW.
Notably, 8 out of the 10 first such machines use accelerators (PowerXCell from IBM,
GPU from AMD ATI and Nvidia). The Green500 is exploring at the moment a new list,
based on the HPCC benchmark.

SpecPower [32] is an industry-standard benchmark that evaluates the power and per-
formance of servers and multi-node computers. The initial benchmark addresses only
the performance of server side Java. It exercises the CPUs, caches, memory hierarchy
and the scalability of shared memory processors (SMPs) as well as the implementations
of the JVM (Java Virtual Machine), JIT (Just-In-Time) compiler, garbage collection,
threads and some aspects of the operating system. It computes the overall server-side
java operations per Watt, including the idle time on specific workloads. The comparison
list includes 172 servers. Among these, a Fujitsu server with 76 quadcores (304 cores)
reach a maximum value of 2927 ssj ops/Watt.

The TPC (Transaction Processing Performance Council) proposes the TPC-Energy
benchmark [15] for transactional applications: Web/Application Services, Decision Sup-
port, On Line Transaction Processing. TPC measures Watts/operations on the TPC
benchmarks (for instance transaction per seconds). Only few servers from HP have
now been evaluated. As an example, 5.84 Watts/transaction per seconds is given for an
typical online transaction processing workload.

For more details and comparative studies on these energy benchmarks, the reader
can refer to [31].

The EEMBC (Embedded Microprocessor Benchmark Consortium) has a similar
approach. It is providing a benchmark for energy consumption of processors [2]. It is
mainly dedicated for embedded systems and computes number of operations per joule
linked to the over performance benchmarks of the consortium, measured on different
standard applications for embedded systems.

Manufacturers provide information about the consumption of their components, us-
ing average loads. For instance, AMD describes the ACP (Average CPU Power) [1] that
characterizes power consumption under average loads (including floating point, integer,
java, Web, memory bandwidth, and transactional workloads, subset of TPC and SPEC
benchmarks). Interestingly, this work shows for instance that cores can consume be-
tween 61% to 80% of the processor power, and processors consume less than 25-35%
when idle.

4 Integrating energy concerns

Energy concerns have been integrated in many works at hardware, network, middle-
ware, and software levels in large scale distributed systems. This section does not intend
to provide an exhaustive view of these works, but rather representative trends followed
by researchers worldwide. For further reading, eEnergy Conference proceedings [22]
or the COST IC0804 proceedings [21] are providing good insights.



4.1 Hardware level

Hardware has long been thought as the main (and often only) place where energy sav-
ings can be achieved at large. Manufacturers believed (and still believe) that more
energy efficient hardware is the key issue, and that quicker processors will achieve
the energy saving goals (working more on the t parameter of the energy formula of
section3.1). Much developments have been achieved at the processors, memory, moth-
erboards, network card, etc. levels. In [7], the COST Action IC0804 surveys such hard-
ware leverages for energy. As an example, the Performance (P) and CPU (C) states in
ACPI compliant components allow to reduce the power consumption in deep sleep or
halt modes on processors almost to nothing (down to 2 Watts). These states can be con-
trolled also by software, opening door to Dynamic Voltage Frequency Scaling (DVFS)
or efficient consolidation techniques (see section 4.3).

Another aspect at hardware level is the problem of collecting energy usage. Virtually
all the researchers are using different power meters: Some use oscilloscopes to measure
directly the amperage and voltage at the hardware component level, while the major-
ity in large scale systems are using external power meters. Nowadays, intelligent Power
Distribution Units (PDU) allow to collect electricity demands at the plug, distribute it on
several servers or nodes and aggregate values to send back to any interested party (like
the middleware or software for instance). For instance the GreenNet infrastructure al-
lowed us to measure over a long period of time the pattern of the usage of the Grid5000
platform and to propose appropriate enhancements at the middleware level [12]. Also,
the TPC introduced an EMS (Energy Management Systems) to accompany its bench-
mark. The main advantage of such power meter is that they are not intrusive: They do
not change the behavior of the observed nodes. Their drawback is the data acquisition
frequency, (often one second), which is far too little when one wants to tune precisely
operating systems for instance (where the quantum is order of magnitude smaller).

4.2 Network level

At the network level, initial works investigated the energy consumption at the hardware
level, trying to correlate between network activity and energy spent [20]. Results show
that the traffic has little influence on the power consumption compared to the actual
switch on of modules or plugs in the switches and routers. The metrics measured the
number of bytes per Watt or the achievable bandwidth per Watt. Other works optimize
routes so as to prefer less energy demanding technologies (like optical networks) or
change dynamically the characteristics of these networks. In Ethernet networks, Adap-
tive Link Rate [19] is a solution where energy savings can be obtained by quickly chang-
ing the speed of network links in response to the amount of data transmitted.

4.3 Middleware level

At the middleware level, two main complimentary solutions are used: Dynamic hard-
ware adaptation and consolidation. Dynamic hardware adaptation mainly relies on the
DVFS capacities. Dynamic Voltage and Frequency Scaling tries to gain energy on in-
activity phases. The idea is to find the right clock for the right task. Since power =



voltage2 ∗ frequency ∗ α, with α as a hardware and conditions related parameter,
reducing frequency and/or voltage allows for a large spare of energy. As we saw in
section 4.1, different combinations of frequency/voltage can be tuned by software (P-C
states). The metric is then evaluated against the frequency/voltage combination during
the course of a particular application or a lifetime of an infrastructure.

Most of the works are doing consolidation using virtual machines to embed the
jobs: In this approach, the main issue is to switch off as much hosts as possible to save
energy while still guarantying quality of services. Techniques vary in the choice of the
hosts since it depends on each application and on possible links between jobs distributed
among the platform. The jobs do not have the same energetic behavior on every node
(depending on their CPU, memory, I/O accesses). Moreover if communications occur
between jobs, the techniques tend to collocate them on the same hosts. To evaluate the
different techniques, the metric is related to the dynamic number and consumption of
hosts for the application.

Example with a job allocation formalization and methodology We proposed in [5]
to model the problem of task allocation as a mixed integer linear problem, putting in
equation the different constraints of the task allocation process. For instance, using the
same notations than in section 3.1, one equation is ∀i

∑
h αih ≤ αi, with αi is the CPU

demand of job i and αih is the allocated part of the CPU of host h for job i. Afterwards,
we defined several problems to be solved, given these constraints: To maximize the
minimum yield of the jobs (definition of yield Y as in section 3.1), to minimize the
energy (defined as the sum of the dynamic power of the switched-on hosts), and to find
a tradeoff between them.

We will not detail here the model itself (due to limitation of space) but we will fo-
cus on the methodology and results. Once modeled, the problems can be solved using
a mixed integer linear program, finding an optimal: minimal set of efficient hosts to
run the jobs so as to guarantee the constraints. The resolution of this NP-hard problem
proved to be much too long for real life instances (over 4 hosts and 12 jobs). There-
fore we studied different heuristics (greedy-like, binpacking-like, based on the metric
described in section 3.1) and compared them with bounds on the optimal. We came to
the result that it is possible to find near-optimal placements of jobs in less than 1 second
for instances of the problem with 500 hosts and 1500 jobs. ? After these encouraging
results, we are now extending this work as to take into account the dynamic of the sys-
tem, where jobs can change their demands during time and possibly migrate between
the hosts of the infrastructure (to enable dynamic optimal consolidation).

4.4 Software level

Since a long time, offline analysis of codes are performed in embedded systems to eval-
uate the energetic cost of processors within limited electric constraints. In large scale
distributed systems, such offline analysis with apriori consumption models do not exist
so far. Techniques like [10] start to dynamically relate a set of observed elements on
the system to actual power consumption: Performance counters, load average, memory
usage, etc. can be mathematically related to power consumption using linear regression



techniques for instance. In these works the more metrics are observed and the more ac-
curate the prediction of energy usage will be. Such techniques are difficult to apply on
a very large scale, since a large number of elements have to be observed, possibly intru-
sively. Moreover, with virtualization mechanisms and communications, such regression
techniques based on observations still have to be developed.

Other works include Service Level Agreement (SLA) considerations. In these works,
the applications state their performance to achieve or the energy cap not to exceed. For
instance, [3] uses machine learning techniques to achieve SLA specifications while [17]
use autonomic computing for the same.

5 Discussion and conclusion

In this paper we propose an overview of performance evaluation under energetic con-
cerns. We describe commonly used metrics and benchmarks, before giving the main
trends for energy savings, focusing especially on large scale distributed systems.

We have seen that not a single metric has emerged and that many compete nowa-
days. Many are useful and complementary and the coming years will tell which ones
are used in everyday practices. Finally, as mentioned in the introduction, the ecological
case is not under study today. For instance the nature of energy used or the full life-
cycle of IT equipment from manufacturing to recycling are most of the time ignored.
We believe that the next generation metrics will encompass these ecological parameters
as well as the today simple energetic costs.

6 Acknowledgement

This work was partially supported by the COST (European Cooperation in Science and
Technology) framework, under Action IC0804 (www.cost804.org). The author wants
to thank particularly D. Borgetto, H. Casanova and G. Da Costa for the common work
on the energy yield metric and problem resolution developed in this article.

References

1. AMD-ACP. www.amd.com/us/documents/43761c acp wp ee.pdf.
2. Embedded Microprocessor Benchmark Consortium Energy benchmark.

www.eembc.org/benchmark/power sl.php.
3. J. Ll Berral, I. Goiri, R. Nou, F. Julia, J. Guitart, R. Gavalda, and J. Torres. Towards

energy-aware scheduling in data center using machine learning. In ACM/IEEE International
Conference on Energy-Efficient Computing and Networking (e-Energy), Passau, Germany,
13/04/2010-15/04/2010. ACM, April 2010.

4. Paolo Bertoldi and Bogdan Atanasiu. Electricity consumption and efficiency trends in the en-
larged european union, available online re.jrc.ec.europa.eu/energyefficiency/pdf/eneff report
2006.pdf, 2006.

5. Damien Borgetto, Georges Da Costa, Jean-Marc Pierson, and Amal Sayah. Energy-Aware
Resource Allocation. In Energy Efficient Grids, Clouds and Clusters Workshop (co-located
with Grid 2009) (E2GC2), Banff, 13/10/09-15/10/09. IEEE, octobre 2009.



6. Kirk W. Cameron, Kirk Pruhs, Sandy Irani, Partha Ranganathan, and David Brooks. Re-
port of the science of power management workshop, available at scipm.cs.vt.edu/scipm-
reporttonsf-web.pdf, April 2009.

7. Davide Careglio, Georges Da Costa, Ronen I. Kat, Avi Mendelson, Jean-Marc Pierson, and
Yiannakis Sazeides. Hardware leverages for energy reductions in large scale distributed
systems. Technical Report IRIT/RT-2010-2-FR, IRIT, University Paul Sabatier, Toulouse,
May 2010.

8. Wu chun Feng and Thomas Scogland. The green500 list: Year one. In 23rd IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS) - Workshop on High-
Performance, Power-Aware Computing (HP-PAC), Rome, Italy, May 2009.

9. Standard Performance Evaluation Corporation. www.spec.org/.
10. Georges Da Costa and Helmut Hlavacs. Methodology of measurement for energy consump-

tion of applications. Technical Report IRIT/RT-2010-4-FR, IRIT, University Paul Sabatier,
Toulouse, July 2010.

11. Transaction Processing Performance Council. www.tpc.org/.
12. Georges Da Costa, Marcos Dias De Assuncao, Jean-Patrick Gelas, Yannis Georgiou, Laurent

Lefvre, Anne-Ccile Orgerie, Jean-Marc Pierson, Olivier Richard, and Amal Sayah. Multi-
Facet Approach to Reduce Energy Consumption in Clouds and Grids: The GREEN-NET
Framework. In ACM/IEEE International Conference on Energy-Efficient Computing and
Networking (e-Energy), Passau, Germany, 13/04/2010-15/04/2010, pages 95–104. ACM,
2010.

13. Jack Dongarra, Piotr Luszczek, and Antoine Petitet. The linpack benchmark: past, present
and future. Concurrency and Computation: Practice and Experience, 15(9):803–820, 2003.

14. Jack J. Dongarra, Hans W. Meuer, Erich Strohmaier, Jack J. Dongarra, Hans W. Meuer, and
Erich Strohmaier. Top500 supercomputer sites. Technical report, Supercomputer, 1997.

15. Transaction Processing Performance Council Energy. http://www.tpc.org/tpc energy/.
16. Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power provisioning for a

warehouse-sized computer. In ISCA ’07: Proceedings of the 34th annual international sym-
posium on Computer architecture, pages 13–23, New York, NY, USA, 2007. ACM.

17. Aeiman Gadafi, Daniel Hagimont, Laurent Broto, and Jean-Marc Pierson. Autonomic En-
ergy Management of Clustered Applications. In E2GC2 : Energy Efficient Grids, Clouds and
Clusters Workshop (co-located with Grid 2009), Banff, Canada, 13/10/09-15/10/09. IEEE,
octobre 2009.

18. The Green Grid. www.thegreengrid.org/.
19. Chamara Gunaratne and Kenneth J. Christensen. Ethernet adaptive link rate: System design

and performance evaluation. In LCN, pages 28–35. IEEE Computer Society, 2006.
20. Helmut Hlavacs, Georges Da Costa, and Jean-Marc Pierson. Energy consumption of residen-

tial and professional switches. Computational Science and Engineering, IEEE International
Conference on, 1:240–246, 2009.

21. Pierson Jean-Marc and Helmut Hlavacs, editors. Proceedings of the COST Action IC804
on Energy Efficiency in Large Scale Distributed Systems - 1st Year, available online on
www.cost804.org. IRIT, July 2010.

22. Randy Katz and David Hutchison, editors. ACM/IEEE International Conference on Energy-
Efficient Computing and Networking (e-Energy), Passau, Germany, 13/04/2010-15/04/2010.
ACM, April 2010.

23. Kevin Lim, Parthasarathy Ranganathan, Jichuan Chang, Chandrakant Patel, Trevor Mudge,
and Steven Reinhardt. Understanding and designing new server architectures for emerg-
ing warehouse-computing environments. SIGARCH Comput. Archit. News, 36(3):315–326,
2008.



24. Piotr Luszczek, David H. Bailey, Jack Dongarra, Jeremy Kepner, Robert F. Lucas, Rolf
Rabenseifner, and Daisuke Takahashi. S12 - the hpc challenge (hpcc) benchmark suite.
In SC, page 213. ACM Press, 2006.

25. Hans Werner Meuer. The top500 project: Looking back over 15 years of supercomputing
experience. Informatik Spektrum, 31(3):203–222, 2008.

26. Gordon E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8),
apr 1965.

27. Gordon E. Moore. Progress in digital integrated electronics. IEEE, Technical Digest 1975.
International Electron Devices Meeting, 1975.

28. Bruce Naegel. Energy efficiency: The new sla, available online: datacenterjour-
nal.com/index.php?option=com content&task=view&id=2352&itemid=43. The Data Cen-
ter Journal, December 2008.

29. COST Action IC0804 on Energy Efficiency in Large Scale Distributed Systems.
www.cost804.org.

30. Jean-Marc Pierson. Allocating resources greenly: Reducing energy consumption or reduc-
ing ecological impact? In ACM/IEEE International Conference on Energy-Efficient Comput-
ing and Networking (e-Energy), Passau, Germany, 13/04/2010-15/04/2010, pages 127–130.
ACM, avril 2010.

31. M. Poess, R. O. Nambiar, K. Vaid, J. M. Stephens, K. Huppler, and E. Haines. Energy Bench-
marks: A Detailed Analysis. In ACM/IEEE International Conference on Energy-Efficient
Computing and Networking (e-Energy), Passau, Germany, 13/04/2010-15/04/2010, pages
131–140. ACM, 2010.

32. Standard Performance Evaluation Corporation Power and Performance.
www.spec.org/power ssj2008/.

33. U.S. Environmental Protection Agency ENERGY STAR Program. Report to congress on
server and data center energy efficiency, available online at www.energystar.gov, August
2007.

34. Andy Rawson, John Pfleuger, and Tahir Cader. Green grid data center power efficiency
metrics: Pue and dcie. In The Green Grid, December 2008.

35. M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova. Resource Allocation using
Virtual Clusters. In Proc. of the 9th IEEE Symp. on Cluster Computing and the Grid, May
2009.


