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Abstract—This paper presents an ongoing effort to-
wards a methodology for the model-based engineering
of energy-efficient automation systems. Energy con-
sumption is an increasingly important decision crite-
rion, which has to be included in the search for good
architectural and design alternatives. In the paper,
a modelling and performance evaluation technique is
proposed, which describes an embedded system with
an operational model of the processor hardware and
an application model of the software. UML extended
with MARTE profile elements is used for this part.
Both models are transformed into a stochastic Petri
net (SPN), for which we give transformation rules. It
is then possible to predict the energy consumption
of the hardware / software system by a standard
evaluation of the Petri net. An example is provided.

Keywords-UML; MARTE; Petri nets; energy con-
sumption; energy efficiency;

I. INTRODUCTION

Energy consumption is an increasingly important non-
functional property of embedded systems. Design deci-
sions have to be based on a trade-off between energy
and other requirements. Mobile systems which rely on
batteries or energy-harvesting techniques are an example
for which this is especially true. Specific processors have
been developed which allow to be run in several energy-
saving modes.

It is important to evaluate architectural and other
design decisions in all phases of the development process
based on a good prediction of the energy consumption
of an embedded system. In this work, we concentrate on
early design steps, in which major architectural decisions
are made, which may have a significant impact on the
overall system’s energy consumption. Modeling methods
should be developed for discrete automation systems
in such a way that the energy consumption, beside
other parameters, can be modeled, estimated, and finally
reduced.

The Unified Modeling Language (UML) [1] is an
industry standard for describing software systems. How-
ever, it is not intended to describe system properties
equally well, as there are no constructs for non-functional
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properties. Domain profiles of the UML have been
developed for this task, namely, the MARTE profile
(Modeling and Analysis of Real-Time and Embedded
Systems) [2] as a successor of the UML SPT profile [3].

UML models adopting the MARTE profile contain
the necessary information for energy consumption esti-
mation. However, they are not usable directly, as UML
models are not semantically well-defined for a specifica-
tion of the resulting stochastic process. For this work, we
propose UML models to be transformed into a model
for which analysis algorithms exist and, namely, into
SPNs [4], so that the behavior and the properties are pre-
served. This is an extension of an earlier work, in which
extended UML statechart models were transformed into
uncolored SPNs and analyzed [5], [6]. A similar approach
is taken in [7], where the work mentioned is applied to
the energy consumption evaluation. This paper extends
our previous work in [8], where it has been shown how
the energy consumption of the microcontroller can be
estimated. For the modeling of the microcontroller work
we also used the MARTE profile of the UML.

Here, we go a step further by explicitly addressing
the hardware part of the system, which will be the
same for all applications. It is described in an opera-
tional model and specifies all run modes of a processor
(microcontroller), the possible state changes, and their
associated energy consumption (as well as transition
times, if applicable). This information can be taken from
data sheets, and the model has to be constructed only
once for a specific CPU.

On the other hand, the effect of the controlling soft-
ware is captured in an application model. It describes
which steps are taken and what time is spent in which
mode, and may have stochastic behavior (interrupts,
for instance). Thus, it contains information about the
operational states used in the specified program and
their duration.

The two models together contain all the necessary
information for a prediction of the energy consumption.
We propose a method for their combined transformation
into a SPN in this paper. The resulting model can then
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Figure 1: Operational model of the microcontroller

be used to estimate the energy consumption of the sys-
tem with standard Petri net tools such as TimeNET [9].
The next sections describe each step of the method
in detail. Sections II and III describe the operational
model and the application model, respectively. The
method that transforms UML state machines into
SPNs is presented in Sec. IV. The example given
adopts the energy-controllable ATMEL microcontroller
ATxmegal28A1 [10]. Section V concludes the paper.

II. OPERATIONAL MODEL

This model contains all the necessary information for
analysing the system under consideration. All possible
states and transitions of the system should be described.
The conditions of possible choices in the model should be
specified, and the power required for each state must be
provided. State duration is not an obligatory parameter
in this model, as it can be given later in the application
model. However, if for some states it is a constant value,
regardless of a program executed on the system, it should
also be introduced. All the state names have to be
unique. An operational model representing all the pos-
sible states of the microcontroller is given in Fig. 1. The
following conditions are implemented: internal oscillator
operating on the frequency of f = 2 MHz, supply
voltage of Voo = 3.3 V, and ambient air temperature
of T'=24°C.

The states are described by means of the Re-
sourceUsage stereotype of the MARTE profile. This
package was specially created for considerating the re-
source consumption in the system. Two attributes have
been considered — these are execTime and powerPeak.
The first one reflects the duration of staying in each state
(in seconds), and the second one represents the necessary
power required for the state (in Watt).

All possible falling asleep, sleep and awakening modes
of the microcontroller are described here. The active
mode could also have been divided into several and
even into a bulk of states with different values of energy
consumption, depending on the estimation accuracy re-

quired. However, our research revealed that the power
of this state differs in the range of £5%. We take it
as negligible for our aim. Thus, only one active state
with a mean power value is being used in the presented
operational model.

Without fail, all the other states also contain infor-
mation about the power required for a specified op-
erating frequency of the microcontroller. Besides, the
execution time is already given for two states (falling
asleep and both awakening modes) in the operational
model (Fig. 1). This is due to the fact that the above-
mentioned modes always last a certain given time [10].

This example also contains a sleep mode choice. Ac-
cording to the command used in the program of the
microcontroller, one or another sleep mode can be chosen
and therefore, different power is required. Thus, the sleep
mode choice is deterministic.

There are some possibilities which might be useful in
difficult cases, when a developer does not have enough
information available and cannot gain it. Firstly, describ-
ing only the states that are indeed in use. The unused
modes may be skipped. In this case, the operational
model will not represent the real state of the system,
but the method will still show its workability. Secondly,
power consumption of some states cannot be measured,
but still must be given. In this case, this parameter
can be roughly estimated. Depending on the aims, one
can take the maximum power possible for the respective
state, its minimum or average value.

We did not make a thorough investigation of the
power consumption for the falling asleep and both awak-
ening modes, which would have been hard to detect.
An estimate is used instead. This is an example of a
simplification mentioned above.

III. APPLICATION MODEL

At the second stage of the method proposed, an
application model has to be created. It contains infor-
mation about the states used in the specified program
and their duration. The order of transitions between
the modes must comply with the order specified in the
operational model. However, the states by which both
the power consumption and the execution time given in
the operational model may be skipped in the application
model. For the correspondence detection between these
two models, the modes implemented in the application
model must be named the same as the states of the
operational model. They may also include subsidiary
signs or numbers. It is supposed that in the application
model, the non-specified duration of some states defined
in the operational model will be given. If an application
contains a choice, probabilities of each alternative should
be defined. If not, all the options are considered as



A Request™,

Process A
Process 1
Process 2
Sleep Mode ! i i
ol 1 2 314 5 6 7 & 9{10 11 12{13 14 15/tms
(a) Treq € (6,15] ms; P =30%
A Request™, : i
Process A i
Process 1 .. '
Process 2
Sleep Mode i ! !
ol 1 2 304 5 6 7 8 9110 11 12i13 14 15[t
(b) Treq € (3,6] ms; P =10%
ARequest\, i
Process A
Process 1 ! ! .. .-
Process 2
Sleep Mode ‘
o1 2 3 4 5 5- 7 8 91[}1112131415tms
(¢) Treq € (0,3] ms; P =10%
Process A
Process 1
Process 2
Sleep Mode

0l 1 2 34 5 6/ 7 8 910 11 12{13 14 15|,
(d) Treqd; P =50%

Figure 2: Tasks schedule

equiprobable. It is imperative to mark the initial state
of the system.

Some works related to the analysis of power consump-
tion of the embedded systems, e.g. [11], concentrate on
different types of tasks. In the following example applica-
tion, the microcontroller has 3 processes to execute. Two
of them are periodic and one aperiodic. Process 1 has the
duration of 1 ms and is executed every 3 ms. Process 2
has the duration of 4 ms and is executed every 15 ms.
Process A (aperiodic) should be executed for 3 ms within
the global period of 15 ms. It appears in 50% of cases.
The microcontroller falls asleep if there are no more tasks
left at the moment.

First, the tasks have to be scheduled to be executed
by the microcontroller. There are different methods for
this. As we have an aperiodic process, it forces us to
use one of the advanced algorithms which can consider
aperiodic jobs as well as periodic. As an example for this
application, the polling method was chosen. A poller is
a periodic task with a polling period and its execution
time. The poller is ready for execution periodically and is
scheduled together with the periodic tasks in the system
according to the given priority-driven algorithm. When
it executes, it examines the aperiodic job queue. If the

queue is non-empty, the poller executes the job at the
head of the queue. The poller suspends its execution
or is suspended by the scheduler either when it has
executed for the allowed unites of time in the period
or when the aperiodic job queue becomes empty. If at
the beginning of a polling period the poller finds the
aperiodic job queue empty, it suspends immediately and
will be able to examine the queue again until the next
polling period. [12].

We use a schedule of real-time processes following
a rate-monotonic approach as an arbitrary application
example for our method. The proposed method incor-
porating description, transformation, and analysis of
energy-consuming embedded systems is, however, not
restricted to such simple scheduling setups.

A request for the aperiodic task can appear equiprob-
able during the global period time. However, according
to the method, it could be executed only during the
polling time. We specify the poller period of 3 ms and
its execution time of 1 ms. Thus, the probability of the
event that a request for executing the aperiodic process
appears is 10% for each of 5 poller periods of 3 ms.
However, requests appeared after the sixth microsecond
of the period can be executed only in the course of
the next global period, because if not, after the sixth
microsecond of the period, there is no enough polling
time for finishing the aperiodic task.

Thus, using the polling method, the following schedule
alternatives were revealed (Fig. 2). As mentioned above,
the aperiodic process does not appear in 50% of cases
(Fig. 2d). Cases when the aperiodic request appears
either in the first or in the second polling period occur
each with the probability of 10% (Fig. 2b- 2c¢). The
case when the aperiodic task is executed immediately
after the beginning of the global period (Fig. 2a) can
occur with the possibility of 30%, as the execution of all
requests appeared after the 6th microsecond are moved
to the next global period.

The availability of the schedule lets us create the
application model in UML (Fig. 3). It is made by
means of the ResourceUsage (attribute execTime) and
the GaStep (attribute prob represents the probability of
the step to be executed (for a conditional execution))
stereotypes [2].

The order of the transitions between the modes
strictly corresponds to the operational model (Fig. 1).
Falling asleep and awakening modes are not reflected in
this model, because the necessary information concern-
ing power consumption and execution time is already
given in the operational model. The given values of the
execution time relate only to the modes by which this
parameter was not specified earlier, namely, by the active
and sleep modes. It is caused by the fact that these time
parameters are actually specified by the programmer
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Figure 4: Simplified application model

and, hence, can be changed in any way. The beginnings
of the state names in this state chart agree completely
to the existing in the operational model. However, each
state name has an extension in form of numbers. It is
caused by the fact that the state names in any UML
model must be unique if the states are not duplicated.

The following conventional signs were implemented.
For the active mode, X.Y.Z means that the process
number X (1, 2 or A for aperiodic) will be executed in
the branch number Y (see cases of Fig. 2) and this is
the microsecond number Z of the respective task in the
present global period. For the sleep mode, the parameter
X falls away, because the sleep modes already vary by
their names.

This model also contains choice elements (Aperiodic
process?), they are numbed in succession. The states
following by these elements also contain information
about the probability of executing each of them. In
each case, the sum of the choice states equals 1. It
should be noted that the indicated probabilities of the
states Active Mode A.2.1 and Active Mode A.3.1 are not
equal, though the probability of the second and the third



Table I: Transformation rules

# UML model Petri net
1 state place

2 transition transition
3 execTime="1" delay=t

(state attribute)
4 powerPeak="x"
(state attribute)

(exponential transition property)
...+ P{#Name >0} xx+...
(property expression,
element measure)

5 choice place & immediate transitions
6 prob="c” wetght=x

(state attribute) | (immediate transition property)
7 junction place & immediate transition
8 initial state inatialMarking=1

(place property)

branches are equal (Fig. 2b- 2¢). The reason is that in
the first case, the probability of 10% is a part of the rest
for three branches 70% (10%/70% = 0.1429), while in
the second case, the probability of 10% is a part of the
rest for two branches 60% (10%/60% ~ 0.1667).

The application model in Fig. 3 looks complex and can
be simplified owing to the following. As it was mentioned
in Sec. II, the power consumption of the active mode
stays at almost the same level independently of the
process executed by the microcontroller. Thus, for the
application model, it is significant whether the micro-
controller is in the active or sleep mode. All the active
modes can be united and presented as one with a longer
execution time. In so doing, we cause no inaccuracy
in the process of energy consumption estimation. The
simplified application model is presented in Fig. 4.

Now, two created models include all the necessary
information for estimating the power required for the
system. At the same time, the data is not redundant;
no data is duplicated. It is also important to notice an-
other advantage of the models division. The application
creator may not care about the necessary power. He can
even have no information at all about this parameter,
but it is still important to know the general appearance
of the operational model to be able to create a correct
application model.

IV. TRANSLATING UML STATE MACHINES INTO
SPNs

Two created UML state machines (Fig. 4 and 1) are
combined and converted into a Petri net. The application
model is taken as the basic one for this operation. The
missing information (missing states, power, duration) is
taken from the general operational model.

The transformation rules used are listed in Table I.

It is important to notice that while an active mode is
really transformed into one place, a sleep mode of the
application model in real requires taking into account 3
states: falling asleep, sleep mode and awakening. In the
process, the duration time given in the application model
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Figure 5: Petri Net reflecting the application execution



must be divided into 3 parts for each state. 0.5 us are
allocated for falling asleep mode, 10.3 ps for awakening
mode. Thus, the sleep mode oneself will last 10.8 us less
than given in the application model.

In the process of transformation, the state duration
given for user’s convenience in seconds in the UML
models will be transformed into the delay in clock cycles
in the Petri net. By the operating internal oscillator
frequency of 2 M Hz, one clock cycle is equal to 0.5 us.

All the other elements used in the UML state machines
(text boxes, separators, notes) are not taken into account
in the course of transformation.

Figure 5 represents a Petri net created according to
the application and operational models given (Fig. 4
and 1) using the above-mentioned transformation rules
(Table I).

This example is built in TimeNET [9], a special
software tool for the modelling and analysis of stochas-
tic Petri nets with non-exponentially distributed firing
times. The calculation of the power occurs automatically
in the course of the static analysis. The result (in mW)
is given in Fig. 5 under the name Power. In this case,
20.474 mW is the power needed for executing the ap-
plication within the global period of 15 ms. The energy
consumption of the microcontroller after a certain time
could be determined as the power needed for a global
period multiplied by the number of global periods.

The instance given in this paper should be considered
as a simplified example for describing the possibilities
of the method proposed. In actual fact, more complex
systems must be analysed. Increase of the states number
will lead to the growth of the scheduling options quantity
and thus, to the expansion of the models. The influence
of this demerit can be considerably reduced by imple-
menting the scheduling policies into Petri Nets. Thus, it
will not be necessary to make a preliminary scheduling
like in Fig. 2. This effort will be taken next.

V. CONCLUSION

This paper presented a methodology for the model-
based estimation of energy consumption for embedded
systems. The UML language extended with the MARTE
profile is used for the modeling process. The main con-
tribution is to describe the overall processor behavior
with an independent general operational model, while
the software applications are specified in the second
(application) model referencing the first one. The two
models are converted into a stochastic Petri net, which is
then used for a performance evaluation. Transformation
rules are given, and an example is presented. Finally, the
design process for embedded systems can be supported
by predicting the energy consumption.
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