
978-3-901882-56-2 c©2013 IFIP

Power Saving for Web Servers Using Proxies

Karl J. O’Dwyer, Eoin Creedon, Mark Purcell & David Malone

Abstract—Electricity is a major cost in running a
data centre, and servers are responsible for a signifi-
cant percentage of the power consumption. With the
rising cost of electricity and slow adoption of cleaner
electricity-generating technology, servers should be-
come more energy efficient.

This paper looks at web servers, as HTTP is a com-
mon service provided by data centres. Reverse proxies
are commonly used to improve the performance of web
servers. In this paper, we consider how reverse proxies
might be used to improve energy efficiency. We suggest
that when demand on a server is low, it may be possible
to switch off servers. In their absence, an embedded
system with a small energy footprint could act as
a reverse proxy serving commonly-requested content.
When demand outstrips its capacity, the reverse proxy
can power on the servers to meet this new load. Our
initial results indicate that such a scheme could be
practical and save significant power on servers with
lower load.

I. Introduction

IT now contributes measurably to the global consump-
tion of electricity. While this is still less than other sectors
[1], there is room for improvement. New server technologies
promise to lower power consumption when resources are
idle. Servers are specified to meet or exceed current peak
requirements; however common power-saving techniques
are unable to power the server off while idle, as the server
must remain responsive to new requests. Empirical tests
show that while powered off or sleeping, servers consume
significantly less power than in the lowest-power idle states
[2].
If we can overcome the adverse effect on availability

resulting from powering off a system, mechanisms for
temporarily turning servers on and off do exist. Recent
server hardware supports the Advanced Configuration and
Power Interface (ACPI) power-saving modes, which were
previously available on laptop and desktop computers.
These include methods to Suspend to Disk (i.e. hiberna-
tion) and Suspend to RAM, which are low power modes
with quick recovery to normal operation. The Wake-On-
LAN (WoL) standard for remote activation of devices
offers a convenient method to initiate recovery remotely.
The use of reverse proxies for website acceleration or

load balancing is relatively commonplace. In this paper
we consider using a low-power device acting as a reverse
proxy. It will have the additional ability to shut down the
server when demand is low, serve cached content while
the server is sleeping and wake the server if new content
is required. In contrast to previous papers, which have
considered how to reduce power usage when a pool of

servers provide a service (e.g. [2], [3]), we are targeting
services typically provided by a single server which may
have low-demand periods (e.g. in-house servers at night,
low-demand hosted web servers, . . . ).
We explore this approach by developing a small testbed

that allows us to replay web access patterns, estimate
energy savings, etc. In Section II, we describe the rele-
vant power-management features and measure their power
usage. In Section III, we describe the web access patterns
that we observe on a campus web server and their implica-
tions for designing a power-saving scheme. In Section IV,
we use a model of the idealised amount of power that can
be saved in order to estimate how large power savings can
be. Section VI discusses these results and the effectiveness
of the scheme.

II. Power States and Recovery

Various systems are available for controlling the power
state of servers. In particular, we will make use of an
interface for putting the system into a low power state
(ACPI) and then waking it at some later point (Wake-
On-LAN).
ACPI is a standard that aims to consolidate all power

management and configuration standards [4]. The ACPI
Standard defines a number of Power States, from G0
(active) to G3 (mechanical off). The sleeping state, G1,
is subdivided into 4 states (S1-S4). For us, S3 and S4 are
interesting as they define Suspend to RAM and Suspend
to Disk respectively. As we will see in these states, servers
consume almost as little power as when powered off. With
operating system support, the power state of a server can
be changed.
Wake-On-LAN is an industry standard for remotely

powering on computers. It requires a compatible net-
work interface card which remains powered on after the
computer is powered off. The signal used to wake up a
computer is called the Magic Packet, a broadcast frame
with a payload that is 6 bytes set to 255 followed by
the target computer’s MAC address repeated 16 times.
WoL can usually be configured via the BIOS/firmware or
operating system.
To illustrate these power-management features, we first

investigate the power consumption of two devices that
we use as servers (Dell R© PowerEdgeTM1800 and Dell R©

OptiplexTM755). We make power measurements using an
off-the-shelf plug-in energy monitor (MaplinTM200MU-
UK). For these systems, we also measure the time needed
to put the system to sleep and the time to wake after a
WoL message. This will influence the responsiveness of our



scheme. We call the sum of these the turn-around-time.
For comparison, we also show the power consumption of
a Soekris net5501. We will use this as a reverse web proxy
during quiet periods.

Dell R© PowerEdgeTM1800 This is typical of slightly
older server-grade hardware, including Intel R© Xeon R©

processors, RAID controllers, etc. While the power
supply is rated up to 650 Watts, Table I shows that
our configuration uses considerably less while idle.
With firmware updates, the system does support
both WoL and Suspend to Disk under Linux1. After
investigation, we found that only relatively long turn-
around-times are possible (over one minute). The non-
zero power usage while the server is off is typical of
modern PC hardware, and allows the support of WoL.

Dell R© OptiplexTM755 This is a desktop PC with more
modern power control features and similar specifica-
tions to some low-end servers. These features make
it more attractive to use in our tests. In particular,
it supports Suspend to RAM as well as Suspend to
Disk. Table I shows its power usage and turn-around-
times. Both power usage and recovery times are lower
than for the PowerEdgeTM1800, with the short turn-
around time for Suspend to RAM being particularly
attractive for our application.

Soekris net5501 The Soekris net5501 is a single board
PC based around the AMD GeodeTM, using a max of
20W, but typically much lower as we see in Table I.
We do not use or report on the sleep/wake features
of the net5501, as we intend to use this device as the
reverse proxy.

III. Investigation Of Traffic

Our aim is to exploit patterns in web traffic in order to
turn off web servers when they are not required. There has
been considerable work to characterise web traffic (e.g. [5],
[6], [7], [8], [9]), and it is known that web access patterns
are bursty.
A reverse proxy is a web server which accepts requests

from clients and forwards them to a back-end server, which
stores or generates all the website’s content available. The
reverse proxy caches the content as it is served, and uses
the cached content to answer requests where possible. As
websites often have ‘hot’ content, or content that is expen-
sive to generate but can be cached once generated, reverse
proxies can often result in performance improvements. We
use Varnish [10] as a reverse proxy. The reverse proxy’s
ability to cache content, and so to save power, will depend
on the details of the accesses. Consequently, we will design
and assess our scheme using actual requests from a campus
web server.
This web server hosts the websites of around 400 student

clubs, societies and individuals. It has a variety of content
and is accessed frequently by those on and off the campus,

1Linux Distribution: Ubuntu 12.04.2 LTS

Monday Tuesday WednesdayThursday Friday Saturday Sunday400

600

800

1000

1200

1400

1600

1800

Re
qu

es
ts

Median Number of Requests per Hour by Day

Median Requests per Hour
Median Requests by Spiders per Hour

Fig. 1. The median number requests per hour by day, sample web
logs.

Monday Tuesday WednesdayThursday Friday Saturday Sunday500

1000

1500

2000

2500

3000

Re
qu

es
ts

Mean Number of Requests per Hour by Day

Mean Requests per Hour
Mean Requests by Spiders per Hour

Fig. 2. The mean number requests per hour by day, sample web
logs.

and exhibits a mix of web content and access patterns. In
total, it amounts to over 77GB of content in 400,000 files
excluding content stored in databases, though frequently-
accessed content represents a considerably smaller subset.
The server is not busy, typically serving around 30,000
requests per day, but the volume of content should make
caching more challenging.

We looked at the median and mean number of requests
per hour over 270 days worth of data and grouped them
by a specific hour during a week. The median is shown in
Figure 1, with the noisier mean in Figure 2. We do not see
periodic activity, but a diurnal pattern emerges, showing
significant variation throughout the day.

Further inspection of the data reveals that a significant
number of requests are from web spiders (e.g. search-
engines’ crawlers). Based on a manual inspection of the
User Agent field of the log file, and consulting lists of com-



State Power Usage Recovery from State Time to Enter Time to Recover
(Watts) (mm:ss) (mm:ss)

PowerEdgeTM1800

Power Off 8.6 Wake-On-LAN 1:14
Hibernate (suspend-to-disk) 8.6 Wake-On-LAN 00:12 1:08
Sleep (suspend-to-RAM) NA NA NA NA

Power On (Idle) 109 NA NA NA

OptiplexTM755

Power Off 1.3 Wake-On-LAN 1:33
Hibernate (suspend-to-disk) 1.3 Wake-On-LAN 00:08 0:30
Sleep (suspend-to-RAM) 2.5 Wake-On-LAN 00:03 0:05

Power On (Idle) 60.3 NA NA NA

Soekris net 5501 Power On (Idle) 5 NA NA NA

TABLE I
Measured Power Profile for Devices.

Googlebot Slurp Baiduspider

bingbot urlresolver Speedy Spider

Sosospider Sogou web spider Gigabot

TABLE II
Strings used to identify common spiders.

mon spiders, we found that matching the list in Table II
allowed us to identify the majority of requests made by
spiders to this site. Random sampling suggests that of the
requests that do not match this list, only ∼ 5% come from
spiders.
We calculate the median and mean request rate from

spiders in this list and also show this median and mean
in Figure 1 and Figure 2 respectively. We see that a
significant number of requests are actually from these
spiders and that this traffic does not exhibit the same
diurnal pattern. This suggests that it may be useful to
handle web traffic from spiders as a special case.
If we want to put a server to sleep between requests,

then an important factor is the period between requests,
which we estimate using the length of gaps between logged
requests (logged at a resolution of 1 second). The length of
these gaps will indicate if it may be possible to switch off
the web server between requests, or if such opportunities
are limited.
Using a subset of our data, amounting to 40305 requests

over 28 hours, we look at the distribution of the gaps.
Figure 3 shows the frequency of the gap of a particular
duration. As we expect, gaps are typically quite short,
which limits our chances to turn a server on and off
without impacting on web traffic.
To consider the impact of caching on the gaps between

requests to the (back-end) web server we replayed the re-
quests to the campus server using Varnish[10] as a reverse
proxy to cache the content2. The resulting distribution of
gap lengths is shown in Figure 4. We see an increase in the
number of long duration gaps, representing an increase in
opportunities to put the server to sleep.
For comparison, we also consider the distribution of gaps

2The cache starts empty. We use the default Varnish configuration.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

Seconds
0

2000

4000

6000

8000

10000

Nu
m
be
r o

f O
cc
ur
re
nc
es

Frequency of Gaps of Given Duration

Fig. 3. Number of gaps of a particular duration between requests.
We omit gaps of duration less than one second.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

Seconds
0

1000

2000

3000

4000

5000

6000

7000

8000

Nu
m
be
r o

f O
cc
ur
re
nc
es

Frequency of Gaps of Given Duration

Fig. 4. Number of gaps of a particular duration between requests
to back end omitting requests served by reverse proxy. We omit gaps
of duration less than one second.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

Seconds
0

500

1000

1500

2000

2500

3000
Nu

m
be
r o

f O
cc
ur
re
nc
es

Frequency of Gaps of Given Duration

Fig. 5. Number of gaps of a particular duration between non-spider
requests. We omit gaps of duration less than one second.

between requests when we omit requests from spiders. We
do this on the basis that a spider does not usually need the
content immediately, and indeed, some spiders can be told
to make their requests later using a HTTP 503 response
with a Retry-After header [11], [12]. The results are shown
in Figure 5. We now see that the tail of the distribution
of gap durations has thickened, which suggests a better
chance of powering the server off without impacting on
user requests. Comparing these results with Figure 4, it
appears that for this log file, smart handling of spiders
might have a bigger impact than caching of commonly-
accessed content.

IV. Idealised Power Saving Model

In this section, we show how to estimate the possible
power savings for a web server, given information about
power usage, gaps between requests and how quickly it
can be turned on and off. Consider an idealised situation,
where the server could somehow determine when the next
request will arrive. After serving each request, it could see
if the time to the next request is greater than its turn-
around-time. If so, the server goes immediately to sleep
and schedules a wake up just in time to serve the next
request. This would allow the server to serve all requests
without introducing any delays, while sleeping for the
maximum time possible.
We can calculate the power saving given by this idealised

scheme. Let (ti)i=1..N be the sequence of gaps between
requests. We can find To and Ts, the time that the server
spends on or sleeping respectively. For this scheme,

To =

N∑

i=1,ti<ttat

ti

and

Ts =
N∑

i=1,ti≥ttat

ti,

0 20 40 60 80 100 120
Turn-Around-Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

To
ta
l P
ow

er
 U
sa
ge

 (k
W
h)

Idealised Power Consumption Comparisons

Always On
Original Data
Original Without Spiders

Fig. 6. Power saving for the idealised scheme that results in no delay,
as a function of the turn-around-time.

where ttat is the turn-around-time. Total energy usage, in
kWh, will then be

ToPo + TsPs

3.6× 106
,

where our measurements for Po and Ps can be found in
Table I for our hardware.
Using this model, we can assess the power saving pos-

sible without introducing extra delays. Figure 6 shows
the total energy consumption possible as a function of
the turn-around-time. We see that for the original log
file, for a turn-around-time of 20s or more, there are few
opportunities to sleep, and the total power usage is similar
to having the server always on. However, turn-around-
times of 2–3s would result in significant savings.
Following our observations from Section III we consider

the impact of spiders and caching. Figure 6 also shows the
results if we are willing to ignore requests from spiders.
Here the situation is much more promising. With our ide-
alised scheme, a turn-around-time of 20s allows a reduction
of energy consumption to around 35% of the consumption
for a server that is always on.
Figure 7 considers the impact of caching, by using the

idealised power-saving model on the requests that are
served from the back end, rather than from the content
cached by the reverse proxy. As expected from Section III,
we see a saving over answering all requests; however the
improvement is not as large as the saving for ignoring
requests from spiders. We also see that combining caching
with the special handling of requests from spiders results
in useful gains.

V. Discussion

These results indicate that it is possible to save power
by putting a high-power web server to sleep during low
activity periods, where a low-power reverse proxy fields
requests. We have also built a testbed where the reverse



0 20 40 60 80 100 120
Turn-Around-Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
To
ta
l P
ow

er
 U
sa
ge

 (k
W
h)

Idealised Power Consumption Comparisons

Always On
Original Data
Original Without Spiders

Fig. 7. Power saving for idealised scheme, answering requests that
cannot be responded to by reverse proxy as a function of the turn-
around-time.

proxy manages the power state of the web server via
ACPI and WoL. In our system, the power-on and power-
off decisions will be driven by the reverse proxy. We have
modified Varnish to allow the cache to manage the power
state of the server so that the impact of traffic patterns
and caching can be assessed.
Our testbed also allows us to assess the performance

impact of different power-on/off policies on the HTTP
content served. Our initial results show that an on-off
policy combined with a modest cache size and reasonably
aggressive cache settings allows us make savings of tens
of percent while serving content with small delays for the
vast majority of requests.
Note, we believe that the low-power proxy will not cause

performance problems during periods of high load. In prac-
tice, this can be achieved by directly serving requests (via
DNS or IP mapping) or switching in a higher-power proxy
at higher loads. Alternatively, smart high-performance
network devices, such as IBM R© PowerENTM[13] could be
used as reverse proxies.
We have considered a situation with a single server

hosted on physical hardware that can be powered down. A
similar configuration with a higher-powered server should
result in the scheme achieving larger savings. The principle
of the scheme also generalises to other configurations.
Multiple servers hosted on multiple physical systems could
be cached by a single reverse proxy, spreading the cost of
a higher-performance proxy over several web servers.

VI. Conclusion

In summary, we have explored the use of a low-powered
reverse proxy to save power. We considered how a web

server could be powered on and off, and what features of
web traffic might be used to facilitate this, particularly the
prevalence of spiders. We conducted tests to show that

if a server is not too busy and can recover from a low-
power state quickly (e.g. a turn around time of 10s) then
significant power savings (e.g. 70%) might be possible.
In future work, we will design a practical power-saving
scheme and show its impact on HTTP performance.

Acknowledgements

This research was supported by HEA PRTLI Cycle 5
TGI and Science Foundation Ireland under Grant No.
07/SK/I1216a.

References

[1] L. Hilty, V. Coroama, M. de Eicker, T. Ruddy, and E. Müller,
“The role of ICT in energy consumption and energy efficiency,”
Report to the European Commission, DG INFSO, Project ICT
ENSURE: European ICT Sustainability Research, Graz Univer-
sity, 2009.

[2] A. Gandhi, M. Harchol-Balter, and M. A. Kozuch, “The case for
sleep states in servers,” in Proceedings of the 4th Workshop on
Power-Aware Computing and Systems. ACM, 2011, p. 2.

[3] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and P. Doyle,
“Managing energy and server resources in hosting centers,”
SIGOPS Oper. Syst. Rev., vol. 35, no. 5, pp. 103–116, Oct. 2001.
[Online]. Available: http://doi.acm.org/10.1145/502059.502045

[4] “Advanced configuration and power interface,”
http://www.acpi.info, Dec. 2011.

[5] H. Braun and k. claffy, “Web traffic characterization: an as-
sessment of the impact of caching documents from the NCSA’s
web server,” in Second International World Wide Web (WWW)
Conference ’94, Chicago, IL, Oct 1994.

[6] J. Pitkow, “Summary of WWW characterizations,”World Wide
Web, vol. 2, no. 1-2, pp. 3–13, Jan. 1999. [Online]. Available:
http://dx.doi.org/10.1023/A:1019284202914

[7] P. Barford, A. Bestavros, A. Bradley, and M. Crovella,“Changes
in web client access patterns — characteristics and caching
implications,”World Wide Web, vol. 2, pp. 15–28, 1999.

[8] L. Bent, M. Rabinovich, G. Voelker, and Z. Xiao,
“Characterization of a large web site population with
implications for content delivery,” in Proceedings of the
13th international conference on World Wide Web, ser. WWW
’04. New York, NY, USA: ACM, 2004, pp. 522–533. [Online].
Available: http://doi.acm.org/10.1145/988672.988743

[9] J. Cao, W. Cleveland, Y. Gao, K. Jeffay, F. Smith, and M. Wei-
gle, “Stochastic models for generating synthetic HTTP source
traffic,” in INFOCOM 2004. Twenty-third AnnualJoint Con-
ference of the IEEE Computer and Communications Societies,
vol. 3, march 2004, pp. 1546 –1557 vol.3.

[10] P.-H. Kamp, “Varnish cache,” 2013, [Online; accessed 11-
January-2013, Version: varnish-3.0.1 revision 6152bf7]. [Online].
Available: https://www.varnish-cache.org

[11] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee, “RFC 2616: Hypertext transfer
protocol — HTTP/1.1,” 1999.

[12] J. Jerkovic, SEO Warrior: Essential techniques for Increasing
Web Visibility. O’Reilly Media, 2009.

[13] A. Golander, N. Greco, J. Xenidis, M. Hyland, B. Purcell, and
D. Bernstein, “IBM’s PowerEN developer cloud: Fertile ground
for academic research,” in IEEE 26th Convention of Electrical
and Electronics Engineers in Israel (IEEEi), 2010, pp. 803–807.


