IN-KERNEL MECHANISMS FOR ADAPTIVE
CONTROL OF OVERLOADED WEB SERVERS

Thiemo Voigt Renu Tewari

Ashish Mehra

Network Architecture and Services
IBM T.J. Watson Research Center
Hawthorne, NY 10532

{thiemo, tewarir, mehraa}@watson.ibm.com

ABSTRACT

The increasing number of Internet users and inno-
vative new services such as e-commerce are plac-
ing new demands on Internet servers, for example
web servers. It is becoming essential for Internet
servers to be highly available, have fast response
times, and provide continuous service during over-
load at least to preferred customers. It is nec-
essary, therefore, to protect Internet servers from
overload since during server overload clients ex-
perience increased response times and service fail-
ures.

In this paper we present a kernel-based archi-
tecture that protects Internet servers against over-
load by controlling the amount and rate of work
entering the system. Our basic control algorithm
limits the incoming TCP SYN requests based on
connection attributes. By dropping non-compliant
connection requests, the server can provide contin-
uous service to preferred clients even under over-
load. We present a second mechanism that re-
orders the listen queue of a server socket based on
the priorities of the incoming connection requests.
Our experiments show that both mechanisms en-
able service differentiation during overload. We
describe an adaptive architecture that uses these
mechanisms to dynamically protect web servers
from overload.

1 INTRODUCTION

The current Internet architecture is moving to-
wards application service providers and other Web
hosting services that co-host multiple customer ap-
plications on the same server farm or large servers.
In these settings a large increase in demand can

*The author is a graduate student at Uppsala University,
Sweden. He is also affiliated with the Swedish Institute of
Computer Science. He can be reached at thiemo@sics.se

bring down multiple sites simultaneously and af-
fect the performance and access of a large number
of users. Combined with the fact that these sites
are increasingly geared towards e-commerce, the
need for performance isolation and continuous op-
eration under overload becomes critical. However,
a simple “one size fits all” solution is not adequate.
Since the co-hosted sites or the clients belonging to
a site could be governed by different service level
agreements (SLA), it is essential to provide service
differentiation based on the attributes, for example
client identity or service identity, of the incoming
request.

Traditionally, commercial operating systems
have provided only marginal protection from over-
load. During overload conditions the operating
system may experience thrashing where little or
no useful work is done. This results in the clients
observing higher response times, connection time-
outs, failures and eventually loss of service.

To avoid overload, the server needs to deploy
some form of admission control that limits the
amount of work entering the system. This control
can be applied at (i) the application level (e.g., in
the web server), (ii) in the kernel, or (iii) in an
external appliance/router in front of a server clus-
ter. A front-end appliance/router-based overload
protection provides coarse-grained control of the
load seen by a server or a cluster. One limita-
tion of such an approach is that the front-end box
may hold insufficient or stale information about
the state of the server. Consequently, it does not
provide rapid response to overload. Secondly, the
front-end box is not in any adaptation loop gov-
erned by the applications running on the server
machine.

An alternative approach is to enable the appli-
cations to do their individual admission control.
Although this achieves application level adapta-

tion it requires modifications to existing applica-
tions. Secondly, various system resources have al-
ready been allocated to the requests before the ap-
plication control comes into play.

The need, therefore, is to: deploy mechanisms
that benefit any server application (e.g. WWW,
ftp, mail); enable controls to be effective as early as
possible; have the ability to utilize the latest and
complete information about the resource usage;
and adapt to the nature and demands of the appli-
cations and any governing service agreements. A
kernel-based mechanism for admission control and
service differentiation at the server supports the
above features and can co-exist with the controls
at the front-end or in applications. A useful side-
effect of server-based kernel controls is that in a
typical web-site architecture the machine running
the web server is more aware of the load on the
back-end servers than a front-end box. The kernel
controls can either be made completely transpar-
ent to the applications or one can allow applica-
tions to adapt them as and when required.

In this paper, we present a kernel-based archi-
tecture that controls the amount and rate of work
entering the system. We have implemented the
architecture on AIX using the framework of an ex-
isting QoS-architecture [1]. Since most web servers
receive their requests over HTTP/TCP connec-
tions, the mechanisms are located in the network
subsystem of the base kernel. The basic con-
trol mechanism [2] limits incoming TCP SYN re-
quests using a token bucket based policer. The
incoming requests can be aggregated based on the
connection attributes (for example protocol num-
ber, source and destination IP address and port),
and policed as a group to a given rate. In order
to provide service differentiation we provide two
new mechanisms: (i) TCP SYN policing to adapt
the policing profile for individual aggregates and
(ii) prioritized listen queue to prioritize requests
between aggregates based on the connection at-
tributes. We present experiments to show that
these mechanisms effectively limit the number of
accepted connections and provide better service to
preferred clients under overload conditions.

Our paper is organized as follows: In the next
section we introduce the problem and present an
overview of the architecture. In Section 3 we de-
scribe the mechanism that polices incoming TCP
SYN requests and show experimental results. In
the following section we present the prioritized
socket queue and some results. Section 5 discusses
further issues and presents a more complete ar-
chitecture to solve the problem discussed in this
paper. Before concluding, we discuss related work

in Section 6.

2 ARCHITECTURE

The main goal of our kernel mechanisms is to con-
trol the number and rate of accepted connections
and provide better service to preferred clients. In
the absence of such controls all connections are ad-
versely affected during overload. The greedy be-
havior of a single client or groups of clients reduces
the throughput observed by all clients. Figure 1
shows the achieved throughput of different client
connections. One set of clients are accessing a pre-
ferred customer site (e.g., in the experiment we
replay a server trace from the department store
Macy) and other clients are making continuous re-
quests to other contents. The throughput of the
preferred Macy’s clients falls as the load generated
by the other clients increases.

In order to shield the preferred clients from
losing their throughput we provide kernel mech-
anisms that are placed in the networking stack.
Our basic architecture consists of two kernel mech-
anisms shown in Figure 2. The first mecha-
nism called TCP SYN policing limits the num-
ber of connections to the server by policing in-
coming TCP SYN packets using a token bucket.
The token bucket is defined by the parameters
< rate, burst >, where rate is the average num-
ber of SYN requests admitted per second and
burst is the maximum number of SYNs accepted
at one time. The incoming connections are aggre-
gated based on specified rules/filters and the token
bucket parameters are assigned to each aggregate.
Before a socket for a new connection request is cre-
ated, we check the TCP SYN packet for compli-
ance against its token bucket profile. If the SYN
packet is compliant, a new socket is created and
inserted in the partial listen queue, otherwise, the
SYN packet is silently dropped.

Our second mechanism prioritized listen queue
reorders the listen queue of a server process based
on pre-defined priorities of the incoming connec-
tions. When TCP connections are established with
the completion of the three way handshake [3],
they are moved from the partial listen queue to
the listen queue. We insert the socket at the po-
sition corresponding to its priority in the listen
queue. Since the server process always removes
the head of the listen queue when calling accept(),
this approach provides better service, i.e. lower
delay and higher throughput, to connections with
higher priority. In order to associate connections
with a token bucket and a priority we have fil-
ters/rules. Each rule is a four-tuple consisting of

1400

1200

=
o © o
=] =} =]
S s} I=]

throughput (KBytes/sec)

N
o
S

200 |

'"preferreh client th'roughpul"

0 5 10 15 20

25 30 35 40 45

Number of competing clients

Figure 1: Macy-trace. The x-axis shows the number of competing clients. The y-axis shows the through-

put of the Macy’s client.

SYN partial
— — listen
queue
Rate Control

prioritized| ~ Accept
listen ——
queue

by server

connection setup complete

Figure 2: Architecture with the two kernel mechanisms

| (dst IP,dst port,src IP,src port) || (r,b) | prio |
(*, 80, % *) (3005) | 3
(%, 80, 10.1.1.1, %) (100,5) | 2
(¥, 80, 10.1.1.1, 654) (1005) | 1
(%, 80, 10.1.1.5, ¥) 10,1) | 3

Table 1: Filters for TCP SYN policing and priority

local IP address, local port, remote IP address,
and remote port. An example is shown in Table 1.
Here we have four rules: The first rule is the most
general of the rules and applies to the process lis-
tening at the local port 80 on all network interfaces
(usually this is a Web server). It specifies that all
connections to the server are rate-controlled with
a token bucket with rate 300 requests per second
and a burst of 5. The priority is three, that is
set to be the default lowest priority. The second
rule gives the client IP address 10.1.1.1 a higher
priority (two), but a lower rate. Clients from host
10.1.1.1 and port 654 get priority one, the highest
priority in our scheme. Clients from host 10.1.1.5
receive lower priority and are only accepted at a
small rate.

3 TCP SYN POLICING

The basic functionality of TCP SYN policing is to
limit the rate at which connection requests from

clients are accepted. Incoming SYNs are policed
using a token bucket based traffic profile defined
by an average rate and a burst. TCP SYN pack-
ets that are not compliant are silently dropped.
The requesting client will time-out waiting for a
SYN ACK and retry again with an exponentially
increasing time-out value. We do not send a TCP
RST to reset the connection since that would in-
dicate an abort from the server. Also some clients
try to send another SYN immediately after a RST
instead of aborting the connection.

Note that we drop non-compliant SYNs before
a connection is established; in fact, even before a
socket for the new connection is created. Thus,
our approach invests only a small amount of over-
head into requests that are dropped. This is very
important to avoid server overload.

To provide service differentiation, the connec-
tion requests are aggregated based on filters (or
rules) and each aggregate has a separate token
bucket-based traffic profile. To avoid dropping
TCP SYNs blindly, we check if the SYN packets
match a rule and then apply the rate and burst
of the rule. By doing this we can provide both
service differentiation and overload protection.

3.1 Experiment

We conducted experiments using Webstone 2.5 [4]
clients and server traces to verify that TCP SYN
policing works as desired. Our testbed consists of

an Apache web server [5] running on a 375 MHz
IBM RS/6000 machine that runs AIX; the client
machines are three 550 MHz IBM Pentium IIIs
running Linux. The machines are connected to-
gether using a 100 BaseT Ethernet switch.

In this experiment we show how we can use
TCP SYN policing to protect a preferred client
against denial-of-service attacks caused by a high
request rate from other clients. As in the experi-
ment in the previous section, one host replays the
Macy’s trace file representing preferred customers.
For the competing clients we use five machines run-
ning Webstone, each with 50 clients. All clients re-
quest the same file of size of 8 KBytes. We chose
8 KBytes since the size of a typical HT'TP trans-
fer is between five and 13 KBytes [6]. We need
a large number of Webstone clients because when
a TCP SYN packet is dropped (since it was non-
compliant), TCP’s exponential backoff algorithm
causes the Webstone client to refrain from mak-
ing a new request until the backoff timer expires.
In order to have enough clients with outstanding
requests, we need a large number of Webstone
clients. Note that this problem is caused by the
closed-loop architecture of Webstone. If we had a
more natural client population, we would not see
this problem.

In the experiments we do not vary the bucket
size (burst). The burst is set to 100. For a lower
burst, too many Webstone clients back off and do
not get any service.

Without any policing mechanisms the Macy
client receives a low throughput of about
6 KBytes/sec. When we use TCP SYN policing to
lower the acceptance rate of the Webstone clients
we expect that the throughput for the Macy’s
client will increase. The results are shown in Fig-
ure 3.

As expected, the throughput for the Macy cus-
tomers increases from 100 KBytes/sec to almost
800 KBytes/sec when we lower the acceptance rate
for the Webstone clients from 300 requests/sec to
25 requests/sec. The experiment demonstrates
that we can protect a preferred client by rate-
controlling the TCP SYN requests for all other
clients.

The scenario above uses TCP SYN control to
protect preferred clients against overload caused
by too many connection requests from misbehav-
ing or greedy clients. When dynamic objects are
requested, web servers can become overloaded due
to the extra CPU load per CGI process that is
spawned for each dynamic request. TCP SYN
policing can also be used to address this problem.
In a real system we need to adapt the policing rate

©
o
=]

"preferred client through;’)ut" —

~ ®
o o
o =]

@
o
=]

w
=]
)

throughput (KBytes/sec)

200 |

100 |

0 50 100 150 200 250 300 350
accepted rate of non-preferred clients

Figure 3: TCP SYN policing to protect Macy’s
customers. The x-axis shows the rate at which we
limit other clients. The y-axis shows the through-
put that Macy’s client receives.

to the resource consumption of the current work-
load.

TCP SYN policing works very well when we
know all the clients and their request patterns.
However, it is hard to determine the right parame-
ters that allow us to give good service to preferred
clients without underutilizing the server. In partic-
ular, it is difficult to determine accurately who the
misbehaving group of clients are. Secondly, finding
the right parameters is tricky. For example, if the
burst is too small, we might reject connection re-
quests unnecessarily. Furthermore, when the burst
size is smaller than the number of parallel connec-
tions opened by an HTTP/1.0 browser, a client
might not be able to retrieve all the embedded ob-
jects in a HTML page since the requests for these
objects usually arrive in a burst after the client
has received the initial page. With a large burst
size, however, a malicious client can use the burst
to create a short-term overload at the web server.

TCP SYN policing can also be used to protect
servers against overload by limiting the total num-
ber of accepted requests regardless of the client’s
identity. Another usage is to defend against cer-
tain denial-of-service attacks on the web server it-
self. As we do not admit every connection request,
it is not possible for a potential attacker to fill up
the partial listen queue of our web server.

4 PRIORITIZED LISTEN QUEUE

A problem with using only TCP SYN policing is
to identify the greedy or misbehaving clients and
assign them a proper rate. Instead if only the pre-

socket{} socket{ } socket{ }
S0 q 0. q 049
Prio: 1 Prio: 2 Prio: 2
socket{}
s q
S0_qgos
so_glimit
so_glen
ptable

socket QoS attributes

Figure 4: Implementation of the priority listen
queue

ferred clients are known it is simpler to give them
a higher absolute priority. Our second mechanism
prioritizes connections by reordering a server’s lis-
ten queue. When calling accept(), the server pro-
cess always removes the head of the listen queue.
In order to allow the web server to process impor-
tant requests before unimportant ones, priorities
are associated with filters as shown in Table 1.
This way, connections can be classified into dif-
ferent priority classes. We sort the listen queue
after priority with the connections of the highest
priority class at the head of the listen queue.

4.1 Implementation

Figure 4 shows the implementation of the prior-
itized listen queue. In a special data structure
that maintains socket attributes related to QoS,
we store an array of priority pointers. Each prior-
ity pointer points to the last element of the cor-
responding priority class. This makes insertion
of new sockets efficient. We only need to insert
the socket behind the one pointed to by the corre-
sponding priority pointer and update the priority
pointers.

4.2 Experiments

To evaluate the priority scheme, we use the same
testbed as in Section 3.1.

A test program running on the web server
makes one reservation for each client. Client 1
gets priority 1 (the highest priority), while client 2
and client 3 get the priorities 2 and 3. In our
experiments, we run a separate Webstone 2.5 pro-
gram on every client machine. All Webstone pro-
grams request the same file of size 8 KBytes. We
vary the number of Webstone clients. We expect
client 1 to achieve the highest throughput, followed
by client 2 and client 3.

socket{}
09 T 450 |-
Prio: 3

™ client 1 (high priority)’ ——
"client 2 (medium priority)" ------- 4
“client 3 (low priority)" --------

350 |

0 5 10 15
Number of Webstone clients

20 25 30 35 40 45

Figure 5: Priority with 50 Apache server pro-
cesses. The x-axis shows the number of Webstone
clients for each priority class. The y-axis shows
the throughput that each priority class receives.

In the first experiment, the Apache server is
configured to spawn a maximum of 50 server pro-
cesses. The results are shown in Figure 5. For
a small number of Webstone clients, all clients
achieve about the same throughput. When we
have a small number of Webstone clients, there
are always free processes to handle incoming re-
quests. Thus, the listen queue is kept short and
almost no reordering of the listen queue occurs.

The higher the number of Webstone clients, the
higher the throughput seen by client 1, while the
throughput that clients 2 and 3 receive decreases.
With an increasing number of Webstone clients the
length of the listen queue increases. Later arriving
connections from high-priority clients are inserted
in the listen queue on the positions in front of
connections from low-priority clients. Hence, low-
priority clients will not be served until there are
no high-priority connections in the listen queue.
Figure 5 shows that if we have more than 30 Web-
stone clients in each machine only the high-priority
clients are served and the lower-priority clients are
starved.

In the next experiment we decrease the num-
ber of Apache server processes to 20. If we have
fewer processes, the length of the listen queue will
increase. Hence, we expect that the low-priority
clients will be starved with fewer Webstone clients
than in the previous experiment. The results
shown in Figure 6 show that this is the case and
that the mechanism works as expected.

The priority-based approach enables us to give
low delay and high throughput to preferred clients
independent of the requests or request patterns of

IS
@
o

) "client 1 (high priority’ —
"client 2 (medium priority)"
“client 3 (low priority’

N
o
)

w
a
o

throughput (conn/sec)
&R
o

0 5 10 15 20 25 30 35 40 45
Number of Webstone clients

Figure 6: Priority with 20 Apache server pro-
cesses. The x-axis shows the number of Webstone
clients for each priority class. The y-axis shows the
throughput that each priority class receives. The
low-priority clients are starved with fewer clients
than when we have 50 server processes.

other clients. However, when we have too many
clients whom we will grant good service, we need
many priority classes. In general, this approach is
useful when there are a small number of priority
classes.

5 DISCUSSION AND FUTURE WORK

In the previous sections we have shown that both
TCP SYN policing and the reordering of the socket
listen queue are useful mechanisms for overload
protection and service differentiation. The mecha-
nisms work best under certain circumstances: Due
to its ability to enforce a maximum request rate,
TCP SYN policing works very well when we know
the misbehaving or greedy clients as we can limit
the requests accepted from them.

The prioritized listen queue is useful when we
know the preferred clients. It enables better ser-
vice for clients with high priority but can lead to
starvation of clients with low priority. A useful
technique is to combine the two approaches: we
give preferred clients high priority, but at the same
time we use TCP SYN policing to limit their max-
imum rate and thus prevent starvation of clients
with lower priority.

We have conducted experiments to show that
the combination of these two mechanism works as
expected. Table 2 shows the results for experi-
ments with three clients, client 1 to client 3 hav-
ing priorities 1 to 3. All clients are Webstone pro-
grams. Client 2 and client 3 have 30 Webstone

Throughput (conn/sec) |

(rate, burst) of client 1
client || none | (300,300) | (200,200)
client 1 381 306 196
client 2 0 78.6 180
client 3 0 4.1 13

Table 2: Use of TCP SYN policing of a high-
priority client to avoid starvation of other clients.
The table shows the throughput (connections per
second) for each client depending on client 1’s rate
and burst.

clients while client 1 has 150 Webstone clients
spread over three different hosts. We need this
large number to compensate TCP’s exponential
backoff algorithm as discussed earlier. When we
do not police client 1’s TCP SYNs, client 2 and
client 3 are totally starved. When we rate-control
client 1 with a rate of 300 requests/second and a
burst of 300, client 2 achieves a throughput of 78.6
connections per second, while client 3 is no longer
starved. A further limitation of client 1’s rate and
burst increases the lower priority clients’ through-
put additionally.

So far, we have only discussed the kernel mech-
anisms. As highlighted in the previous section,
a production system needs an adaptation facility,
both to adapt to load changes and changes of the
request patterns of the clients. The system archi-
tecture of a production system is shown in Fig-
ure 7. In addition to the web server and the ker-
nel policer, this architecture contains an adapta-
tion agent and a kernel statistics module as well
as an API. The API exports the mechanisms that
we have deployed in the kernel to the user level.
The API can be used in two different ways: (i)
by an adaptation agent with the application being
unaware of the existence of the kernel mechanisms
or (ii) by the application itself (depicted by the
dashed line between the web server and the API
in Figure 7).

Based on statistics obtained from the kernel
statistics module and the web server, the adap-
tation agent modifies the rates and bursts of the
current rules.

We are currently developing such an adaptive
agent. Its task is to modify the rules to detect and
prevent overload based on the system usage pa-
rameters such as load/utilization and request pat-
terns obtained from the statistics module and the
web server. The adaptive agent maintains statis-
tics for the previous n time intervals of:

e the observed CPU utilization,

Adaptation
/ e
API User
Kernd
Kerndl
Stats Kerne
Policer

Figure 7: Architecture with adaptation agent

e the number of accepted connections,

e the request mix obtained from the web server
module,

e the SLAs.

The expected load for the next time interval is
computed based on an exponential average of the
previous n time intervals. Given the new load,
the agent computes new values for the TCP SYN
policer’s burst size and rate.

6 RELATED WORK

Several research efforts have focused on admission
control and service differentiation in web servers
7], 8], [9], [10], [11] and [12].

Almeida et. al. [11] provide differentiated levels
of service to clients depending on which customers
web pages they access. While in their approach the
application, i.e. web server, determines the prior-
ity of the request by parsing the request to find out
to which customer the requested web page belongs,
our mechanisms reside in the kernel. However, our
mechanisms are not based on the requested page,
but on the client issuing the request. Our mecha-
nisms could extend Almeida’s approach to provide
overload protection and protection against greedy
or misbehaving clients.

Bhatti and Friedrich [12] have developed an ar-
chitecture called WebQoS to provide differentiated
services. The key component of their architecture
is a middleware located between the kernel and
the web server. In their approach, the web server
receives requests from the middleware and not di-
rectly from the kernel. The middleware provides

service differentiation by classifying requests and
placing them in different queues. In contrast to
our scheme, where we prioritize the listen queue,
the requests share the listen queue which is a FIFO
queue. This way, low priority requests can delay
requests with higher priority. The middleware also
deploys admission control based on the number of
requests queued. However, in their work admission
control is done after a significant amount of work
such as the establishment of a TCP connection has
been invested in a connection.

Banga and Druschel [13] provide differentiated
services using an operating system abstraction
called resource containers. Resource containers
enable the operating system to account for and
control the consumption of resources for the pro-
cessing of a request. They can also shield preferred
clients from malicious or greedy clients by assign-
ing them to different containers.

Scout [14], Rialto [15] and Nemesis [16] are op-
erating systems whose design enables them to ac-
count applications for all the resources they use
and restrict the resources granted to each appli-
cation. This way, these operating systems can
provide isolation between applications as well as
service differentiation between clients. Nemesis is
also able to distribute the available transmit band-
width among different connections [17]. However,
there is a significant amount of work involved to
port applications to these operating systems.

7 CONCLUSIONS

We have presented two in-kernel mechanisms for
adaptive control of overloaded Internet servers.
Both mechanisms work with any TCP server ap-
plication.

TCP SYN policing limits the number of incom-
ing TCP SYN requests using a token bucket po-
licer. Incoming TCP SYNs are aggregated based
on specified filters and the corresponding policer
drops non-conforming TCP SYNs. Our experi-
ments show that this mechanism can protect pre-
ferred clients against denial-of-service caused by
requests of well-known sites by enforcing a maxi-
mum acceptance rate on the latter.

Our second mechanism is a prioritized reorder-
ing of a socket’s listen queue. Sockets receive a
priority based on the connection’s aggregate’s at-
tributes. This mechanism gives good service, i.e.
low delay and high throughput, to clients with high
priority. Under high load with a large number
of requests from high priority clients, low-priority
clients can be starved. To avoid starving of lower-
priority requests, the two mechanisms can be com-

bined. We can enforce maximum request rates on
clients with higher priority using TCP SYN polic-
ing. Our experiments show that the combination
of the two mechanisms leads to the desired effect.

The presented mechanisms can be used to pro-
vide adaptive control of overloaded web servers.
Since the mechanisms are deployed in the operat-
ing systems kernel, they are efficient and can pro-
vide fast response to overload.

REFERENCES

[1] T. Barzilai, D. Kandlur, A. Mehra, and
D. Saha, “Design and implementation of an
rsvp based quality of service architecture for
an integrated services internet,” IEEE Jour-
nal on Selected Areas in Communications,
vol. 16, pp. 397413, Apr. 1998.

[2] O. Stockle, “Overload protection and qos dif-
ferentiation for co-hosted web sites.” Diploma
Thesis, ETH Ziirich, July 1999.

[3] G. Wright and W. Stevens, TCP/IP Illus-
trated, Volume 2. Addison-Wesley Publishing
Company, 1995.

[4] “webstone.” http://www.mindcraft.com.
[5] “apache.” http://www.apache.org.

[6] M. F. Arlitt and C. 1. Williamson, “Web
server workload characterization: The search
for invariants,” in Proc. of ACM Sigmetrics,
Apr. 1996.

[7] T. Abdelzaher and N. Bhatti, “Web server
qos management by adaptive content deliv-
ery,” in Int. Workshop on Quality of Service,
June 1999.

[8] L. Ckerkasova and P. Phaal, “Session based
admission control: a mechanism for improv-
ing the performance of an overloaded web
server,” tech. rep., Hewlett Packard, 1999.

[9] V. Kanodia and E. Knightly, “Multi-class
latency-bounded web servers,” in Intl. Work-
shop on Quality of Service, June 2000.

[10] K. Li and S. Jamin, “A measurement-based
admission controlled web server,” in Proc. of
INFOCOMM, Mar. 2000.

[11] J. Almeida, M. Dabu, A. Manikutty, and
P. Cao, “Providing differentiated levels of ser-
vice in web content hosting,” in Proc. of In-
ternet Server Performance Workshop, Mar.
1999.

[12] N. Bhatti and R. Friedrich, “Web server sup-
port for tiered services,” IEEE Network, Sept.
1999.

[13] G. Banga, P. Druschel, and J. Mogul, “Re-
source containers: a new facility for resource
management in server systems,” in Proceed-
ings of the 3rd USENIX Symposium on Op-
erating Systems Design and Implementation
(OSDI), (New Orleans, USA), Feb. 1999.

[14] D. Mosberger and L. L. Peterson, “Making
paths explicit in the scout operating system,”
in Proceedings of the 2nd USENIX Sympo-
stum on Operating Systems Design and Im-
plementation (OSDI), pp. 153-167, Oct. 1996.

[15] M. B. Jones, J. S. Barrera III, A. Forin, P. J.
Leach, D. Rosu, and M. Rosu, “An overview
of the Rialto real-time architecture,” in ACM
SIGOPS European Workshop, pp. 249-256,
Sept. 1996.

[16] I.M.Leslie, D.McAuley, R.Black, T.Roscoe,
P.Barham, D.Evers, R.Fairbanks, and
E.Hyden, “The design and implementation of
an operating system to support distributed
multimedia applications,” IFEE Journal on

Selected Areas in Communications, vol. 14,
pp- 1280-1297, Sept. 1996.

[17] T. Voigt and B. Ahlgren, “Scheduling TCP
in the Nemesis operating system,” in IFIP
WG 6.1/WG 6.4 International Workshop
on Protocols for High-Speed Networks, Aug.
1999.

