
1

THE DESIGN OF A FLEXIBLY INTERWORKING
DISTRIBUTED MESSAGE-BASED FRAMEWORK

Bilhanan Silverajan, Ilkka Karvinen, Janne Mäkihonka, Jarmo Harju
Department of Information Technology,

Tampere University of Technology
P.O. Box 553, FIN-33101, Tampere, Finland

e-mail: {bilhanan | ik | mhonka | harju}@cs.tut.fi

ABSTRACT

The DOORS (Distributed Object OpeRationS)
framework attempts to address several issues in
protocol development, interoperability and distributed
computing for client-server architectures in
heterogenous networks and telecommunications
systems.
Apart from supporting TCP/IP and UDP/IP socket-
based communication, the DOORS framework offers
an additional level of interworking with many kinds
of distributed object models and distributed systems.
It also implements an extremely lightweight ORB
using dynamic interfaces running over IIOP which
conforms to the CORBA architecture. Interworking
with other architectures and frameworks is supported
via interrupt-driven, CORBA, or protocol-level
approaches.
Brief examples of these approaches, together with a
description of streaming audio applications developed
for use with this framework, are presented.

1. INTRODUCTION

Telecommunications networks and devices, as well as
the Internet are inherently comprised of extensively
distributed network and software-based elements and
equipment. Owing to recent emerging trends of the
convergence of communications and computing,
architectures and infrastructures in the
telecommunications domain have become
significantly dependent on advances in areas of
distributed computing such as CORBA[1], mobile
agents, object-oriented languages and reusable design
techniques such as design patterns for improving
quality and scalability. One exciting topic in the area
of distributed systems is event-based systems

development in which the need occurs to support
emerging applications that require dynamic responses
to asynchronous distributed occurrences.
With the adoption of such new technologies, however,
one cannot ignore the issue of large amounts of legacy
infrastructure that already exist, and their integration
or interworking with newer technologies with
minimum adverse effects.
Using Ad-Hoc methods such as wrappers to
encapsulate entire systems or applications, tends to be
complex, fragile, and error-prone, often introducing
instability into a previously stable legacy application.
Therefore such methods can become maintenance
burdens themselves.
Thus any framework which attempts to address the
problem of interworking with legacy systems while
providing enough functionality to develop new
distributed event-based applications needs to fulfill
the following criteria:

• Implement new object interfaces that conform to
a set of widely supported distributed object
specifications as much as possible

• Accomplish data translation and information
processing on potentially different levels for
several uses such as gateways or relays

• Provide connection protocol management on
different levels

• Manage the application environment in a
lightweight manner.

In this paper, we present a practical high-speed
framework in active development that fulfills these
criteria, codenamed DOORS. The main purpose of
DOORS is to overcome the abovementioned
difficulties to flexibly support the implementation of

2

various types of distributed message-based systems
and services. DOORS applications can also
noninvasively interwork with existing legacy
applications as well as applications and components
that use CORBA or some other distributed model.
The design of this framework has been heavily
influenced by existing object paradigms and design
patterns, which enables it to successfully handle
occurrences of discrete events asynchronously with
great ease. Section 2 of this paper describes the
structure of this framework and its associated
libraries, while section 3 explores several
interworking scenarios. Section 4 presents a short
description of test applications developed for use with
this framework, while section 5 discusses some of the
design decisions made.

2. DOORS DISTRIBUTED FRAMEWORK

The DOORS (Distributed Object OpeRationS)
framework attempts to address several issues in
protocol development, interoperability and distributed
computing for client-server architectures in
heterogenous networks and telecommunications
systems.
DOORS uses a pure message-based model and
derives its C++ code-base from a protocol
implementation framework, OVOPS, that has been
successfully tested and employed to develop medium
to complex protocols widely used in
telecommunications and the Internet [2].
The framework has been implemented as three
flexibly interacting library-level components, which
are the Base, Protocol and Dynamic CORBA
components repectively. It is presently structured in
such a way as to allow multiple builds of different
platforms and compilers to proceed concurrently.
The current development platforms being used for
DOORS are Solaris and Linux, using Sun C++ as well
as GNU C++ compilers.
DOORS reduces any event-based application or
protocol into a set of interacting event- and protocol
tasks and a round-robin scheduler which allocates
execution turns to the tasks. An entire DOORS
system, comprising its event- and protocol-tasks,
scheduling, I/O Handling and CORBA subsystem, is
able to execute as a single user or kernel UNIX
process.
The driving design principle which has been adhered
to throughout the implementation of these library
components is to ensure that only a modular
dependency is enforced among these components.
The Base Component Library provides all the
services needed by the Protocol Component Library,
and likewise, the Dynamic CORBA Component
Library is dependent on both the other two
Component Libraries.

Because all these library components are usually
compiled as separate runtime libraries, a developer
can flexibly customize the size of his or her event-
based application very easily, with the bare minimum
being an application-level task, a scheduler, an I/O
Handler and possibly one or more virtual devices for
inter-process communication, services which are all
directly provided by the classes in the Base
Component library without the need for the other two
libraries. Subsections 2.1, 2.2 and 2.3 describe these
libraries in greater detail.

2.1. Base Component Library

The Base Component is subdivided into three
modules: Utilities, Core and Protocol Support. These
interwork together by providing the following
functionalities and services:

• Frames, buffers and cells for data storage
• Loggers
• Event-, Protocol- and timer management task

classes
• Classes that implement Service Access Points

(SAPs) and Protocol Data Unit (PDU) encoding
and decoding

• Base classes for finite state machine
implementations

• Multiplexers
• Base classes for messages
• Bi-directional ports used by tasks for message

passing
• Inter-task Scheduler
• Virtual device classes that provide object-

oriented interfaces to system devices and other
operating system services, such as sockets, pipes,
file handlers and timers

• I/O Handler that manages the virtual devices.

DOORS perceives any event-based application or
protocol as a set of interacting event- and protocol
tasks which exchange messages through their ports.
Events in the system are represented as messages.
Ports conceptually form channels for asynchronous
message transfer via a protocol-based communication
with other tasks. For endpoints that connect to an
external system, virtual device classes implemented as
wrappers for UNIX pipes, TCP/IP and UDP/IP
sockets can also be utilised.
Tasks, as shown in a simplified form in Figure 1,
execute incoming messages based on a FIFO order,
requesting execution turns from a round-robin
scheduler. Execution turns are non-preemptive, and if
there are no outstanding requests for task executions,
the scheduler instead blocks on the I/O Handler until
outside events monitored by the I/O Handler and the

3

virtual devices it manages arrive.
Figure 2 illustrates the basic procedures involved with
message-based communication between two tasks
where, on obtaining an execution turn from the
scheduler, Task A removes the first message from its
message queue and depending on its current state,
executes a sequence of operations that involve the
creation of a message for Task B. Within the same
execution turn of Task A, this message is then
transferred to the message queue of Task B via the
ports, which triggers Task B’s request for an
execution turn from the scheduler.

Figure 1. Task Abstraction in DOORS

Scheduler

1. Task A:
Create message

2. Port A: Put
message

3. Port B: Get
message

4. Task B:
Save message

5. Task B:
Request

execution

Figure 2. Message-based inter-task communication

Both the scheduler and the I/O Handler are
implemented as Singletons [3], and are launched
automatically at system startup.

2.2. Protocol Component Library

The Protocol component library currently contains
modules which comprise protocols such as RTP
(Real-time Transport Protocol), RTCP (RTP Control
Protocol) [4] and IIOP (Internet Inter-ORB Protocol),
which is a specialisation of the GIOP (Generic Inter-
ORB Protocol) [1].
The RTP and RTCP protocols have been designed so
as to support the types of unicast and multicast audio
applications explained in section 4. The IIOP protocol
has been designed to be utilised by applications
employing the use of the lightweight CORBA services

offered by the Dynamic CORBA Component Library
discussed in section 2.3. Also, because DOORS is
source-code compatible with OVOPS, existing
production-level protocols developed with OVOPS
such as TCAP, HTTP and TCP/IP can be used
natively as well.
All the classes used to build the protocols within this
component library are supplied by DOORS.
Implementation of protocols with stateful behaviour
are supported using the concept of tasks being either
Entity or Connection Objects. Each instance of an
Entity Object may be seen to represent one protocol
(sub-)layer, and is responsible for communication
with the upper and lower protocol layers within the
stack. It also creates, manages and destroys tasks
which are Connection Object instances, representing
single peer-to-peer connections for that protocol.
Figure 3 shows the implementation architecture of
IIOP.
The basic principle of creating Connection Objects by
the Entity Object is supported by the Abstract Factory
pattern [3], which inevitably has to be extended to
encompass the multiplexing, connection-handling and
subsequent removal of created objects.

[Open]
[Close]
[Read]

[Open]
[Close]
[Read]

IiopEntity IiopConnection

IiopSAP

Sockeos
(TCP/IP socket LISTEN device)

Sockcos
(TCP/IP socket CONNECTION device)

write(Frame frm);

M
U
X

[Request]
[Reply]
…

IiopSm_1_0

IiopSm_1_1

IiopSm_1_2

M
U
X

Figure 3. IIOP Implementation Architecture

In implementing support for protocol state behaviour,
the base State Machine class in DOORS adopts a
table-based alternative which maps inputs to state
transitions using function pointers. This approach lent
itself more easily to allow for the possibility of
generating C++ code automatically from a set of
specifications of a state machine for a given protocol
using OVOPS code generators. This can then be used
together with the code written by the developer. This
technique was successfully used to develop the RTP
and RTCP protocol modules. However, the State
pattern [3] approach can also be used in DOORS, as
in the case of IIOP, where there is a need for the
protocol to be backwards compatible with two earlier
versions. As Figure 3 shows, the protocol must be
intelligent enough to allow for multiple simultaneous
versions to be used, depending on the version
information carried within the header field of the

4

protocol message.
Because there are eight different messages in the
protocol and message structures differ in different
versions of the protocol, the complexity of the
implementation can increase rapidly if the table-
driven alternative is used. Each version of the
protocol also introduces significant changes from the
preceding version. For example, version 1.1
introduces message fragmentation, while version 1.2
allows for clients and servers to arbitrarily reverse
their roles within the same connection.
In this implementation therefore, the State pattern
design approach was preferred as it allows the
architecture to be easily managed and maintained
without letting updates and subsequent versions affect
existing versions. Figure 4 shows how this was
accomplished.

GIOP

IIOPSm_1_2

GIOP_1_1

GIOP_1_0

GIOP_1_2

IIOPSm_1_1

IIOPSm_1_0

IIOPSm

Figure 4. Finite State Machine Classes in IIOP

2.3. Dynamic CORBA Component Library

In addition to traditional IPC mechanisms using pipes
and sockets, CORBA has rapidly emerged as a very
realistic, mature and useful distribution technology for
the Internet. CORBA has also been adopted in
telecommunications by consortiums such as TINA-C
[5] as the basis for its Distributed Processing
Environment. Amongst all the distributed
architectures in use today, CORBA is perhaps also the
most realistically implementable for large-scale
systems.
However a full CORBA implementation is still not a
realistic lightweight possibility for event-based
communications and frameworks which need to
remain interoperable with legacy systems. The core
specifications remain oriented towards synchronous
communications, and instead introduce the overhead
of a dedicated CORBA Messaging Service [6] for
asynchronous communications.

Owing to these reasons, DOORS supplies a
component library implementing a lightweight,
library-based CORBA solution for asynchronous
communications which consists of an Object Request
Broker (ORB), a Portable Object Adapter (POA) and
dynamic interfaces for client-side and server side in
the forms of the Dynamic Invocation Interface (DII)
and the Dynamic Skeletal Interface (DSI), which run
atop IIOP.
The ORB is implemented as a C++ Singleton class
which is derived from an Event Task, and its design
corresponds to the Broker architectural pattern [7]
documented by Buschmann et al. The use of the
dynamic client and server side interfaces imply that
the traditional stub and skeletons which usually
manifest as proxy objects in the pattern are no longer
present. Instead, using the DII and DSI, the clients
and servants interact asynchronously with the ORB by
using Request and ServerRequest objects that contain
parameters reflecting the operation name and the
parameter values and return results, as defined in the
CORBA specifications.
Figure 5 illustrates the client-side operations for an
asynchronous method invocation using DII.

String objrefClient

Request

Object

ORB

StrToObj (objref)

Narrowed Obj_Ptr

createRequest

Request_Ptr

Add_args

Send_request

Return

Transmit request

Figure 5. Client to ORB DII Communication

As the Dynamic CORBA Component is implemented
using the services and classes provided by the Base
and Protocol components, the same guarantee of
delivery of messages which is provided by the
framework for traditional protocol-based
communications can likewise also be given to
asynchronous inter-ORB communication in CORBA
for distributed client-server applications.
Figure 6 illustrates the DSI technique in DOORS in
the form of a message sequence chart, involving the
ORB, POA, ServerRequest and Servant objects. The
basic idea of the DSI is to implement all requests on a
particular object by the invocation of the same upcall
routine, a Dynamic Implementation Routine (DIR) on
the Servant object. The DIR is passed all the explicit
operation parameters, and it can access and operate

5

on individual parameters. A single DIR could also be
used as the implementation for many objects with
different interfaces [1].

ORB POA

ServerRequest

Dyn Impl: Servant

Transmit result

Return result

Transmit request

Registration and Activation

Add args

Invoke

TypeCheck args

Return result

Figure 6. Servant to ORB DSI Communication

The POA that is implemented in DOORS as a
Singleton relieves the ORB of the responsibility of
maintaining state and persistence information about
servants. It is derived from the Protocol Task and
State Machine base class and maintains an Active
Object Map for keeping track of active CORBA
Objects and their corresponding servants. It also
supports the following policies:

• Single-threaded
• System-generated Unique Object ID
• Transient server objects
• Support for server retention in the Active Object

Map
• Explicit Object Activation.

3. INTEROPERABILITY WITH OTHER
SYSTEMS AND ARCHITECTURES

DOORS currently supports interworking and
interoperability with other architectures and systems
via protocol-level, CORBA and interrupt-driven
approaches. Figure 7 concisely portrays the
mechanisms that can be used to achieve such
interoperability.
As alluded to earlier, the entire system can, and is in
fact lightweight enough to be run as a single process.
It can concurrently provide multiple points of access
for multi-directional traffic between the various
protocols and applications in DOORS with the
external world.
The protocol-level approach is perhaps the most
widely applied means of communication in the
Internet today, where the objects within the
frameworks are able to communicate with
applications of the foreign legacy system by using
some form of specified application-level
communication protocol over TCP/IP or UDP/IP

sockets. It could be visualised as a distributed,
extreme variation of the Adapter pattern [3], where
the interface of an object needs to be adapted before
successful communication could take place.

I/O
Handler

Round-robin
Scheduler

Various
Protocol

Tasks

CORBA
Client
Apps

Timer
Task

Event-
based
Server
Apps

CORBA
Server
Apps

Event-
based
Client
Apps

ORB + IIOPORB + IIOP

DSI
DII

POA

Virtual devicestimer devices

file devices

unix pipe
devices

socket
devices

unix tty
devices

user
implemented
devices

CORBA subsystem

External world

Figure 7. Interoperability mechanisms in DOORS

The CORBA-based approach allows external
CORBA-compliant applications to communicate with
clients and servants within DOORS via its CORBA
subsystem. Although DOORS currently only
implements the dynamic interfaces, this is completely
transparent to the external application, which can use
static interfaces with type-specific stubs or skeletons
on its part. As the DII and DSI also allow type-
checking at runtime, DOORS has many applications
beyond interoperability solutions, such as software
development tools based on interpreters, debuggers
and monitors that can dynamically interpose on
objects.
An interrupt-driven approach can also be used for
interoperability using the I/O Handling subsystem
comprising the I/O Handler and its virtual devices.
The principle of the Wrapper Façade pattern [8] is
applied in the design of the virtual devices, by
encapsulating low-level functions for manipulating
TCP/IP and UDP/IP sockets, UNIX pipes and files
using a more concise, uniform and understandable
OO class interface.
Basically each virtual device monitors one UNIX file
descriptor, and the I/O Handler uses the select()
UNIX system call on these descriptors. Upon
detecting an event on any of these descriptors, the I/O
Handler requests for an execution turn from the
scheduler and passes control over to the responsible
virtual device which then performs event-processing
actions. This principle of operation of the I/O Handler
used in DOORS closely corresponds to the Reactor
pattern [9].
Thus, apart from using virtual devices for sockets,
pipes and files, for this manner of communication,

6

user-written virtual devices can also be utilized for
customized event processing for external applications,
assuming the external system supports this Reactor-
based approach and exports its file descriptors to
DOORS.
For legacy systems which have a reasonably low level
of interworking, this technique offers two advantages:
Firstly, it can be used to overcome issues of
interworking or short-term integration without
suffering any loss in functionality nor needing any
large overhead. Secondly, this technique allows for
the interworking of such frameworks with many kinds
of distributed object models without being tied to one
particular type of distributed technology [10].
The Reactor-based approach is gaining in popularity
owing its simplicity of approach, with
implementations available in several major projects
such as the X11[11] as well as the Apache Cocoon
Project[12], and ORBs such as Orbix[13], TAO[14]
and Orbacus[15].
From the three above-mentioned interoperability
approaches, one can immediately infer that a wide
plethora of hybrid solutions are implementable. This
leads to many different types of possible usage. For
example, because of the inheritance from the Protocol
task class, CORBA-based servants in DOORS can
potentially also serve as protocols in a protocol stack
or event-based applications which use sockets.
One can easily envision scenarios such as an LDAP
server task in DOORS which, using only pure
CORBA calls, can serve LDAP requests to external
CORBA clients interested in browsing directories,
leading to implementations such as LDAP-enabled
Implementation Repositories or a federation of
CORBA Trading Servers.

4. EXAMPLE IMPLEMENTATION

One area in which DOORS has been employed is in
the implementation of a unicast and multicast client
and server for streaming experiment using MPEG 1
Layer III (mp3) audio.
The initial server prototype used the RTP and RTCP
protocol modules for transporting the audio data over
UDP sockets. The RTP frame is structured in such a
way that the first part contains a 16-byte long RTP
Header, which contains valuable information for
stream synchronisation such as sequence numbers and
timestamp values. This is then followed by the MPEG
header and the MPEG frame which are created by an
MPEG encoder. Every RTP frame contains exactly
one MPEG frame as its payload.
Because RTP is a common way to multicast real-time
multimedia, there are several clients already available
for receiving and playing RTP streams, audio and
video. For the purpose of testing this initial prototype,
the audio server was multicasting packets with a TTL

value of 16, from a Linux-based PC, and the streams
were successfully received remotely with Linux- and
windows-based RTP-aware mp3 players, such as
FreeAmp[16].
This example was then expanded to include a client-
server thread-based model which retains streaming
via RTP whilst implementing a CORBA-based stream
control mechanism for both point-to-point and point-
to-multipoint connections as shown in Figure 8. The
initial model uses the RTP implementations supplied
by DOORS, but the CORBA functionality is provided
via static interfaces with MICO [17]. This will be
subsequently modified to use the dynamic interfaces
provided with DOORS. This is a lightweight
implementation of the model prescribed for the
control and management of audio/video streams using
CORBA Objects, by the OMG CORBA
Telecommunications Domain Task Force [18].

change to play state

MPEG−frame stream

server−side

play()

client

play()

bind()

connect()

request_connection("TCP=client.net:8888")

buffer−size

port=8888

PCM−audio

client−side
file

sender

thread

MpegAudioSource

MpegAudioCtrl

MpegAudioSink

player

threadbuffer
receiver

thread

MpegAudioCodec

Figure 8. Audio Streaming Experiment

Three CORBA objects are used: MpegAudioSource,
MpegAudioCtrl and MpegAudioSink representing the
server object, control object and a client object,
respectively. When a client wishes to open a
connection to the server, it creates an MpegAudioCtrl
object and an MpegAudioSink object and obtains
their object references. It then obtains an object
reference to the MpegAudioSource object, after
which the client invokes a bind() operation on
MpegAudioCtrl giving the references of the source
and sink objects to bind them together.
The bind() operation calls connect() on the client
object, which launches a receiver thread to start
waiting for a connection from the server. At the same
time, the client also launches a player thread.
When the receiver thread is ready, connect() calls
request_connection() on the server-object with a
parameter that gives the server an indication of the
protocol and address to use. Figure 8 shows the client
requesting the server to use TCP to connect to port
8888 on its host, “client.net”.

7

The server then launches a sender thread that first
tries to open a connection to the client with the
supplied parameters. If the connection is successfully
opened, request_connection() returns positive result
to connect() on the client object which, in turn,
signals bind() on the control object about the
successful connection.
Once a connection between client and server objects
is established, the user can start controlling the
MPEG-stream to be received. There are methods like
play(), stop(), get_list() and select_item() for starting
and stopping the stream, getting a list of streaming
objects (mp3 filenames here) and selecting a
streaming object, respectively.
An MpegAudioCodec object is used as an MPEG-
audio decoder, which decodes MPEG frames and
writes decoded PCM audio frames to a buffer that is
read by the client’s player thread. Because the
receiver and player threads execute independently,
with their own connections to the frame buffer, the
buffer writing and reading methods remain thread-
safe. MpegAudioCodec was created for easy encoding
and decoding, and it uses functions provided by
Lame[19], a freely available program for encoding
and decoding MPEG audio.

5. DESIGN DECISIONS

DOORS is a framework that presents a model in
which the complexity is hidden via base classes and
modularly designed components, all of which interact
together to provide uniform interfaces at key access
points. It is a long-term project that will be under
continual active development, with more component
modules being added in, such as a basic CORBA
Naming Service and an Interface Repository, to name
a few. The code is available for public download and
the code repository can be browsed online using any
common web browser [20].
Design patterns, as documented in many instances,
are highly effective in producing systems with a good
design foundation rapidly. However, their
implementations must be flexibly modified and
adapted for event-based systems as well as to conform
to a certain level of performance, scalability and
distribution. Documentation of reusable
methodologies in implementing common but
important activities in protocol engineering are also
needed, such as connection management, peer
abstraction and service access points.
The benefits seen when collections of patterns work
together are enormous. In addition to those previously
mentioned, others include Singleton Factories for
protocols, Flyweight[3] Singletons acting as CORBA
servants or Singletons and State Machines flexibly
employing various types of garbage collection
strategies. However, proper care must also be

exercised in certain combinations. For example, if a
few Singletons are attempting to construct one other,
without proper error and exception handling, the
result may be dangerous deadlocks, race conditions or
improperly constructed objects.
Also when it comes to interoperability issues, at times
it becomes necessary to obtain more information
empirically owing to a lack of well-specified
standards. One such example is the usage of the
CORBA Interoperable Object References (IOR) used
in IIOP. Since there is no byteorder information in
IOR according to the specifications, it seems that
many ORB implementations actually insert an extra
four byte long field to the stringified form of an IOR
in order to deal with the situation of the IOR
publisher having a different byte order than the one
using a stringified IOR. Also, in some ORBs, the
major and minor version information fields in the IOR
seem to be encoded as unsigned short types, rather
than being octets, as specified.
Much of the techniques presented could have used
alternatives such as synchronous multithreading
mechanisms. However, threads could lead to high
performance overheads and require a deep knowledge
of synchronization patterns and principles in order to
manage access to shared resources. Threading may
also not be available on all platforms. Hence the
design methodologies in the component libraries of
DOORS harness the usage of the design patterns and
their modifications thereof, to achieve the maximum
portability possible for independence from underlying
operating systems. At the same time, DOORS does
not limit the developer to designing only single-
threaded applications atop its component libraries,
should a need for threads does arise, as shown by the
streaming experiment in section 4.

6. CONCLUSIONS

The Internet as well as the telecommunications
domain are rich with communication methods which
generally appear as discrete events occurring at many
levels of granularity, ranging from deep within the
detailed implementations of network components to
the way those network components intelligently
interact with each other.
The convergence of communications, computing and
contents is catalyzing the development of a new breed
of applications, and DOORS remains a highly suitable
platform for designing, prototyping and implementing
various kinds of discrete event-based systems that can
provide a basic functionality for such applications.

REFERENCES

[1] OMG: "The Common Object Request Broker:
Architecture and Specification. CORBA

8

V2.3.1”. October 1999.

[2] J. Harju, B. Silverajan, I. Toivanen: "OVOPS –
Experiences in Telecommunications Protocols
with an OO Based Implementation
Framework”. Proc. ECOOP ´97 Workshop on
Object Oriented Technology for
Telecommunications Services Engineering,
Jyvaskyla , Finland June 9 - 13, 1997.

[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides:
"Design Patterns, Elements of Reusable Object-
Oriented Software”. Addison-Wesley 1995.

[4] IETF RFC1889 "RTP: A Transport Protocol for
Real-Time Applications”.

[5] TINA Consortium, http://www.tinac.com

[6] OMG : "Messaging Service Document
orbos/98-03-12”.

[7] F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, and M. Stal: "Pattern-Oriented
Software Architecture: A System of Patterns”.
John Wiley & Sons, Inc., New York, 1996.

[8] Douglas C. Schmidt: "Wrapper Facade: A
Structural Pattern for Encapsulating Functions
within Classes”. C++ Report, SIGS, Vol. 11,
No 2, February, 1999.

[9] Douglas C. Schmidt: "Reactor: An Object
Behavioural Pattern for Concurrent Event
Demultiplexing and Event Handler
Dispatching”. Pattern Languages of Program
Design (J.O. Coplien and D. C. Schmidt, eds.),
Reading, MA: Addison-Wesley, 1995.

[10] B. Silverajan, J.Harju: "Enhancing an Event-
Based OO Framework for Distributed
Programming”. Proceedings of TOOLS USA
'99, Santa Barbara CA August 1 - 5, 1999. pp
162 - 171, IEEE Computer Society ISBN 0-
7695-0278-4

[11] X.org : X11R6 Specifications, http://www.x.org

[12] The Apache Cocoon Project,
http://xml.apache.org/cocoon/

[13] IONA Technologies : Orbix 2.2 Reference
Guide, March 1997.

[14] TAO (The Ace ORB),
http://www.cs.wustl.edu/~schmidt/TAO.html

[15] Object Oriented Concepts, Inc. : ORBacus,
http://www.ooc.com

[16] FreeAmp : Free Audio Music Player,
http://www.freeamp.org

[17] MICO (MICO Is CORBA),
http://www.mico.org

[18] OMG CORBAtelecoms : "Telecommunications
Domain Specifications, Version 1.0”. June
1998

[19] The LAME Project, http://www.sulaco.org/mp3/

[20] DOORS, https://garuda.atm.tut.fi/doors/

http://www.tinac.com
http://www.x.org
http://xml.apache.org/cocoon/
http://www.cs.wustl.edu/~schmidt/TAO.html
http://www.ooc.com
http://www.freeamp.org
http://www.mico.org
http://www.sulaco.org/mp3/
https://garuda.atm.tut.fi/doors/

