
 1

MANAGING SECURITY IN OBJECT-BASED DISTRIBUTED
SYSTEMS USING PONDER

Nicodemos Damianou, Naranker Dulay, Emil Lupu, Morris Sloman

Department of Computing, Imperial College, 180 Queen’s Gate, London SW7 2BZ
{n.damianou, nd, e.c.lupu, m.sloman}@doc.ic.ac.uk

ABSTRACT

Security management involves specification and
deployment of access control policies as well as
activities such as registration of users or logging and
auditing events for dealing with access to critical
resources or security violations. The management
actions to be performed when an event occurs depend on
the enterprise policy. Reusable composite policy
specifications are important to cater for the complexity
of large enterprise information systems. Analysing
policies for conflicts is essential for the safe operation of
the system. This paper describes the Ponder language
for specifying policies for security management of
Distributed Systems. Ponder is declarative, strongly-
typed and object-oriented which makes the language
flexible, scalable and adaptable to a wide range of
security requirements.

1. INTRODUCTION
The advent of inter-organisational internet-based

networking and services, which require integration of
large enterprise information infrastructures, make the
task of managing security in such systems very
challenging. Many current approaches to security
management focus only on access control and are not
scalable or adaptable to large-scale distributed systems.
The recent work on Policy Based Management of
networks and distributed systems (see www-
dse.doc.ic.ac.uk/policies) provides promising solutions
to these problems of security management.

A policy is a rule that defines a choice in behaviour
of a system. Separating the policy from the
implementation of a system permits the policy to be
modified in order to change the behaviour of a system,
without changing its underlying implementation. The
security community have developed a number of models
relating to specification of mandatory and discretionary
access control policy [3]. This has evolved into work on
Role Based Access Control (RBAC) [14] and Role
Based Management where a role may be considered a
group of related policies pertaining to a position in an
organisation [7, 9]. None of these approaches copes with
all the aspects of the task of managing security in large
enterprise distributed systems outlined below.

Distributed Systems are changing from the
traditional client-server model to a more dynamic

service-oriented paradigm. The development of end user
applications and the widespread usage of data networks
have created a great demand for network architectures
that can rapidly adapt to new user requirements and
provide customised services to the clients. Various
techniques have emerged for programming network
elements to support adaptable services, for example
Active Networks, Mobile Agents, Management by
Delegation and Policy-based quality of service
management. While all these methods support
programming new functionality into network elements
and host devices, they increase the security concerns
regarding the access to network resources and services.

We identify the following requirements for a security
management policy language aimed at managing large
enterprise information systems:

• Provision and support for the specification of access
control policies relating to large systems with millions
of objects. This includes support for information
filtering and delegation to cater for temporary transfer
of access rights.

• In very large systems, it must be possible to specify
policies for groups of objects.

• Provision and support for monitoring, logging and
auditing of events such as security violations. This
includes the specification of what actions to perform
in response to the events. These are the active aspects
of security policy specification and take the form of
manager obligation policies.

• Grouping of policy specifications is needed to form
composite policies relating to roles, organisational
units such as departments or to specific applications.
This is essential to cater for the complexity of policy
administration in large enterprise information systems.

• Analysis of policies: It must be possible to analyse
policies for conflicts and inconsistencies, which may
lead the system to insecure states. In addition it should
be possible to determine which policies apply to an
object or what objects a particular policy applies to.
Declarative languages are easier to analyse.

• The policy specification language must be extensible
and scalable. New security policies may arise in the
future. It should be easy to add them to the language
without major redesign. An object-oriented language
provides a solution for this.

 2

 This paper describes Ponder [4], a declarative
object-oriented policy language for security
management of distributed systems. The language is
flexible, expressive and extensible to cover the wide
range of security requirements implied by the current
distributed systems paradigms identified above. Ponder
is the result of experience gained in policy-based
management at Imperial College over the past 10 years
[7, 10, 16, 17].

Section 2 of the paper describes domains as a means
of grouping objects to which policies apply Section 3
and 4 explain the support for access control policies in
Ponder and how it can be used to specify security
management policies. The composite policy structures in
Ponder are described in section 5. Constraints, a very
important feature of the language, are described in
section 6. Section 7 discusses features of the language
that make it both flexible and scalable: scripts and
object-orientation. In section 8 we briefly compare
Ponder with related work and section 9 presents
conclusions.

2. SUBJECT AND TARGET DOMAINS
We assume that all policies relate to objects with

interfaces defined in terms of methods using an interface
definition language. We use the term subject to refer to
users, principles or manager agents which have
management responsibility. A subject accesses target
objects (resources or service providers) by invoking
methods, so the granularity of protection for access
control is an interface method. Manager agents manage
target objects which provide a management interface.

In large-scale systems it is not practical to specify
policies for individual objects and so there is a need to
be able to group objects to which a policy applies. For
example, a log policy to check the security log files at
7:00am, may apply to all security managers within a
particular region. An authorisation policy may specify
that all members of a department have access to a
particular service. Domains provide a means of grouping
objects to which policies apply and can be used to
partition the objects in a large system according to
geographical boundaries, object type, responsibility and
authority or for the convenience of human managers [16,
17]. Membership of a domain is explicit and not defined
in terms of a predicate on object attributes. A domain
does not encapsulate the objects it contains but merely
holds references to object interfaces. A domain is thus
very similar in concept to a file system directory but
may hold references to any type of object, including a
person. A domain, which is a member of another
domain, is called a sub-domain of the parent domain. A
sub-domain is not a subset of the parent domain, in that
an object included in a sub-domain is not a direct
member of the parent domain, but is an indirect member,
c.f., a file in a sub-directory is not a direct member of a
parent directory. An object or sub-domain may be a
member of multiple parent domains. Details of domains

are described in [16, 17].

D

C

A

B

E

A

B C

D E

Sub-Domains and Overlapping Domains Domain Hierarchy (without
member objects)

Figure 1. Domains

Path names are used to identify domains, e.g.,
domain E in figure 1 can be referred to as /A/B/E or
/A/C/E as an object may have different local names with
multiple parent domains. Policies normally propagate to
members of sub-domains, so a policy applying to
domain B will also apply to members of domains D and
E. Domain scope expressions can be used to combine
domains to form a set of objects for applying a policy,
using union, intersection and difference operators.

An advantage of specifying policy scope in terms of
domains is that objects can be added and removed from
the domains to which policies apply without having to
change the policies. A policy can select a subset of
members of a domain and it’s sub-domains, to which it
applies, by means of a constraint in terms of object
attributes.

3. ACCESS CONTROL POLICIES
Access control is concerned with limiting the activity

of legitimate users who have been successfully
authenticated. Discretionary Access Control (DAC) is a
means of restricting access to objects based on the
identity of the subjects and/or groups to which they
belong [1, 15]. With DAC, access control is at the
discretion of the user. The controls are discretionary in
the sense that a subject with certain access permissions
can pass those permissions on to any other subject.
Delegation is an important part of any system supporting
DAC, and is incorporated into the Ponder framework.

3.1 Authorisation
Authorisation policies define what activities a

member of the subject domain can perform on the set of
objects in the target domain. These are essentially access
control policies to protect resources and services from
unauthorized access. Constraints can be specified to
limit the applicability of policies based on time or values
of the attributes of the objects to which the policy refers.
Constraints are discussed in section 6. A positive
authorisation policy defines the actions that subjects are
permitted to perform on target objects. A negative
authorisation policy specifies the actions that subjects
are forbidden to perform on target objects. Authorisation
policies are implemented on the target host by an access
control agent.

 3

inst auth+ switchPolicyOps {
 subject /NetworkAdmin;
 action load(), remove(), enable(), disable();
 target<Policy> /Nregion/switches }

Members of the NetworkAdmin domain are authorised to load,
remove, enable or disable objects of type Policy in the
Nregion/switches domain. The domain could contain other types
of objects as well.

inst auth- testRouters {
 subject /testEngineers/trainee;
 action performance_test();
 target /routers }

Trainee test engineers are forbidden to perform performance
tests on routers.

The specification of negative authorisation policies
complicates the enforcement of authorisation in a
system. However, there are reasons to support the
provision for negative authorisation policies.
Administrators often express high-level access control in
terms of both positive and negative policies; retaining
the natural way people express policies is important and
provides greater flexibility. Negative authorisation
policies can also be used to temporarily remove access
rights from subjects if the need arises. In addition, many
security platforms (e.g. Windows NT) include the
specification of negative access rights.

3.2 Information Filtering
Positive authorisation policies may include filters to

transform input or output parameters associated with
their actions, based on attributes of the subject or target
or on system parameters (e.g. time). For example people
within a department can find out location information on
a departmental member at the granularity of a room but
external people can only determine whether the person is
at work or out. If the same operation is used to get the
information then a filter is required. Another example
from the database world is when a payroll clerk is only
permitted to read personnel records of employees below
a particular grade. Although these are a form of
authorisation policies they differ from the normal ones
in that it is not possible for an external authorisation
agent to make an access control decision, based on
whether or not an operation, specified at the interface to
the target object, is permitted. Essentially the operation
has to be performed and then a decision made on
whether to allow results to be returned to the subject or
whether the results need to be transformed.

inst auth+ filter1 {
 subject /Agroup + /Bgroup;
 target USAStaff – NYgroup
 action VideoConf(BW, Priority)
 { in BW=2 in Priority=3 }
 if (time.after("1900")) {in BW=2 in Priority = 1 } }

Members of Agroup plus Bgroup can set up a video conference
with USA staff except the New York group. If the time is later
than 5:00pm then the video-conference takes parameters:
bandwidth = 2 Mb/s, priority = 1. Otherwise the first filter restricts
the parameters to bandwidth = 2 Mb/s, priority = 3.

3.3 Delegation
Delegation is often used in access control systems to

cater for the temporary transfer of access rights.
However the ability of a user to delegate access rights to
another must be tightly controlled by security policies.
This requirement is critical in systems allowing
cascaded delegation of access rights. A delegation policy
permits subjects to grant privileges, which they possess,
to grantees to perform an action on their behalf e.g.
passing read rights to a printer spooler in order to print a
file. A delegation policy is always associated with an
authorisation policy which specifies the access rights
that can be delegated. Negative delegation policies
forbid delegation.

inst deleg+ (switchPolicyOps) {
 grantee /DomainAdmin;
 action enable(), disable() }

The above delegation policy accepts the switchPolicyOps auth+
policy from section 3.1 as a parameter. It states that the subject
of that authorisation policy (Network-Admin), which is implicit in
this policy, can delegate the enable and disable actions on
policies from the domain /Nregion/switches to grantees in the
domain /DomainAdmin

A Delegation policy specifies the authority to
delegate, it does not control the actual delegation and
revocation of access rights. It is implemented as an
authorisation policy that authorises the subject (grantor)
to execute the method delegate on the run-time system
with the grantee as the parameter of the method. At run-
time, when the subject executes the delegate method, a
separate authorisation policy is created by trusted
components of the access control system, with the
grantee as the subject. Similarly the revoke method
deletes or disables that second authorisation policy.

4. SECURITY MANAGEMENT POLICIES
Security management policies specify actions that

must be performed when certain events occur and
provide the ability to respond to changing circumstances
if there is a need to do so to keep the system secure.
Security management policies specify what actions must
be specified when security violations occur and who
must execute those actions; what auditing and logging
activities must be performed, when and by whom.
Security management policies can be used to handle
cases of intrusion detection; policies can be set up to
respond to the monitoring of security related activities,
report suspicious activity and enact further surveillance
or increase security measures in case of intrusions or
attempted security violations. A security management
policy might enable or disable access control policies
accordingly to increase the degree of security provided
by the system. Another example is denial of service;
policies can be defined to respond to the access to
resources or services and report to administrators or
require managers to take certain actions when the
number of simultaneous accesses has reach a specified
limit. Similarly, policies may be written to alert system

 4

administrators when disk spaces reach critical limits,
thus preventing denial of service attacks.

4.1 Manager Obligation
Security management activities can be specified in

Ponder with Obligation policies, which are event-
triggered and define the activities subjects (human or
automated manager agents) must perform on objects in
the target domain. Events can be simple, i.e. an internal
timer event, or an external event notified by monitoring
service components e.g. a temperature exceeding a
threshold or a component failing. Composite events can
be specified using event composition operators.

inst oblig LoginFailure {
 on 3*loginfail(userid);
 subject s = /NRegion/SecAdmin
 target t = /NRegion/users ^ {userid}
 do t.disable() -> s.log(userid) }

This policy is triggered by 3 consecutive loginfail events with the
same userid. The NRegion security administrator (SecAdmin)
disables the user with userid in the /NRegion/users domain and
then logs failed userid by means of a local operation performed
in the SecAdmin object. The ‘->’ operator is used to separate a
sequence of actions in an obligation policy.

inst oblig FirewallTraffic {
 on high_reject_rate(fwHostId, eventId);
 subject s = /firewalls/SecAdmin
 target /externalFirewalls/fwHostId
 do s.investigate(fwHostId) -> s.log(eventId) }

If the number of incoming packets that are dropped due to
packet-filter restrictions at a firewall with hostId, fwhostId, is
more than a predefined threshold within a small interval (say 30
seconds), a high_reject_rate event is generated by the
monitoring service, since this may be cause for a security
concern. This event then triggers the above obligation policy
that causes the firewall security administrator to log the event
and investigate it for further assessment.

Backing Policies are security related policies needed
in situations where a subject requires the backing of a
number of other principals in order to perform an action
e.g. a chairman must have the backing of the majority of
the board members in order to call an extraordinary
meeting. In Ponder we can use authorisation and
obligation policies to specify backing assuming that the
backing condition can be specified and monitored by the
underlying monitoring service, and then specified as an
event to trigger obligation policies.

inst auth+ b1 {
 subject chairman;
 action CallExtraMeeting();
 target shareholders }

inst oblig b3 {
 on (NoMembers/2+1)
 *votes(yes);
 subject trusted_agent;
 do enable();
 target policies/b1 }

inst oblig b2 {
 on ExtraMeeting;
 subject chairman;
 do CallExtraMeeting();
 target shareholders }

inst oblig b4 {
 on (NoMembers/2+1)
 *votes(yes);
 subject trusted_agent;
 do ExtraMeeting();
 target chairman }

For the chairman example, we need an authorisation

policy (b1) authorising the chairman to call an
extraordinary meeting and an obligation (b2) triggered
by an event generated after a majority of yes vote events
have been received. The authorisation policy is enabled
only when a trusted agent enables it (in b3). The trusted
agent obligation policy is triggered by the same backing
event. We acknowledge the fact that arbitrary backing
policies probably require a separate scripting language
to specify the backing condition.

4.2 Refrain Policies
Refrain Policies define the actions that subjects must

refrain from performing (must not perform) on target
objects and like obligations they are implemented by the
subject. Refrain policies act as restraints on the actions
that managers perform. They are in essence a form of
subject-based access control. With refrain policies we
can specify negative access control in much the same
way we do that with negative authorisation policies, but
have subjects enforce it. Refrain policies are used for
situations where negative authorisation policies are
inappropriate; we can not trust the targets to enforce the
policies (they may not wish to be protected from the
subject).

inst refrain testingRes {
 subject s=/test-engineers;
 action DiscloseTestResults();
 target /analysts + /developers
 when s.testing_sequence = "in-progress" }

This refrain policy specifies that test engineers must not disclose
test results to analysts or developers when the testing sequence
being performed by that subject is still in progress, i.e., a
constraint based on the state of subjects. Analysts and
developers would probably not object to receiving the results
and so this policy is not a good candidate for a negative
authorisation.

5. STRUCTURING POLICY SPECIFICATIONS
Security management in large systems with millions

of objects is impossible without the ability to group
security policies and structure them to reflect
organisational structure, preserve the natural way system
administrators operate or simply provide reusability of
common definitions, easing the task of policy
administrators. Ponder composite policies are used to
that end.

5.1 Groups
This is a generic packaging construct to group

related policies together for the purposes of policy
organisation and reusability. A set of related policy
specifications and related constraints are grouped
together within a syntactic scope with shared
declarations. This is a common concept in many
programming environments. Reusability can be
achieved by specifying groups as types, parameterised
with any policy element and then instantiating them
multiple times. The criteria for grouping policies

 5

together may be application specific. The policies may
reference the same targets, relate to the same
department, concern a particular application, or have no
obvious semantic relation apart from helping
administrators organise and reuse specifications. For
instance, the policies specified in section 4.1 to solve the
simple backing example can be grouped together:

inst group backingGroup {
 //… the policies to handle backing go here }

5.2 Roles
Role is a very overloaded term within the security

community. In the RBAC community a role is a
collection of users and their permissions. In Ponder roles
also include the duties of the managers. A Role provides
a semantic grouping of policies with a common subject,
generally pertaining to a position within an organisation
such as department manager, project manager, analyst or
ward-A nurse. Specifying organizational policies for
human managers in terms of manager positions rather
than persons permits the assignment of a new person to
the manager position without re-specifying the policies
referring to the duties and authorizations of that position.

 Subject Domain

Target Domains &
Managed Objects

Role Authorization &
Obligation Policies

Role

Figure 2. Roles – Subject domain

Organisational positions can be represented as
domains and we consider a role to be the set of
authorisation, obligation, refrain and delegation policies
with the Subject Domain of the role as their subject. A
role is thus a special case of a group, in which all the
policies have the same subject. A person or automated
agent can then be assigned to or removed from the
position domain without changing the policies as
explained in [9]. See [8] for a discussion of the
differences between RBAC and our Roles.

The following role example includes the
specification of the subject domain after the ‘@’.

inst role SecurityManager {
 inst auth+ A1 { … }
 inst oblig O1 { … }
 inst group G { … }
 …
} @ /roles/positionDomains/SM

5.3 Management Structures
Many large organisations are structured into units

such as branch offices, departments, wards in a hospital
etc., which have a similar configuration of roles and

policies. Ponder supports the notion of management
structures to define the configuration of policies, roles
and nested management structures relating to
organisational units. For example a management
structure would be used to define a branch in a bank or a
department in a university. The roles, groups and
individual policies related with a branch/department can
be grouped together in this management structure. The
management structure can be specified as a type and
then instantiated for different branches/departments
which exhibit the same policy characteristics. Types are
explained later in the paper.

6. CONSTRAINTS
An important element of each policy is the set of

conditions under which the policy is valid. This
information must be explicit in the specification of the
policy. The validity of a policy however, may depend on
other policies existing or running in the system within
the same scope or context. Those conditions are usually
impossible or impractical to specify as part of each
policy. We need to specify those as part of a group of
policies. It is thus useful to divide the constraints in two
categories: constraints for single policies and constraints
for groups of policies which we call meta policies. A
subset of the Object Constraint Language [13] is used to
specify constraints in Ponder as OCL is simple to
understand and use and it is declarative – each OCL
expression is conceptually atomic and so the state of the
objects in the system cannot change during evaluation.

6.1 Basic-Policy Constraints
In general these limit the applicability of a policy.

The constraint is expressed in terms of a predicate,
which must evaluate to true for the policy to apply.
Policy constraints can be considered as conjunctions of
basic constraints, which can be either time-based
constraints, or status-based constraints. The analysis of a
set of policies can then be substantially improved since
time-based constraints can be compared for possible
overlap and state based constraints can be either
simultaneously satisfied or mutually exclusive if they
relate to states of the same system component. We
separate the different types of constraints based on:

• Subject/target state – the constraint is used to select a
subset of the objects in the subject or target domains
based on the object state as reflected in terms of
attributes at the object interface.

• Action/event parameters – constraints can be based on
action or event parameter values.

• Time constraints specify the validity periods for the
policy. A time library object is provided with Ponder
to specify time constraints.

The policy compiler can resolve the different types
of constraints at compile time and separate the
constraints in order to aid in the analysability of policies.

 6

The following is the same example policy specified
in section 3.1, only this time we use a constraint on the
subject status to specify it, instead of organising the
trainee-test-engineers in a separate sub-domain.

inst auth- testRouters { subject s =/testEngineers;
 action performance_test();
 target /routers; when s = "trainee" }

inst auth+ filter1 { subject /Agroup + /Bgroup;
 target USAStaff – NYgroup
 action VideoConf(BW, Priority);
 when time.between("1600", "1800") }

Members of Agroup plus Bgroup can set up a video conference
with USA staff except the New York group. If the time is later
than 5:00pm then the video-conference takes parameters:
bandwidth = 2 Mb/s, priority = 1. Otherwise the first filter restricts
the parameters to bandwidth = 2 Mb/s, priority = 3. The time-
based constraint added limits the policy only between 4:00pm
and 6:00pm.

6.2 Meta Policies
Meta policies specify policies about the policies

within a composite policy and are used to define
application specific constraints. We specify meta
policies for groups of policies, i.e. policies within a
specific scope, to express constraints which limit the
permitted policies in the system, or disallow the
simultaneous execution of conflicting policies.

Following are some examples in which meta policies
can be used to specify application dependent constraints
on groups of policies.

6.2.1 Self-Management
“There should be no policy authorising a manager

to retract policies for which he is the subject”. From [7].
This happens within a single authorisation policy

with overlapping subjects and targets. Here's how the
example given could be specified as a meta policy in
Ponder:

inst meta selfManagement1 raises selfMngmntConflict(pol) {
 [pol] = this.authorisations->select(p |
 p.action->exists(a | a.name = "retract" and
 a.parameter->exists(p1 |
 p1.oclType.name = "policy" and
 p1.subject = p.subject)))
 pol->notEmpty }

The body of the policy contains two OCL expressions. The first
one operates on the authorisations set (an attribute of the meta
policy itself) of the meta policy (‘this’ refers to the current object
– in this case the meta policy), and selects all policies (p) with
the following characteristics: the action set of p contains an
action whose name is “retract”, and whose parameters include a
policy object with the same subject as the subject of policy p.
The second OCL expression is a Boolean expression; it returns
true if the pol variable which is returned from the first OCL
expression is not empty. If the result of this last expression is
true, the exception specified in the raises-clause executes. It
receives the pol set with the conflicting policies as a parameter.

6.2.2 Separation of Duty
Dynamic separation of duty can be easily specified

in Ponder as constraints in authorisation policies, by

accessing attributes of the objects. In the following
example, the same user from the accountants domain
can not both issue and authorise the same cheque.

inst auth+ sepDuty {
 subject s = accountants;
 action approvePayment;
 target t = cheques
 when s.id <> t.issuerID }

Static separation of duty is handled using meta-

policies since it involves constraints on groups of
objects. The following static separation of duty example
states that the same subject cannot both submit and
approve the budget for a project in a company.

inst meta budgetDutyConflict raises conflictInBudget(z) {
 [z] = self.policies->select(pa, pb |
 pa.subject->intersection(pb.subject)->notEmpty and
 pa.action->exists(act | act.name = ‘submit’) and
 pb.action->exists(act | act.name = ‘approve’) and
 pb.target->intersection(pa.target)->oclIsKindOf(budget))
 z -> notEmpty }

7. FLEXIBILITY, EXTENSIBILITY,
SCALABILITY

7.1 Scripts as Actions
An obligation action can be defined as a script using

any suitable scripting language to specify a complex
sequence of activities or procedures with conditional
branching. Scripts are implemented as objects and
stored in domains. Thus policies can be specified with
scripts as targets. Access to scripts can thus be
controlled if required.

Scripts sometimes make it simpler to specify
policies. With a script we can specify an action to move
a policy from a domain /D1 to a domain /D2. Specifying
an authorisation to achieve this without considering this
script is problematic: there are two targets to the policy,
domain D1 and domain D2. But if we use the script then
we have only one target, the script itself.

inst auth+ A { subject /domainAdmin; action execute;
 target domainMove(A,B) ; when A=”/D1” and B=”/D2”}

Domain administrators are allowed to execute the script object
‘domainMove’ when the parameters to it are /D1 and /D2.

7.2 Object-orientation and Inheritance
The object-oriented model of the language provides

extensibility, scalability and flexibility. Extensibility is
achieved using the object model of the language (figure
3). This allows new policy types that may be identified
in the future to be defined as sub-classes of existing
abstract policy classes. The language provides
scalability by allowing users to define policy types,
instantiate them and extend them with inheritance by
specialisation at an infinite depth.

Any policy element can be passed as a parameter to

 7

policy types. This makes the language flexible since it
allows for greater reuse of policy specifications;
multiple instances can be created for many different
conditions and under a variety of circumstances.

Figure 3. Ponder Object Model

The authorisation switchPolicyOps (section 3.1) can
be specified as a type with the subject and target as
parameters. The policy type then applies to any instance
of a subject being authorised to manage policies of a
domain.

type auth+ PolicyOpsT(subject s, target<Policy> t) {
 action load(), remove(), enable(), disable() }

inst auth+ switchPolicyOps = PolicyOpsT(/NetworkAdmins,
 /Nregion/switches)
inst auth+ routersPolicyOps = PolicyOpsT(/QoSAdmins,
 /Nregion/routers)

The first instance allows /NetworkAdmins to execute the actions
on policies within the /Nregion/switches domain. The second
instance allows /QoSAdmins to execute the actions on policies
within the /Nregion/routers domain.

Figure 4. A role hierarchy

Ponder allows specialisation of policy types through
the mechanism of inheritance. Any type can inherit from
another. When a type extends another, it inherits all of
its attributes, overrides attributes with the same name
and can add new attributes. We gain more from the use
of types and inheritance if we apply them to composite
policies for maximum reusability. The role-hierarchy in
figure 4 can be specified in Ponder by extending roles:

type role Employee(…) { … }
type role AdmStaff(…) extends Employee { … }
type role ResearchStaff(…) extends Employee { … }
type role Secretary(…) extends AdmStaff { … }
type role SoftDeveloper(…) extends ResearchStaff { … }
type role ProjectManager(…) extends AdmStaff,
 ResearchStaff { … }

The hierarchical object model for the policy
language provides a convenient means of translating
policies to structured representation languages such as

XML. The XML representation can then be used for
viewing policy information with standard browsers or as
a means of exchanging policies between different
security managers or security domains.

8. RELATED WORK
There are a number of

other approaches to
designing a language for
specifying access control
policy but none include
the range of policies (e.g.
obligations) that we cover
and most lack the
scalability and

extensibility features of Ponder.
Formal logic-based approaches are generally not

intuitive and do not directly map onto implementation
mechanisms. They assume a strong mathematical
background which can make them difficult to use and
understand. The ASL [6], is an example of a formal
logical language for specifying access control policies.
The language includes a form of meta-policies called
integrity rules to specify application-dependent rules
that limit the range of acceptable access control policies.
Although it provides support for role-based access
control, the language does not scale well to large
systems because there is no way of grouping rules into
structures for reusability. A separate rule must be
specified for each action, there is no explicit
specification of delegation and no way of specifying
authorisation rules for groups of objects that are not
related by type.

Another logic-based approach is that by Ortalo [12]
who describes a logic language to express security
policies in information systems. His approach is based
on the logic of permissions and obligations, a type of
modal logic called deontic logic. Standard deontic logic
centres on impersonal statements instead of personal; we
see the specification of policies as a relationship
between explicitly stated subjects and targets instead. In
his approach he accepts the axiom Pp = ¬O¬p
("permitted p is equivalent to not p being not obliged")
as a suitable definition of permission. This axiom is not
suitable for the modelling of obligation and
authorisation policies; the two need to be separated.
Miller [11] discusses several paradoxes that exist in
deontic logic. Since [12] contains only syntactical
extensions to deontic logic, it also suffers from the same
problems.

LaSCO [5] is a graphical approach for specifying
security constraints on objects, in which a policy
consists of two parts: the domain (assumptions about the
system) and the requirement (what is allowed assuming
the domain is satisfied). Policies defined in LaSCO have
the appearance of conditional access control statements.
The scope of this approach is very limited to satisfy the
requirements of security management.

Employee

AdmStaff ResearchStaff

P rojectManager secretary SoftDeveloper

Object

MetaPol CompositePolicy BasicPolicy

auth oblig refrain deleg role rel mstruct

auth+ auth- deleg+ deleg-

group

 8

In [2], Chen and Sandhu introduce a language for
specifying constraints in RBAC systems. It can be
shown that their language is a subset of OCL and we can
thus specify all of their constraints as meta-policies.
Space limitations prevent further discussion of this
issue.

9. CONCLUSION AND FURTHER WORK
In this paper we have presented Ponder, a language

for specifying policies for security management of
distributed systems. There is a serious lack of a
complete approach to manage security in large
enterprise information systems. Most work focuses only
on access control. Ponder includes authorisation and
delegation policies for specifying access control,
obligation and refrain policies to specify management
activity and grouping structures to structure policy
specification at different levels. Its object-oriented
features allow for user-defined types of policies to be
specified and then instantiated multiple times with
different parameters. This provides for flexibility and
scalability while maintaining a structured specification
that can be, in large part, checked at compile time. Meta-
policies in Ponder provide a very powerful tool in
specifying application specific security policies and
constraints on sets of policies. Ponder is a declarative
language to make analysis of policies feasible.

A policy specification toolkit is under development
for defining, analysing and interpreting policies. The
toolkit consists of a management console, which
provides the ability to manage policies stored in a
distributed policy service. The management console
includes: a policy editor, an analysis tool, a domain
browser and a policy-structuring tool. The back-end of
the toolkit consists of: a Policy Compiler with multiple
back-ends and a static policy analyser. The front-end of
the compiler is complete and work continues on the back
end.

The design and implementation of a generic runtime
object-model for enforcement of Ponder policies on any
object-based platform is under development. Some
initial work has also been done on mapping Ponder
policies onto different security mechanisms: access
control policies on various security aware platforms
such as Java Security, Windows NT Security and
Firewall filters.

The language specification leaves room for future
additions in many areas. For delegation policies we are
currently working on extending the notation to specify
constraints on the delegation (e.g. maximum delegation
period, maximum number of delegation hops etc). We
are also investigating sub-types of meta policies to cover
concurrency constraints and user-role assignment
constraints.

REFERENCES
[1] Abrams, M.D. Renewed Understanding of Access Control

Policies. In Proceedings of 16th National Computer

Security Conference. 1993. Baltimore, Maryland, U.S.A.
[2] Chen, F. and R.S. Sandhu. Constraints for Role-Based

Access Control. In Proceedings of First ACM/NIST Role
Based Access Control Workshop. 1995. Gaithersburg,
Maryland, USA, ACM Press.

[3] Clark, D.D. and D.R. Wilson. A Comparison of
Commercial and Military Computer Security Policies. In
Proceedings of IEEE Symposium on Security and
Privacy. 1987

[4] Damianou, N., N. Dulay, E. Lupu, and M. Sloman.
Ponder: A Language for Specifying Security and
Management Policies for Distributed Systems. The
Language Specification - Version 2.1. Research Report
DoC 2000/1, Imperial College, Department of
Computing, London, 3 April, 2000. Available from
http://www-dse.doc.ic.ac.uk/policies/ponder.html

[5] Hoagland, J.A., R. Pandey, and K.N. Levitt. Security
Policy Specificaton Using a Graphical Approach.
Technical report CSE-98-3, UC Davis Computer Science
Department, July 22, 1998.

[6] Jajodia, S., P. Samarati, and V.S. Subrahmanian. A
Logical Language for Expressing Authorisations. In
Proceedings of IEEE Symposium on Security and
Privacy. 1997, pp. 31-42

[7] Lupu, E.C. A Role-Based Framework for Distributed
Systems Management. Ph.D. Thesis, Department of
Computing, Imperial College, London, U. K.

[8] Lupu, E.C. and M.S. Sloman. Reconciling Role Based
Management and Role Based Access Control. In
Proceedings of Second ACM/NIST Role Based Access
Control Workshop. 1997a. Fairfax, Virginia, USA, ACM
Press.

[9] Lupu, E.C. and M.S. Sloman, Towards a Role Based
Framework for Distributed Systems Management. Journal
of Network and Systems Management, 1997b. 5(1): p. 5-
30.

[10] Marriott, D.A. Policy Service for Distributed Systems.
Ph.D. Thesis, Department of Computing, Imperial
College, London, U. K.

[11] Miller, J., HELP! How to specify policies?, Unpublished
paper, available electronically from
http://enterprise.shl.com/policy/help.pdf

[12] Ortalo, R. A Flexible Method for Information System
Security Policy Specification. In Proceedings of 5th
European Symposium on Research in Computer Security
(ESORICS 98). 1998. Louvain-la-Neuve, Belgium,
Springer-Verlag.

[13] Rational Rational Software Corporation, Object
Constraint Language Specification, Version 1.1,
Available at http://www.rational.com/uml/, September
1997.

[14] Sandhu, R.S., E.J. Coyne, H.L. Feinstein, and C.E.
Youman, Role-Based Access Control Models. IEEE
Computer, 1996. 29(2): p. 38-47.

[15] Sandhu, R.S. and P. Samarati, Authentication, Access
Control, and Intrusion Detection. Part of the paper
appeared under the title "Access Control: Principles and
Practice" in IEEE Communications, 1994. 32(9): p.40-48.

[16] Sloman, M. and K. Twidle, Domains: A Framework for
Structuring Management Policy. Chapter 16 in Network
and Distributed Systems Management (Sloman, 1994ed),
1994a: p. 433-453.

[17] Sloman, M.S., Policy Driven Management for Distributed
Systems. Journal of Network and Systems Management,
1994b. 2(4): p. 333-360.

	ABSTRACT
	INTRODUCTION
	SUBJECT AND TARGET DOMAINS
	ACCESS CONTROL POLICIES
	Authorisation
	Information Filtering
	Delegation

	SECURITY MANAGEMENT POLICIES
	Manager Obligation
	Refrain Policies

	STRUCTURING POLICY SPECIFICATIONS
	Groups
	Roles
	Management Structures

	CONSTRAINTS
	Basic-Policy Constraints
	Meta Policies
	Self-Management
	Separation of Duty

	FLEXIBILITY, EXTENSIBILITY, SCALABILITY
	Scripts as Actions
	Object-orientation and Inheritance

	RELATED WORK
	CONCLUSION AND FURTHER WORK
	REFERENCES

