
Measurement of the SIP Parsing Performance

in the SIP Express Router

Stephan Wanke1, Michael Scharf1, Sebastian Kiesel1, and Stefan Wahl2

1 Institute of Communication Networks and Computer Engineering (IKR),
University of Stuttgart, Germany

2 Alcatel-Lucent Deutschland AG, Research & Innovation Germany

Abstract. Future telephony and multimedia systems will use the Ses-
sion Initiation Protocol (SIP) for signaling purposes. SIP is a text-based
protocol that imposes challenges for an e�cient message processing. The
ability of SIP entities to process SIP messages quickly is crucial for the
performance of these networks, which often have strict timing require-
ments, e. g., to keep the call setup delays small.

This paper studies the performance of SIP message processing in SIP
proxies, focusing mainly on the impact of message parsing. We perform
a detailed delay analysis for the widely used SIP Express Router (SER).
Our measurements show that message parsing actually contributes sig-
ni�cantly to a SIP proxy's processing e�orts, and therefore con�rm other
existing studies. However, our results also show that the overall delay in
high-performance SIP proxies is stronger a�ected by other factors, in
particular the operating system.

1 Introduction

The Session Initiation Protocol (SIP) is the de facto standard for session signal-
ing in IP-based telephony and multimedia systems, such as the 3GPP IP Multi-
media Subsystem (IMS) [1] or ETSI TISPAN. In these systems, many entities are
involved in call control and many SIP messages are exchanged for time-critical
signaling 
ows like call setups. Signaling latencies depend on a variety of fac-
tors, including both transport and processing delays. This is why the ability of
SIP entities to process SIP messages e�ectively is crucial for the overall network
performance. SIP is a text-based protocol. Therefore, SIP entities have to parse
text messages, which is reported in literature to consume signi�cant amounts of
processing time [2]. This has also fostered proposals to use alternative encoding
formats for session signaling; a recent example is, e. g., [3].

The purpose of this paper is to understand the performance impact of SIP
message parsing. In spite of many research e�orts on SIP signaling, surprisingly
little work has been published on the performance of SIP entities. We report de-
tailed performance measurements that have been obtained from the SIP Express
Router, which is a widely used high-performance SIP proxy. They con�rm that
SIP parsing indeed consumes signi�cant processing power. However, our results



screening
security

SIP user agent SIP parsers

IP domain 1 IP domain 2

call
routing screening

security

RTP media
SIP signaling

Fig. 1. SIP protocol entities in a carrier-grade VoIP network (simpli�ed)

also reveal that other factors such as the operating system have a very signi�cant
impact, too. These e�ects are hardly addressed in other published studies.

The remainder of this paper is structured as follows: Section 2 gives an
overview of SIP performance in signaling systems and also reviews related work.
In Section 3, the testbed for our measurements is presented. In Section 4, we
report the results of our measurements. Finally, Section 5 concludes this paper.

2 SIP Performance in Signaling Systems

Carrier-grade Voice-over-IP (VoIP) or multimedia networks as the one sketched
in Fig. 1 include several entities that process SIP messages: For instance, calls are
handled by entities realizing Call Session Control Functions (CSCF), and security
screening at domain boundaries may be realized by Session Border Controllers
(SBC). Even for simple actions several SIP messages have to be exchanged and
processed by several entities. As a consequence, it is important to quantify the
delays resulting from SIP message processing in the di�erent entities.

2.1 SIP Proxies

In addition to the user agents in the end systems, SIP messages are processed
by SIP proxies, SIP Back-to-Back User Agents (B2BUA), or network elements
such as SBCs that include a proxy or B2BUA. There are di�erent SIP proxy
implementations, both commercial ones and open-source solutions. In this study,
we selected the SIP Express Router (SER) [4], since it is an open source proxy
that is widely deployed and known for its e�ciency and high scalability.

As illustrated in Fig. 2, SER is divided into a core, which implements the basic
functionalities, and so-called extensions modules. The con�guration of SER is
performed by a �le with a shell-like syntax. This �le provides so-called routes that
determine the handling of received SIP messages. Additional modules extend the
core functionalities, e. g. for registration. SER is completely implemented in C.
The SER SIP parser is optimized for performance and uses pre-calculated 32-bit
hash tables for e�ective parsing [5]. Because of its high-performance design SER
does not parse whole SIP messages, but only the relevant parts, depending on
the con�guration.



Main Route
Route A

Route B

SER core
socket buffer socket buffer

SER
modules

ser.cfg tm
t_relay()

sl
sl_send_reply()

...SER
config file

Fig. 2. Structure of the SIP Express Router

2.2 Related Work

Despite the fact that performance is important for the deployment of SIP in car-
rier platforms, there is only few published work that analyzes the performance of
SIP proxies in depth, in particular concerning the impact of di�erent processing
steps. The performance of SIP entities largely depends on the implementation.
Still, performance studies and capacity planning require at least some estimates.

A detailed study on SIP performance was published in [2]. The paper com-
pares di�erent proxy implementations that were speci�cally programmed for this
study. It is reported there that the parsing needs about 25 % of the processing
time, and that the total processing time of a single SIP message ranges between
1:8 and 0:2 ms. In [6] the performance of the JAIN SIP stack has been measured
and call setup delays have been determined. The latency of J2EE SIP appli-
cation servers is studied in [7]. However, these measurements only consider the
proxy as black box, and the e�ort of di�erent SIP processing functions has not
been considered in detail. Other simulation studies either take the service time
in proxies just as a variable (e. g., [8]), or simply make some assumptions [9].

There are also discussions on using alternative encodings for session signaling,
such as type-length-value or XML. A recent example is [3]. It mainly depends
on the parsing whether such formats improve the performance compared to the
UTF-8 encoded text format of SIP. In the rest of this paper, the SER parsing is
analyzed, which quanti�es the maximum potential saving of such alternatives.

3 Measurement Setup

3.1 Testbed

For our measurements we developed a testbed that allows to measure the per-
formance of SER by using di�erent tools under varying parameters. Its structure
is shown in Fig. 3. We use two SIPp load generators [10] to emulate the User
Agents and to generate the SIP messages. We con�gured the two load gener-
ators so that they exchange the SIP message sequence shown in Fig. 4. They
communicate over the SER SIP proxy with each other. As transport protocol for



SERUAC UAS
SIP messages SIP messages

tracing of SIP messages with tcpdump

Parsing Processing Routing
collecting timestamps
with gettimeofday()

Fig. 3. Structure of the test bed

Alice BobSIP Proxy
INVITE

INVITE100 Trying
180 Ringing

200 OK
200 OK

180 Ringing

Processing time

Response tim
e (20 s)

SIP transaction tim
e

ACK

Fig. 4. Signaling 
ow for a SIP
transaction to establish a session
between two entities

SIP we use UDP. The con�guration of the SER for the measurements was rudi-
mentary, for example, without Authentication, Authorization and Accounting
(AAA) functions. This allows to isolate the e�ects from the SIP processing of
SER, as it prevents the in
uence of auxiliary protocols like RADIUS and DNS.
The computers with SER and the load generators are connected via 100 Mbit/s
FastEthernet interfaces. We use a Pentium IV 2.8 GHz with 2 GB RAM and
a SUN Solaris Workstation with two Ultrasparc III+ 1 GHz processors with 2
GB RAM for comparison. It must be noted that under Solaris we use the gcc
compiler for compilation of the SER, not an optimizing SUN C compiler.

3.2 Measurement Methodology

There are many di�erent metrics to quantify SIP performance [11]. In this paper,
we focus on the delay of a single SIP proxy. We study the sojourn time, i. e., the
processing delay in the proxy (see Fig. 3). This is a critical metric because the
summation of processing delays contributes to the total signaling delay.

We use three di�erent methods to analyze the performance of the SER: First,
we use tcpdump to capture Ethernet frames. In order to quantify the time the
SIP message spent in the computer hosting SER, we calculate the di�erence of
the time stamps from Ethernet frames carrying SIP INVITE messages from and
to SER. Second, we inserted \gettimeofday()" statements in the source code of
the SER to measure the time that is needed for interesting code sections, in
particular around the parsing and the total processing code section. Finally we
use a pro�ler to collect data at run-time. From the network's point of view, the
data collected with tcpdump is the most important one because this is the delay
SIP messages experience traveling through the proxy.

Our measurements include certain systematic errors: When the code is ex-
tended for measurements, these extensions have to be executed, which costs time.
Moreover, the accuracy of the \gettimeofday()" function is limited. The accu-
racy of tcpdump time stamps is limited, too, and there are also small errors due
to media access. The results of the run-time pro�ler analysis are only relative
performance values because the pro�ler extends the machine code extensively.



4 Measurement Results

With the testbed presented in the last section we performed measurements to
investigate major in
uence factors on SIP proxy performance. We could identify
three main factors for the performance of the SER: The format of the used SIP
messages, the operating system, and the con�guration of SER.

4.1 Internal and External Processing Times

The external processing times are derived from time stamps of Ethernet frames.
They di�er from the internal processing time determined with the \gettimeof-
day()" function. This is because the host's CPU is not only needed by the SER
process, but also by the operating system for handling Ethernet frames and for
executing other processes.

In Fig. 5, the external and internal processing times and the parse time are
shown as functions of the rate of SIP INVITE messages. As to be expected, the
parsing time determined by the \gettimeofday()" functions is load independent.
The internal processing time is slightly load dependent. A possible reason for
this is the interruption of the SER process by the Network Interface Card (NIC)
when receiving Ethernet frames. However, the external processing time is highly
load dependent. It grows from 200 �s to over 4 ms for 2000 Call Attempts Per
Second (CAPS). The share of time needed for parsing related to the internal
processing time is in the range of 20 to 33 %.

The results of the pro�ler analysis is illustrated in Tab. 1. Our measurement
con�rm the results of [2]: 25 % of the time is needed for parsing. The main
share of 50 % is needed for the stateful forwarding of SIP request and 15 % are
needed for the stateless forwarding of SIP replies. Note that the result of the pro-
�ler analysis is a superposition of SIP requests (INVITE messages; transaction
stateful processing) and replies (100 Trying, 200 OK, ...; stateless processing). In
contrast, the data collected with the other methods focuses on requests (INVITE
messages) only.

The di�erence between internal and external processing time is the time
spent in the system outside the SER process (e. g., operating system kernel and
NIC drivers). For high rates of SIP INVITE message, the share of time needed
for processing of messages in the operating system exceeds the time needed
for parsing and processing of the messages inside the SER process by orders of
magnitude. It can be assumed that the process scheduler of the operating system
is accountable for the increase of the external processing time for higher loads,
because it interrupts the processing of SIP messages through SER. However,
varying the Linux kernel scheduler frequency (100 Hz, 250 Hz and 1000 Hz)
did not show any signi�cant impact.

4.2 In
uence of the Format of SIP Messages

In order to study the impact of di�erently formatted SIP messages, we performed
measurements with di�erent SIP messages. We focus on RFC 3261 compliant
messages and do not examine the in
uence of corrupted messages.



0 500 1000 1500 2000
Rate of SIP INVITE messages [1/s]

1e-05

0.0001

0.001

0.01

external

internal

parsing

Fig. 5. External, internal processing
time and parsing time (in s) for Linux

0 500 1000 1500 2000
Rate of SIP INVITE messages [1/s]

1e-05

0.0001

0.001

0.01

Linux
Solaris

external

internal

Fig. 6. Comparison of the processing
times (in s) between Linux and Solaris

In Tab. 2, the parsing times for di�erently formatted messages are presented:
Message 1 is a standard formatted SIP message. Message 2 has its via header
at the end of the message. In message 3, additional header �elds are inserted
between the via header and the rest of the SIP message. Additional to message 3,
in message 4 multi-line header �elds and combination of upper case and lower
case characters in the header names are used. Combination of upper and lower
cases in the header names increase the number of comparisons to determine the
type of the header, as multi-line header �elds do.

The SER has to parse all the via headers to add its own via header at the
end. One can see that the format of SIP messages has a signi�cant in
uence
of the parsing time. Sloppily formatted SIP messages can increase the parsing
time. However, the parsing time is still clearly one or two orders of magnitude
smaller than the external processing time.

4.3 Impact of the Operating System

Furthermore, we analyze the in
uence of the operating system in more detail.
We compare Linux (kernel version 2.6.18) with Solaris (version 5.10) both with
default con�guration except for optimized UDP settings.

Table 1. Relative time shares of the
processing stages collected with the
pro�ler

Action Share [%]

Parsing 25
Stateful processing 50
Stateless processing 15
Others 10

Table 2. Parsing time for di�erent for-
matted, RFC 3261 compliant SIP mes-
sages

Load Parse time [�s]

Message type 1 18:0
Message type 2 12:5
Message type 3 20:0
Message type 4 22:5



0.0001 0.001 0.01
External processing time [s]

0.01

0.1

1

Linux
Solaris

2000 1/s

1000 1/s

Fig. 7. CCDF of the external process-
ing time for Linux and Solaris for 1000
and 2000 CAPS

0 500 1000 1500 2000
Rate of SIP INVITE messages [1/s]

0.0001

0.001

0.01

0.1

Linux
Solaris

no. of receiver processes

1

2

3

Fig. 8. External processing time (in
s) for Linux and Solaris with di�erent
number of receiver processes

In Fig. 6, the external and internal processing times are shown as functions of
the rate of SIP INVITE messages, for Linux and Solaris. The absolute values are
not easy to compare because the hard- and software architectures of Linux/x86
and Solaris/Ultrasparc are quite di�erent. Still, for both operating systems, the
same e�ects can be observed: The external processing time increases with in-
creasing of the SIP message load. It is interesting to note that for higher loads
Solaris performs better in the external processing time, although the internal
processing time of the Solaris system is higher than when using Linux.

So far, we have only discussed mean values of the processing time. In Fig. 7
we present the Complementary Cumulative Distribution Function (CCDF) of
the external processing time for Linux and Solaris, obtained from the tcpdump
time stamps. The Linux and Solaris curves are similar. For increasing load the
jitter increases but the minimum external processing time keeps constant. For
Linux the 95 % quantile increases from 5 ms to over 20 ms and for Solaris it
increases from 2 ms to 11 ms, when the CAPS are increased from 1000 to 2000.
In both systems there is a non-negligible probability of rather high delays.

4.4 Impact of the SER Con�guration

In Fig. 8 the external processing time is shown as a function of the rate of SIP
INVITE messages. As parameter we change the number of receiver processes.
They can be adjusted by the SER con�guration �le. When running on Linux, the
number of receiver processes has no in
uence on the processing time. This is why
in Fig. 8 only the result for one receiver process is illustrated. However, if Solaris
is used, the number of receiver processes has an impact on the processing time:
It can be observed that there is a signi�cant increase of the external processing
time when the number of receiver processes exceeds the number of CPUs.



5 Conclusion and Future Work

In this paper we present detailed performance measurements for the SIP Express
Router (SER). We determine three major factors in
uencing the performance of
SER: The format of SIP messages, the operating system, and the con�guration
of SER. Our results con�rm previous studies, which have reported that the
parsing may take up to 25 % of the internal processing e�ort. However, we also
show that the parsing e�ort has a much smaller share of the external delay,
which is the critical performance metric from the network's point of view. Even
though this paper only considers the SER proxy, we expect that other SIP entity
implementations have similar performance characteristics.

The measurements indicate that the potential for speeding up session setup
by using alternative message encoding formats is rather low, in particular when
there are also further delays caused by, for instance, address resolution or AAA
functions. Still, since the format of SIP messages does a�ect the processing com-
plexity, it could be useful to normalize SIP messages at domain boundaries, such
as to re-arrange headers in order to reduce processing e�orts in core SIP proxies.

Our measurements results have been obtained from a simple network setup. A
further step would be to perform measurements in a complete signaling scenario
with AAA functions and other auxiliary protocols, e. g., in a full IMS setup.

References

1. Camarillo, G., Garc��a-Mart��n, M.A.: The 3G IP Multimedia Subsystem (IMS):
Merging the Internet and the Cellular Worlds. 2 edn. Wiley (2005)

2. Cortez, M., Ensor, J.R., Esteban, J.O.: On SIP Performance. Bell Labs Technical
Journal 9(3) (2004) 155{172

3. Baset, S., Schulzrinne, H.: Peer-to-Peer Protocol (P2PP). IETF Internet Draft,
work in progress, (February 2007)

4. \SIP Express Router (SER)". http://www.iptel.org/ser/
5. Janak, J., Kuthan, J.: SIP Express Router v0.8.8 - Developer's Guide. FhG Fokus

(2002)
6. Gokhale, S.S., Lu, J.: Signaling Performance of SIP Based VoIP: A Measurment-

Based Approach. In: Proc. IEEE Globecom. (November 2005)
7. Van Den Bossche, B., De Turck, F., Dhoedt, B., Demeester, P., Maas, G., Moreels,

J., Van Vlerken, B., Pollet, T.: J2EE-based Middleware for Low Latency Service
Enabling Platforms. In: Proc. IEEE Globecom. (November 2006)

8. Gurbani, V.K., Jagadeesan, L.J., Mendiratta, V.B.: Characterizing Session Initi-
ation Protocol (SIP) Network Performance and Reliability. In: Proc. ISAS 2005,
LNCS 3694. (2005) 196{211

9. Kist, A.A., Harris, R.J.: SIP Signalling Delay in 3GPP. In: Proc. IFIP International
Symposium on Communication Interworking. (2002)

10. Richard Gayraud, Olivier Jaques et al.: SIPp - SIP Load Generator.
http://sipp.sourceforge.net/index.html

11. Malas, D.: SIP End-to-End Performance Metrics. IETF Internet Draft, work in
progress (January 2007)


