
Processing of Flow Accounting Data in Java:

Tool Design and Performance Evaluation

Jochen Kögel and Sebastian Scholz

Institute of Communication Networks and Computer Engineering (IKR)
University of Stuttgart
Pfa�enwaldring 47
70569 Stuttgart

{jochen.koegel, sscholz}@ikr.uni-stuttgart.de

Abstract Flow Accounting is a passive monitoring concept implemented
in routers that gives insight into tra�c behavior and network character-
istics. However, processing of Flow Accounting data is a challenging task,
especially in large networks where the rate of �ow records received at the
collector can be very high. We developed a tool for processing of Flow
Accounting data written in Java. It provides processing blocks for ag-
gregation, sorting, statistic, correlation and other tasks. Besides reading
data from �les for o�ine analysis, it can also process data directly re-
ceived from the network. In terms of multithreading and data handling,
the tool is highly con�gurable in order to optimize its performance for
a given task. For setting these parameters there are several trade-o�s
concerning memory consumption and processing overhead. In this pa-
per, we study these trade-o�s based on a reference scenario and examine
characteristics caused by garbage collection.

1 Introduction

Monitoring network characteristics and tra�c is vital for every network oper-
ator. This monitoring information serves as input for adjusting con�gurations,
upgrade planning as well as for detecting and analyzing problems.

Besides active measurements and passive capturing of packet traces, �ow
accounting is attractive because it is a passive monitoring approach, where in-
formation on �ows is collected in routers and exported using a protocol like Cisco
NetFlow [1] or IPFIX[2]. Due to monitoring on the �ow level, Flow Accounting
provides a good trade-o� between the information monitored and the amount
of data to store and process. Flow Accounting is mainly used for reporting and
accounting tasks, but can also serve as input for anomaly detection or extraction
of network characteristics.

Processing of Flow Accounting data is challenging, since in large networks
routers export several hundred million �ow records per hour. Basically, three
common approaches can be distinguished to handle and process this data. First,
�ow records can be stored in a central or distributed database for creating reports
and doing analysis at a later point in time. Here, the attributes of �ow records

are often reduced in order to save memory and processing e�ort. Second, �ow
records can be dumped directly to �les for o�ine analysis without a database.
Third, �ow records can be analyzed online directly in memory without storing
the �ow records themselves.

We developed a �ow processing toolbox in Java that can read �ow records
from �les as well as from the network. Thus, it is suitable for o�ine and online
analysis. The toolbox processes �ow records in a streaming fashion, i.e. data
�ows through a chain of processing blocks and each block can keep data using a
sliding window for performing processing tasks. For tasks like joining and sorting
�ow records, the window size depends on characteristics of the Flow Accounting
data. These result from router con�guration and tra�c characteristics. Larger
windows increase memory consumption. However, this is no sensible metric in
our case due to garbage collection. Rather more memory consumption results
in more garbage collector overhead and thus reduced throughput. This paper
studies these dependencies for giving hints on optimal settings for the toolbox.
Besides this, the processing blocks can be assigned to di�erent threading schemes,
enabling the exploitation of modern multicore computers. The investigation of
these threading schemes is also part of this work.

This paper is structured as follows: Section 2 introduces Flow Accounting,
Section 3 presents the design of the �ow processing toolbox, Section 4 shows the
result of the performance evaluation, and Section 5 concludes the document.

2 Flow Accounting

2.1 Mechanism and Protocols

Flow Accounting is a mechanism present in most professional routers that keeps
counters on per-�ow basis. The router exports this information as �ow records
and sends them a collector, where the information is processed further. Flows
are identi�ed by a key, which is typically the �ve tuple consisting of source and
destination address, source and destination port, as well as transport protocol
number. Routers keep a table (�ow cache), where based on the key information
on each �ow is stored. The router updates the �ow information (e.g. byte and
packet count) either for each packet seen (unsampled) or for a fraction of packets
(sampled). Among other information, Flow Records contain the �ve tuple, the
counters as well as start and end time in milliseconds.

Several data formats for sending several Flow Records in a packet to the
collector exist. Most often Cisco system's NetFlow format is used. The current
NetFlow version 9 [1] and its successor IPFIX [2] is a �exible format based on
templates, while the �xed format of version 5 dominates current deployments.
Since the data is sent via UDP, packets containing several records might be lost.

For determining the export time tx of a �ow record, there are several strate-
gies in Cisco routers. Inactive timeout : if for a �ow there is no more packet seen
for ∆tinact, the �ow is exported. Active timeout : if a �ow was active for a time
period greater than ∆tact, the �ow is exported. Fast timeout : If after ∆tf a

Figure 1. Flow export: timers of di�erent strategies and resulting record order

�ow contains less than nfast packets, the �ow is exported. Cache clearing : if the
cache becomes full, the router exports �ows earlier than de�ned by the timeouts.
Determining �ow ends by tracking TCP connection state is implemented only
in a fraction of small routers. The timeouts are illlustrated in Fig. 1 for two
�ows. We can see, that information on �ows can be distributed across di�erent
records with long breaks in between band that records arrive at the collector
neither sorted by start nor by end time. These properties have to be considered
for processing algorithms that work on a limited window of Flow Accounting
data.

2.2 Existing processing tools

In large networks several hundred several hundred Million Flow Records arrive
at the collector per hour. Thus, processing or storing this amount of data is
challenging. A common approach for o�ine analysis is using load balancers that
distributed the tra�c across several collectors that form a distributed database.
There are several commercial tools that collect and analyze Flow Accounting
data in that way and in most cases data is aggregated (e.g. on time intervals)
for reducing storage requirements. Thus, evaluations that need �ne grained tim-
ing information are not possible. For collection and basic processing of Flow
Accounting data, several free tools such as �owtools and nfdump as well as DB-
based reporting and analysis tools (e.g. nfsen) exist.

Evaluation algorithms that rely on �ne grained information are typically pro-
cessing and memory intensive, thus a DB based tool is not feasible. Additionally,
we want to correlate di�erent network characteristics or data from di�erent data
sources, which is not possible using current tools. There are several approaches
for processing network monitoring data in a streaming fashion, which is close
to the domain of data stream management systems (DSMS). Related tools are
Gigascope [3] for packet trace processing, the TelgraphCQ [4] DSMS or the net-
work monitoring speci�c CoMo project [5]. Other tools focus on the dispatching
of NetFlow UDP packets [6] or on Flow Query Languages [7]. A data processing
pipeline in Java is presented in [8]. Its focus is on processing large objects (e.g.
images), thus it is unfeasible �ow accounting data.

3 Data Processing Framework

3.1 Architecture

We developed our processing framework for processing of Flow Accounting data,
especially for �ne grained analysis of �ow records and extraction and correlation
of network metrics. This includes tasks like aggregation of values and records,
matching records from di�erent sources and calculation of derived metrics. In
order to handle the huge amount of data, we use a stream-based approach that
capitalizes on modern multicore architectures.

Our framework builds on interconnected processing blocks that form a data
processing chain. Processing blocks exchange messages containing references to
objects and are derived from a couple of generic blocks (Fig. 2). Each block has at
least to implement a data source or a data sink interface, while all combinations
with several interfaces are also possible. In Fig. 2 we can see an exemplary chain,
where two SourceBlocks read NetFlow data from �les or the network and for-
ward the data to SinkSourceBlocks that do data aggregation to JoinedFlows.
The two pipelines are merged in a CorrelationBlock, which creates correlation
result objects that are statistically evaluated in three SinkBlocks.

Processing chains are constrained to a directed acyclic graph. While cycles
could make sense for e.g. feedback loops to compensate time o�sets in the data,
this is currently not supported. We designed the framework in a way that threads
can be assigned to one or several processing blocks. If two processing blocks run
as di�erent threads, they are connected via blocking FIFO queues, as shown in
Fig. 2 for the con�guration with the maximum amount of threads.

At each source interface, an arbitrary number of processing blocks can con-
nect, such that all of them will get references to the objects passed on and can
process them independently of each other. We avoid race conditions by concur-
rent access in parallel paths by not modifying objects after they left the block
where they have been created. Due to garbage collection provided by the Java
Virtual Machine (JVM), no mechanisms to manage the references to objects
and freeing memory in case of dropped objects is necessary. This enables a clean
design of independent processing blocks.

Figure 2. Exemplary processing chain showing basic types of processing blocks

At startup, the chain is set up by a central component that also does thread
management. Con�guration is based on an XML �le that describes processing
block parameters and chain structure. For this, we build on the dependency
injection mechanisms provided by the Spring Framework [9]. After all objects
are created and wired as de�ned, threads are started and the sourceblocks will
start delivering data to the chain. Shutdown is initiated by a shutdown message
in downstream direction, e.g. if readers run out of data. If the chain contains
parallel paths that are merged in a correlator, this mechanism is not su�cient for
proper shutdown of upstream blocks that still have data. In such cases, upstream
shutdown noti�cation is performend by deregistering connections from upstream
blocks, which will then shutdown.

3.2 Processing blocks

In terms of processing tasks there are two basic classes of processing blocks:
window-based blocks that keep data over a sliding window, and window-less

blocks that perform processing on data objects immediately.
Examples for window-less blocks

Reader: read data from disk or the network, create objects and send them on.
Statistic: calculates mean values or distribution statistics for time intervals.
Dumper: writes object attributes to disk, e.g. as CSV �le.

Examples for window-based blocks

Sorter: sorts time-based data according to start or end time. The window moves
according to the timestamps of received data. Stored data with timestamps
smaller than the lower window edge is forwarded. Data received with times-
tamps smaller than the lower window edge is dropped.

Joiner: combines records of the same �ow that have been exported separately
due to timeouts. A window speci�es the maxDuration, i.e. how long the block
should wait for another record before expiring the JoinedFlow. maxWait-
ingTime speci�es the maximum length of the created JoinedFlows. Without
the second parameter JoinedFlows of �ows lasting over a very long time
would be forwarded to downstream blocks very late.

Correlator: with more than one input these blocks correlate di�erent data
streams, e.g. on timestamps. Typically, timestamps of the data compared
are not exactly equal or do have an o�set resulting from measurement, thus
windows are necessary.

While processing times of records �owing into window-less blocks are rather
�x, this time is highly variable for window-based block. In a window-based block,
a data object can be either dropped, kept (added to internal data structures),
or lead to the expiration of several objects due to window movement. This e�ect
leads to a high jitter in processing time and makes queues between window-based
blocks running as single threads and other threads necessary. Without or only
small queues, there is a higher probability that window-based blocks stall the
pipeline.

3.3 Thread and message con�guration parameters

In our framework we can con�gure whether a processing block runs as an inde-
pendent thread or not. If it does not run as a single thread, it belongs to the
thread of the upstream block and gets the control �ow when it receives data.
Obviously, this results in the constraint that readers always must run as a thread
since they are the data source. Also correlator blocks run always as a thread,
since it depends on the data from which input it reads. Using the control �ow
from upstream block would drastically increase complexity in this case. Exploit-
ing more threads helps exploiting modern multicore architectures, but also comes
at the cost of higher memory consumption due to objects present in queues that
are used to connect blocks running on di�erent threads. The concept of thread
pools does not apply here, since its purpose is to reuse a limited number of
existing threads instead of creating them for each arriving task.

We realized that the high number of objects �owing through the blocks leads
to a high context switch rate and high CPU consumption in the operating system
(OS). Since Java maps threads directly to kernel threads, the OS is involved in
locking and context switch operations. Thus, each object added or removed to
queues possibly involves a switch from user mode to kernel mode and back. To
mitigate these e�ects, we introduced burst messages, where several data objects
are sent in one message. The number of included messages is called burstsize.
Thus, queue operations happen less often and it is more likely that threads can
run for a longer time without being blocked. However, this also comes at the cost
of additional memory consumption. The size of burst messages is con�gurable
and its impact is studied in the next section.

4 Performance Evaluation

4.1 Measurement Scenario

For performance evaluation we selected a reference processing chain (Fig. 3).
The chain takes �ow records from two routers, aggregates �ow records of the
same �ow in a joiner and correlates these JoinedFlows. Statistics evaluate the
time, byte and packet di�erence of JoinedFlows. This allows to derive packet
loss rates, byte count inaccuracies and network delay. Where processing blocks
require sorted data, sorters are employed. Due to the high number of window-
based processing blocks, this chain requires a considerable amount of memory.

Our performance evaluation mainly covers the throughput of the program.
In addition to that, we try to �nd what impacts throutput by studying system
time, user time and the time the garbage collector needs. We considered the
impact of memory available by assigning di�erent amounts of heap memory to
the JVM.

For the measurements each reader in the depicted chain processed a �ow-
tools �le with 6 million �ow records in total. The �les were pre-�ltered and un-
compressed, so that they contained only records from one exporter. The queues
between threads had a size of 100. According to the characteristics of our data

Reader1

Reader2

Sorter1

Sorter2

Joiner1

Joiner2

JoinedFlowSorter1

JoinedFlowSorter2

JoinedFlowComparison Sorter

StartDiffStat

RecordDiffStat

PacketDiffStat

ByteDiffStat

Figure 3. Joined Flow comparison chain

we set the windows of the blocks as follows: Sorter 1/2: 20 s, Joiner 1/2 maxWait-
ingTime: 5 min, JoinedFlowSorter 1/2: 5 s, last Sorter: 3 s. The following mea-
surements results were obtained on a Intel Xeon X3360 quad core 2,83 GHz
processor with a total amount of 8 GB memory. The Sun JVM version 1.6 up-
date 15 was used with Ubuntu 9.10 64 bit, Kernel version 2.6.31. The standard
garbage collector was used. The only con�guration done with the JVM, was to
set the initial and maximum heap size to the same value. Each measurement was
done twice. We did measurements of the real time r, the system time s and the
user time u with the /usr/bin/time program. The time the garbage collector
needs was measured with the GarbageCollectorMXBean class provided by the
JVM. This time is included in u.

To study the throughput behavior we can vary di�erent parameters. We will
focus on the thread assignment, the size of burst messages and the available heap
memory. Of course the throughput can be increased in using faster CPUs with
a bigger main memory. We did also measurements on a machine with two quad
core Opteron CPUs and 48 GB main memory, where we observed a speedup of
up to factor 2. Besides other hardware we also examined other processing chains,
so we can proof that other processing chain showed a similar behavior.

thread assignment independent threads

A Reader1, Reader2, JoinedFlowComparison

B Reader1, Reader2, JoinedFlowComparison, Sorter

C Reader1, Joiner1, Reader2, Joiner2, JoinedFlowComparison,
Sorter

D Reader1, Sorter1, JFSorter1, Reader2, Sorter2, JFSorter2, Joined-
FlowComparison

E Reader1, Sorter1, JFSorter1, Reader2, Sorter2, JFSorter2, Joined-
FlowComparison, Sorter

F each block is a thread, 14 threads

Table 1. Thread Assignment Patterns

 1.4

 1.6

 1.8

 2

 2.2

A B C D E F
 42000

 44000

 46000

 48000

 50000

 52000

 54000

ut
ili

za
tio

n
(u

se
r-

tim
e+

sy
st

em
-t

im
e/

re
al

-t
im

e)

flo
w

 r
ec

or
ds

/s
ec

on
d

thread assignment (see table)

Joined Flow Comparison, burstsize=1000

throughput, heap = 7GB
utilization, heap = 7GB

throughput, heap = 6GB
utilization, heap = 6GB

Figure 4. Bene�t of multithreading with di�erent thread assignments

4.2 Bene�t of multithreading

In the following we show which assignment of threads to processing blocks makes
sense and how the toolbox bene�ts from multithreading. A decision which blocks
should be combined can be based on several characteristics of a processing block,
like the needed processing time, IO intensity or the number of exchanged mes-
sages. In general it is a good solution to combine several processing blocks, if
their tasks are simple.

We study the six assignment patterns listed in Tab 1. All processing blocks
that are not listed run in the same thread as their predecessor. We used chains
with the minimum number of threads (assignment A) up to the maximum num-
ber (assignment F). The patterns B to E try to split the long chains into shorter
sub-chains.

Fig. 4 shows the throughput in �ow records per second and the CPU utiliza-
tion ρ = u+s

r related to di�erent thread assignment patterns and two di�erent
heap sizes. One reason for the poor overall utilization is again the garbage col-
lector, which stops the execution of the program to perform major collections.
Because the standard collector is used, these collections are only done by one
CPU. The collection can be observed during the program runtime. Between the
normal processing, where the utilization is about 3.8, the utilization drops down
to 1 for a while. Especially in the case with the smaller heap these pauses are
compared to the normal execution relatively long.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 10 100 1000 10000 100000 1e+06
 38000

 40000

 42000

 44000

 46000

 48000

 50000

 52000

pr
oc

es
si

ng
 ti

m
e

no
rm

al
iz

ed
 to

 r
ea

l t
im

e

flo
w

 r
ec

or
ds

/s
ec

on
d

burstsize

Joined Comparison, heap=7GB, 14 threads

throughput
system time

user time
garbage collector time

Figure 5. Impact of burst messages

The results show, that even using a higher number of threads than CPU cores
is advantageous. However, it does not always make sense to use the maximum
number of possible threads, especially with respect to memory.

4.3 Impact of burst messages

Adding and removing messages to and from queues is expensive since locking
operations and calls to the OS are required. This leads to high context switch
rates and high s if the message rate is high. Both, atomic operations for locking
and switches to the OS and back as well as switches between threads can be
reduced by employing burst messages.

The more messages are aggregated into one burst message the lower s be-
comes and so the context switch rate. On the other hand using burst messages
with bigger sizes results in a higher memory consumption. Thus a trade-o� be-
tween the context switch rate and the memory consumption must be found.

Fig. 5 shows the throughput related to the burstsize. As expected the through-
put increases with increasing burstsize. Interesting is the fact, that the normal-
ized user time is nearly constant regardless of the con�gured burstsize although
the throughput increases. The reason is that the time axis is normalized to the
real time. Thus it shows a kind of utilization. Furthermore we can see the de-
sired decrease of system time. As we see from the results, the burstsize should

be greater than 100. Much larger bursts do not lead to better performance, but
eventually to performance degradation.

However, we observed that s is not directly related to the burstsize. One rea-
son might be the uses of the Linux mechanism of fast userspace mutual exclusion
(futex) [10], which we have found out by using strace. So not every access to an
ArrayBlockingQueue results in a context switch, because the mechanism tries
to do an resolution in userspace without switching into kernelmode to do locking
on the shared memory.

5 Conclusion

We presented a tool for processing of Flow Accounting data in Java. The per-
formance evaluation showed that on multicore architectures, using more threads
than cores is bene�cial despite the additional memory required. Additionally,
the usage of burst messages further speeds up processing since less operating
system interactions are required. We investigated the impact of the burst size
and showed that from a certain size the memory consumption and therefore the
overhead introduced by garbage collection reduces throughput. The tool seems
to be feasible for online processing of Flow Accounting data received directly
from the network.

References

1. Claise, B.: Cisco Systems NetFlow Services Export Version 9. RFC 3954 (Infor-
mational) (October 2004)

2. Claise, B.: Speci�cation of the IP Flow Information Export (IPFIX) Protocol for
the Exchange of IP Tra�c Flow Information. RFC 5101 (Proposed Standard)
(January 2008)

3. Cranor, C., Johnson, T., Spataschek, O., Shkapenyuk, V.: Gigascope: a stream
database for network applications. In: SIGMOD '03: Proceedings of the 2003 ACM
SIGMOD international conference on Management of data, New York (2003)

4. Chandrasekaran, S., et al.: Telegraphcq: Continuous data�ow processing for an
uncertain world. In: CIDR. (2003)

5. : The CoMo project. http://como.sourceforge.net/
6. Dübendorfer, T., Wagner, A., Plattner, B.: A framework for real-time worm attack

detection and backbone monitoring. In: IWCIP '05: Proceedings of the First IEEE
International Workshop on Critical Infrastructure Protection, Washington (2005)

7. Marinov, V., Schönwälder, J.: Design of a stream-based ip �ow record query lan-
guage. In: DSOM '09: Proceedings of the 20th IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management, Venice (2009)

8. Ciccarese, P., Larizza, C.: A framework for temporal data processing and abstrac-
tions. (2006)

9. : Spring Framework. http://www.springsource.org/
10. Franke, H., Russell, R., Kirkwood, M.: Fuss, futexes and furwocks: Fast userlevel

locking in Linux. In: The Ottawa Linux Symposium. (2002)

