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Abstract. The popularity of online multiplayer games is ever-growiigadi-
tionally, networked games have relied on the client-semvedel for information
sharing among players, putting a tremendous burden on thiersend creates a
single point of failure. Recently, there have been effastemploy the peer-to-
peer paradigm for gaming purposes, however, latencytsenaction games still
pose a formidable challenge. The main contribution of thisqy is the design of
a novel peer-to-peer gaming framework based on randonr livetevork coding.
We briefly evaluate the performance of the proposed framevor initial re-
sults suggest a significant reduction in network latencydhees at the expense
of a small data traffic overhead. Although further evaluatoclearly needed, we
believe that our approach can be the foundation of a truly-frepeer communi-
cation architecture for networked games.

1 Introduction

Playing computer games is the favorite pastime of hundrédsltions of people. The
population of players is very diverse, men and women, childmd grandparents, con-
struction workers and university professors all have ag¢eoy to use their computer
for entertainment purposes. In the past decade, onlineggaired popularity; specif-
ically, multiplayer online games are the most successtulhsas Call of Duty (a first-
person shooter) or World of Warcraft (a role-playing ganid) Pesigning an archi-
tecture which meets the strict requirements of online ggpoffers a good quality of
experience for the users, and proves to be efficient undarrtpeedictable conditions
of the current Internet is a challenging task.

Traditionally, networked games have relied on the cliertssr architecture: play-
ers’ home computers act as clients, with (one or) multipteess situated in the higher
tiers of the network. As an alternative, some games allovhémting a server at suffi-
ciently equipped home computers, making multiplayer ggnpiossible in a local net-
work (LAN) setting. Either way, massively multiplayer gasnean put a tremendous
burden on a single server, both from the traffic and compnatiload viewpoint. This
can result in inefficient network resource utilization amsbacreates a single point of
failure. The notion of a peer-to-peer gaming architectunerges naturally, however,
only a small number of role-playing games use this concegiom games are more
sensitive to network delays, as lags may render the gamepfmrience unsatisfactory.

On the other hand, the recently proposed network codingiptan[2] could open
new avenues for packet switched networks. While networkmzpbas been proven to



Fig. 1. Network coding in the butterfly topology

be effective in a wireless environment [3] and also in corBvoeks, it's usefulness
in traditional P2P applications like file-sharing and vidgreaming has been widely
debated [4] [5] [6]. From a networking point of view, muli@yler gaming shares sim-
ilarities with both content distribution applications,daas such, it could potentially
benefit from network coding.

In this paper we present a practical network coding apprée@achultiplayer gam-
ing over a peer-to-peer overlay. We replace the standadstfiorwarding mechanism
with a random network coding mechanism. Since home compgspecially ones used
for gaming, are powerful, coding and decoding packets enflthis feasible. Our ini-
tial performance evaluation shows encouraging resulesage latency of player state
updates is reduced in a wide range of scenarios. Specificatwork coding outper-
forms unicast by more than 30% when participating peers eterbgeneous in terms
of access bandwidth. The cost for this improvement is a piaiesverhead regarding
generated data traffic; however, this extra traffic is propoally marginal in a number
of scenarios, and its absolute volume is always low. We attgateapplying random net-
work coding in this context is an extremely promising reshatirection, as it has the
potential to be the foundation of a truly peer-to-peer decture for networked games.

The remainder of this paper is structured as follows. SeQ@igives an overview
on network coding techniques and online games. Our main itieaapplication of
network coding for peer-to-peer online gaming is preseirtegection 3. We evaluate
the performance of the proposed method in Section 4. Firfadlgtion 5 identifies open
issues and concludes the paper.

2 Redated Work

Network coding. Network coding was proposed to be used for improving packet-
switched network throughput by Ahlswede et al. in [2]. In asslical routed approach
packets are transmitted without change from data sourcédsstiinations. Meanwhile,

in a system implementing network coding, nodes are allowemhadify packets, en-

code and re-encode packets on the path, as long as the rscaigable to extract the
content of the original packets. Network coding usuallysioeuse compression, but
achieves a larger throughput in multicast or broadcastsaenwith the optimal usage
of network topology.



A typical example for the exploitation of network topologythe “butterfly” (see
Fig. 2) . In this network a source (1) sends two flows at the shtsne packet per time
slot to both node 6 and 7. Each edge has a throughput of onefgaaktime slot. With
no network coding, four packets have to share the minimunotiiiree edge<2(— 6,

4 — 5 and3 — 7). The problem can only be solved by increasing the capatiinlo

4 — 5. On the other hand, application of network coding (e.gnaigitwisea + b) at
node 4 and 5 allows bottleneck link— 5 to carry the combined information of the
two packets. With information decoded at nodes 6 and 7 (gsing bitwise(a +b) —a
and vice versa), network coding achieves a throughput otkeia per time slot.

In [2] it was proven that with network coding the informaticate from a source
to a set of nodes can reach the minimum of the individual maw-fiounds. In [7]
a constructive proof was given that the theoretical maxinwf@rmation rate can be
achieved by linear network coding. In linear network codew$l are broken into vec-
tors over a field. Each node in the network can linearly combiactors to create a
new packet. Giving a method for constructing optimal nefades using only linear
transformations opened the way to the application of nééwoding when topology is
available and changes are seldom.

In dynamically changing networks, advertising networkraes and rebuilding the
coding infrastructure creates a large overhead. Insteadstdtic coding scheme, ran-
dom linear network coding (RLNC) has been proposed in [8hd®an codes differ
from traditional linear codes in that linear combinations generated by each node on
the fly. Transmitted packets contain the combination of pteckind the coefficients as-
sociated with each source vector present in the packet.ohsithowed that the perfor-
mance of RLNC exponentially approaches that of linear ndtwoding. By doing so,
RLNC can provide a solution as good as any network codingmsehmaking use of the
network topology. RLNC makes the application of networkiogdoossible in ad hoc
networks and networks with a high churn rate, with no cergtegthority or strong dis-
tributed computing required to design and maintain netvemdling schemes. Benefits
of applying RLNC in P2P applications were studied in [5] fée fransfer applications.
An implementation of a P2P media system using RLNC was pexpws[6].

Chiu et al. [4] showed that applying network coding aloneesrp in an overlay net-
work will not result in improved throughput, which questiothe effectiveness of net-
work coding in a file-sharing scenario. However, our focusrigpeer-to-peer gaming,
where reducing network latency is a first order concern,evbéndwidth consumption
is not critical.

Networked games. Games can be seen as discrete interactive simulationathe g
model is evaluated and changed periodically in a game logprdJinteract with the
game model through avatars. The avatar control mechanismtisvent based, user
input is scanned at a specific point of the ever-running game &nd processed based
on the state of the avatar. In present networked multiplgseres each player maintains
alocal copy of the game model. Input generated by all playasgo be available to each
player in order to keep these copies synchronized. Thishiiaed through periodical
player state update messages.

The client-server architecture has the benefit of a centitilaaity that maintains
the game model and broadcasts both player state and gancésibje updates. Servers
can implement security features, e.qg., filtering out malisiplayers based on their in-



game or network activity. A central server can also optintiaadwidth consumption

and eliminate some cheats by sending player state upddiefsam those players and

objects that may be visible to a certain player. Servers eaoperated by the game’s
publisher or a company dedicated to host online games, muistimot always neces-
sary: in a number of games any player can act as a server. $adwdintages of both
approaches are obvious: dedicating resources to hostptaykir games is expensive,
as servers must be localized to maintain low response tiamesgame load is concen-
trated to the evening hours [9]. On the other hand, makingbtiee players take up the
server’s role will consume the player’s local resourcesraaidice her and (due to lim-
ited bandwidth) other players’ gaming experience. Morediés way a single point of

failure exists, hence a connectivity problem at the seraamqrevent all the participants
from playing.

As a response to the above-defined problems, some massiwdtiplayer online
games (MMOG, mostly role-playing and adventure) are miggato P2P networks.
MMOGs are played by thousands of players contributing tosdwme huge and de-
tailed virtual environment. This virtual world is permanewith players joining and
leaving. In these games player state updates can be leseffiegnd the emphasis is
on dispatching game object state updates to all players.ak@®rsuch games easier to
scale, P2P overlay based games were proposed in [10], facasithe partitioning of
the game-space to optimize communication by separating irg® groups. The pro-
posed techniques are not fast enough for first person vievegaoch as action games,
shooters (FPS) and simulators. Authors of [11] proposegigenis, a framework which
utilizes efficient object location and speculative prdfigig besides game-state parti-
tioning to deal with latency requirements. Another reléyaace of work is the Donny-
brook system [12]: it uses a sophisticated method to estinvaich objects and other
players are important to a given player, thereby reduciadrétguency of state updates.
Additionally, updates are disseminated via overlay matttc While the achievements
of these works are valuable, real-world games requiringy higgponsiveness are still
server-based.

In this paper we concentrate on the efficient communicatidrequent player state
updates (synchronization). We believe that reducing nettvaffic and latency through
limiting recipient lists, clustering based on game statg seculative prefetching are
important ingredients of a peer-to-peer gaming framewbodkyever, an efficient dis-
semination scheme for frequent in-game updates is eskemtgapractical system. The
nature of such kind of traffic is multicast, therefore we ectpghat overlay-based net-
work coding could significantly help in such a scenario [13].

3 Overlay Network Coding for P2P Gaming

In a multiplayer gaming scenario, latency of player statéates comes from two fac-
tors, the one-way trip time of the packet and available badthaBoth are dependent of
factors like home networking equipment, cross-traffic gatesl by the end user, over-
all network load, geographical distance and traffic shapipgpment used by network
providers.

If a server-based solution is deployed, each node uploalysaosingle packet to
the server, and downloads the packets of every other pemrtfre server. Bandwidth
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Fig. 2. Packet headers: unicast vs. RLNC
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Fig. 3. Random network coding in action (modulo class: 13)

limitations are usually present only at the server, esfigcidnen the server connects to
the Internet through an asymmetric home access link suctsaobcable. In a server-
based scenario, latency due to trip time depends only omiettéactors such as BGP
policies, load balancing mechanisms, congestion and liakability.

Peer-to-peer gaming architectures use an overlay netveodisseminate player
state updates among peers. There are two basic characseoithe overlay which
determine overall latency: its topology and the forwardimgchanism used. From the
topology standpoint, overlays can be fully or partially nented. We restrict our inves-
tigations to fully connected overlays for the sake of simipfi

In a full mesh overlay the simplest packet forwarding sgggtis unicast, when each
peer sends its update packet directly to every other peepréy®se an alternative for-
warding mechanism, network coding. The main differenceiphd by network coding
is the possibility of combining available packets beforarding them. While optimal
bandwidth consumption and computational overhead canHiewad with fixed linear
coding schemes, this approach is not suitable for netwonkirgga over an unreliable
medium. With a fixed coding scheme packets are expected teelsemt at given nodes
at a given time. In peer-to-peer gaming packet generatiomised synchronized, but
packet transport times vary in a wide range. Hence buffeve ba be introduced to
ensure that all packets required for decoding are preseheading scheme requires
it. This is not desirable when the goal is to reduce overédiley. Random linear net-
work coding can work with asynchronous packet flows, as thingpscheme doesn’t
specify which packets have to be combined, packets cotitnipto the outgoing packet
are chosen from the available packets randomly. The pri¢kiefreedom is a larger
packet header, containing the coefficients of the origiaakpts that are combined to
get the current one (see Fig. 2). Moreover, decoding is mamgatationally intensive,
as a new linear equation system has to be solved for everl tddme decoded.



The basics of random network coding as implemented in oundveork are shown
in Fig. 3. Equations and variables correspond to a singleegstep, hence no indexes
will be introduced for the time. At each game step, an updassage is generated by
each peer. Each message corresponding to a single netwdingqacket. Assume that
a virtual arrayA is composed of these messages. This array is split intdblocks of
rows, denoted byl;. Having smaller number of rows in a block reduces the computa
tion needs of the decoding process. Packets received fraghbw's contain the block
number: of the message it was generated from, the coefficiersied and the encoded
messageé. Received messages for each block are stored atjpaleng with the local
message in the working arrays;; (local message is stored B; if message of peer
j is part of block:). Receivedc coefficients for these messages are stored in the ar-
raysC); with the local message having a coefficient of 1. At the beigimof the game
step, arrays3;; andC; are empty except the local message of each peer stored in one
of the B;; arrays and the associated coefficienti. Random linear network coding
guaranties that the equation

Bj; = Cji x Ay 1)

(obviously true at the beginning) will always hold. This issered through the coding
mechanism.

A given outgoing message of pegis created from a chosen blockThe message
to be sent is generated with the help of a random vettoirthe length of the number
of rows in B;;. The message consistingdfandd’ is constructed as follows:

CI:fXCji and b/:fXBji. (2)

Note, that
b/:fXBji:fXCjiXAZ':C/XAZ'. (3)

When peef receives the messagé andd’ will be appended to the array®, andCy,:

(Bli)/ = Bli|b/ and (Cli)/ = Oli C/. (4)
Hence if
By, = Cy, x A (5)
then
(Bli)l = (Cli)/ X Al (6)

In order to retrieve the original messages (rowsAgf, the above equation has to be
solved for allk blocks at each pegi InvertingC}; requires at leasty | linearly inde-
pendent messages received from each block. It has been @i that the proba-
bility of selecting linearly dependent combinations beesmegligible even for a small
code field size. This result was achieved in a streaming egifin where network cod-
ing was applied at the source where an entire block of datawaitable.

In peer-to-peer gaming, data are available distributediden all peers, and net-
work coding is only applied during message forwarding. la bieginning of a given
game round, each peer has access only to a limited numberssages and peers in
small proximity will usually have knowledge of the same sthsf messages. This in
turn may lead to sending messages that are not independentlfiose the destina-



tion peer has already received. These irrelevant messagg<onstitute a consider-
able traffic load, but may not affect overall delivery latgn@ur first network coding
method,RLNC, is the basic implementation of a linear network codingesystRLNC
operates on the full mesh, every peer sends a message peliptth each neighbor.
The packet is a random linear combination of already redeimessages. The second
method RLNC+, implements an additional mechanism for reducing unnecgssans-
missions: each peer maintains a message array which cemteasages sent to and
received from its neighbors. Subsequent outgoing messagesent only to neighbors
that could be interested in the content of the packet, this uranecessary packet send-
ing could be spared.

4 Performance Evaluation

To provide an initial performance assessment we developd¥A-based simulation
tool. The environment consists of the configuration geweragsponsible for creating,
saving and loading network topology, the simulator and dgeprocessing pipeline.
Our network core simulator provides delayed packet defiwer point to point links.
For the proof-of-concept evaluation, peers were connetitedtly to this core, and no
computation overhead (decoding) was taken into account.

Networ k model. Our simulator was created to handle network traffic gendraye
player state updates, and didn’t considered game objengeisaWe also presumed that
addresses of the players are available, and players doawa & join during a match
as this is the case in most match-based multiplayer gameplatled our players in the
Internet, as in LAN games connections are more reliabledWwadth is almost always
sufficient and the impact of network latency on gameplay @andglected.

Simulations were run over networks consisting of 10, 20,480and 50 peers. The
traffic generated by the user interactions was uniform iretas player updates are not
event but state based. We assumed UDP as the transportgrotatoice, since real-
time traffic does not tolerate the added latency of the feekllmop in TCP. A typical
player state update messages size ranges from 10 to 10Q bgtkss sent to each
other player 10-60 times per second [15]. In our experimemtsised a 10 Hz update
frequency and player state update message of 50 bytesngp¥d bytes with IP and
UDP headers. When using random linear network coding, thesage size increases
with the coefficient. This depends on the block size, and eéarfgppm 5 bytes for 10
peers to 25 bytes for 50 peers, as we used a single block fpeatk. For coding we
used a fixed field size of 13 (modulo class).

We measured a round-trip time of 15-87 ms towards differembfean servers [16].
Based on these results we used one-way peer-to-peer latelugs of 5 to 40 ms uni-
formly distributed with a jitter of 5 ms. Since typical homeohdband connections
are asymmetric, we assumed that upload bandwidth wouldrdiete the effectiveness
of different forwarding mechanisms (downlink is assumeti¢aunlimited). Based on
bandwidth characteristics three peer classes were usedpskers had an upload band-
width just enough to send out a single packet to each other (et kbit/s to 312
kbit/s depending on the number of participating peers)rélgelar peer had 624 kbit/s
and fast peers were granted a 8 Mbit/s uplink. We used foterdifit scenarios in terms
of participating peer distribution: regular (regular peenly), some slow (90%regular
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Fig. 4. Average latency (upper) and data traffic generated (loveen)ifferent peer dis-
tributions

and 10% slow), some fast (90% regular and 10% fast), and n{B@% regular, 10%
slow, 10%fast).

Experimental results. When processing the results, our main concern was the av-
erage latency. We defined latency as the time elapsed frofpetifiening of the game
round until the respective peer becomes aware of all otlagreps’ states. In the uni-
cast scenario this happens when a packet from every peeréved. In the network
coding scenario received packets were scanned for a solatibe linear equation cre-
ated from the received coefficients after the reception ohgecket. If the equation
becomes fully determined all player update packets can beddel. Other key per-
formance indicators were the maximum latency in a singlexdoand the number of
packets received before decoding could be achieved. Agesad maximum latency
measures quality of experience, while the generated dfar tmeasures network load.
Note, that all latency, maximum latency and traffic figuresareraged over 100 game
rounds.

Average latency values for different participating peepylations can be seen
in Fig. 4(a)-4(c). In a network with regular peers, netwodding (RLNC) performs
slightly better then traditional unicast mechanism, evéh its larger packet size which
reduces the packet sending rate. This is due to it’s flootlkegsehavior: packets orig-
inating from one source will find the shortest paths, whilgéhia unicast solution the
direct link between two peers may have a larger delay. Whemesslower peers are
also present in the overlay, network coding shows greatpramement over the tradi-
tional forwarding method. On the top of that, the heteroggrd the mixed scenario
(slow, regular and fast peers are also present in the sygtelnjes the highest gain for
RLNC among all scenarios. Improvementin this setting cambee than 30%.
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Note, that network coding with redundancy protection (RuN@erforms compa-
rably to RLNC in terms of average latency. However, its adokegefit becomes visible
in Fig. 4(e)-4(f), where generated data traffic is shownhhnfirst two scenarios traffic
generated by network coding mechanisms is only slightlyentban that of unicast.
On the other hand, RLNC produces much more traffic in the mpesat setting, with
RLNC+ reducing this overhead significantly.

The next series of experiments studied the impact of fastspmethe system. We
used a network of 50 peers, with 1 to 10 fast peers beside gldareones. Fig. 5 shows
how the latency benefit of network coding increases with #tm rof fast peers. The
amount of generated data traffic gives an explanation ferlibhavior: the more peers
with high bandwidth connections are present, the higheunrddncy can be achieved
in the system. This redundancy provides improved latenaydigy Note, that RLNC+
produces considerably high maximum latency values, whénafew fast peers are
present. This shows that restricting the scope of recipisnnore beneficial when peer
heterogeneity is higher.

Latency and data traffic results grouped by forwarding meisimas are shown in
Fig. 6. It can be observed that network coding improves tlezaae latency in every
scenario. It is important to emphasize that 150 ms is baodgrdble [17], while 100
ms is acceptable for online shooter and action games; oultsessiggest that this limit
can be met even in case of a large number of participants. d&Wergthe overhead of
network coding compared to unicast is almost non-existemtly regular or some slow
peers are playing; in more heterogeneous scenarios, hsogne reasonable overhead
(with RLNC+ generating slightly less traffic). Note, thaistloverhead might be recog-
nizable percentage-wise, but the absolute volume of esti@tdaffic remains very low
(20 extra packets per peer in a 50 peer scenario).

5 Conclusion and Future Work

The recently proposed technique of network coding has bleenwrsto boost network
capacity compared to the traditional store-and-forwardhmeism in a variety of sce-
narios. Here, we have presented a very different use-caefeame method: reducing
network latency. Our promising results in this area showkearmeed for further un-
derstanding of the possible benefits and side-effects afarktcoding.

In this work, we have introduced a practical framework foemp-peer networked
gaming based on random linear network coding. We have shbainour proposed
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method outperforms traditional unicast in terms of avenmagvork latency in a wide
range of scenarios. Furthermore, the absolute traffic @aethas been shown to be low
for all settings analyzed.

Our initial performance evaluation indicates that the ps®r method is worthy of
further research. One important area is the specific codab B#¢so, more simulations
are needed to investigate the impact of more complex topesppacket loss and com-
putational overhead. Moreover, a prototype implementadiod testbed measurements
with a real game are essential to fully understand the behafiour system.
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