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Abstract. In Measurement Based Admission Control (MBAC), the de-
cision of accepting or rejecting a new �ow is based on measurements of
the current tra�c situation. Since MBAC relies on measurements, an
in-depth understanding of the measurement error and how it is a�ected
by the underlying tra�c is vital for the design of a robust MBAC. In
this work, we study how the measurement error impacts the admission
decision, in terms of false rejections and false acceptances, and the conse-
quence this has for the MBAC performance. A slack in bandwidth must
be added to reduce the probability of false acceptance. When determining
the size of this slack, the service provider is confronted with the trade-o�
between maximizing useful tra�c and reducing useless tra�c. We show
how the system can be provisioned to meet a prede�ned performance
criteria.

1 Introduction

Measurement Based Admission Control (MBAC) has for a long time been rec-
ognized as a promising solution for providing statistical Quality of Service(QoS)
guarantees in packet switched networks. An MBAC does not require an a priori

source characterization which in many cases may be di�cult or impossible to at-
tain. Instead, MBAC uses measurements to capture the behavior of existing �ows
and uses this information together with some coarse knowledge of a new �ow,
when making an admission decision for this requesting �ow. The problem with
measurements is that they include an error, and the size of this error depends
on �ow characteristics and the length of the observation window. The errors cre-
ates uncertainties that again will e�ect the admission decisions in terms of false
rejections and false acceptances. False rejections are �ows that are rejected when
they should have been accepted and false acceptances are �ows that are accepted
when they should have been rejected. For the service provider, false rejections
translates into a decrease in utilization and for the end user, false admissions
means that the QoS of the �ow can no longer be guaranteed. Basing admission
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on measurements clearly requires the understanding of the measurement error
and how this impacts the performance of MBAC.

Consider a link where the maximum allowable mean rate is uc and the main
task is to keep the average workload of the link at or below this level. An MBAC
is put in place which uses measurements to �nd an estimate R̂ of the mean
aggregate rate of accepted �ows. When a new �ow arrives, with mean rate ξ, it
will be accepted if:

R̂ + ξ ≤ uc. (1)

With MBAC, care must be taken, since R̂ is not the true mean rate and
includes an error, which will cause false admissions and false rejections. The
measurements are improved when they are taken over a longer measurement
window. However, �ows leaving within the window results in �awed estimates,
thus the �ow lifetimes set an upper limit for the window size. Given this window
size, how con�dent can be be this is not a false acceptance? Is this good enough?
If the answer is no, the reserved bandwidth for the �ows uc, must be reduced by
some slack to make up for the measurement uncertainty. But how large should
this slack in bandwidth be?

There is a tradeo� between rejecting too many �ows thus wasting resources,
and accepting too many �ows resulting in QoS violations. In this work we study
how the measurement errors and �ow dynamics impact the performance of
MBAC in terms of proper performances measures. A simple example shows how
the system can be provisioned with a prede�ned performance criteria.

The focus in the literature has been on �nding MBAC algorithms that maxi-
mize utilization while providing QoS which basically implies the determination of
uc (see [1] and [2] for an overview). After studying various MBAC algorithms, [1]
concluded that all algorithms have nearly the same performance with similar de-
viations from the ideal behavior. We claim that this conclusions is not surprising
and is primarily due to measurement errors. A deeper analytical understanding
of the measurement process and its error has been sought in [3] and [4]. Our
work di�ers signi�cantly from previous work in that correlation characteristics
within �ows are included and we �nd how the uncertainty in the measurements
vary with the length of the observation window. This work is based on previous
work [5] and is part of a methodology and design of an analytical framework for
analyzing measurement error.

The reminder of the paper is organized as follows. First the system model is
introduced in Section 2. Section 3 details the rate level measurements and Section
4 introduces the �ow level framework and de�nes the performance measures.
Provisioning is discussed in Section 5 and follows up with a case study in Section
6, before the conclusion is given in Section 7.

2 System Model

Flows compete for a limited resource, a network link of capacity c, controlled by
MBAC. The �ow's QoS requirement can be guaranteed as long as the average
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aggregate rate is at or below uc, where u, 0 < u < 1 is a tuning parameter. An
optimal value for u depends on �ow characteristics. In this work, u is assumed
a given constant and a discussion around its optimal settings is out of scope.
The MBAC works as follows: The MBAC estimates the average aggregate rate
R̂ based on measurements taken periodically every measurement window of size
w. When a new �ow arrives, it will be accepted or rejected at the start of the
next measurement period according to (1). Additional �ows arriving within the
same window will be rejected and lost.

Each �ow is a stationary rate process with mean ξ and covariance ρ(τ). A
mixing of �ow classes will cause increased complexity for the MBAC algorithm
and also the measurement process. To simplify, only the homogenous case where
�ows belong to the same class will be considered. With this assumption, the
system state N can be speci�ed by the current number of �ows. The maximum
number of �ows the system can handle, is thus nmax = uc/ξ and the MBAC
algorithm can be written:

R̂ + ξ ≤ nmaxξ (2)

It is natural to separate the timescale into the rate level where the mea-
surements are done and the �ow level where the admission decision is made.
The measurements are taken by means of continuous observation and will be
discussed next.

3 Rate Level: Measurements and Measurement Error

The �ow rate process Xi(t) is observed continuously over the window and an
estimate of the mean, X̂i is then: [5]:

X̂i =
1
w

∫ w

0

Xi(t)dt (3)

This measured statistic varies with the window size according to [5]:

ζ2(w) =
2

w2

∫ w

0

(w − t)ρ(t)dt (4)

The aggregate rate process is also a stationary rate process. Conditioned on
being in state n, the aggregate mean is nξ. An estimate of the aggregate mean
is given by:

R̂ =
n∑

i=1

1
w

∫ w

0

Xi(t)dt (5)

When the number of �ows is large (say n > 30), the sum of the average over
the �ows will be close to a normal distribution thus R̂ ∼ N (nξ, nζ2(w)). This
assumption will be made here.
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The accuracy of this measurement can then be described by the 1− ε con�-
dence interval: R̂− z ε

2

√
nζ(w) ≤ nξ < R̂+ z ε

2

√
nζ(w), where z ε

2
is the (1−α/2)

quantile of the normal distribution.

It is intuitive to think that in order to achieve a certain measurement accuracy
all that is needed is to increase the window size. However in order for the above
estimate to hold, the requirement is that no �ows leave during the window, i.e.
the aggregate rate process is stationary with a known distribution. Otherwise
the actual estimate becomes incorrect. The �ow lifetime therefore sets an upper
limit for the window size.

The inaccuracy of the measurement translates into uncertainty in the admis-
sion decision process done at the �ow level and will be described next.

4 Flow Level and Performance Measures

Let new �ows arrive following a Poisson process with parameter λ. If the �ow
is accepted it stays in the system for a lifetime that is negative exponentially
distributed with mean 1/µ. A �ow that is not accepted by the MBAC is lost.
The o�ered �ow load is the Erlang load [6] denoted by A. This is the average
number of simultaneous �ows if there is no blocking given by:

A = λ · E(TL). (6)

With the assumption that R̂ ∼ N (nξ, nζ2(w)), if there are i �ows in the
system, a new arriving �ow will be accepted with a probability qi = P (R̂ + ξ ≤
nmax | N = i). We will assume that the arrival rate is such that the probability
of more than one �ow arrival per window is very small. The lost tra�c due to
multiple arrivals within the window is thus very small and can be neglected.

The number of �ows currently accepted by the MBAC follows a continuous
time Markov chain, see Fig. 1 and the probability that there are i �ows in the
system is:

P (i) =
Ai

i!

∏i−1
x=0 qx∑∞

j=0
Aj

j!

∏j−1
x=0 qx

(7)

i

λqi-1 λqi

nmaxμiμ (i+1)μ

nmax

λqnmax

nmax-1 nmax+1

λqnmax+1

nmax+1μ nmax+2μ

λqnmax-1

Acceptance Region Rejection Region

Fig. 1. State diagram of the number of sources accepted by the MBAC



MBAC: Impact of the Measurement Error on Key Performance Issues 5

In [7] a similar framework is de�ned, where the qis are based on the proba-
bility that the instantaneous rate measurements are above a threshold. However,
they do not specify how these measurements should be taken. Since the instan-
taneous rate is a random quantity without a true value, it can not be measured
[8]. This is where our work deviates signi�cantly from [7]. We study the measure-
ment error in isolation and the qis depend on how accurate the measurements
are.

Implied by (7) and as also discussed in [7], the distribution P (i) is indeed
insensitive to the distribution of �ow lifetime and only depends on the expected
�ow lifetime.

The system state space can be divided into two regions; the acceptance region,
N < nmax and the rejection region, N ≥ nmax see Fig. 1.

Rejecting a �ow when the system is in the acceptance region is a False rejec-

tion and accepting a �ow when the system is in the rejection region is a False

acceptance.
For assessing the performance and provisioning purposes, we de�ne the fol-

lowing �ow level performance measures:

� Probability of False acceptance, PFAcc, is the probability that an arriv-
ing �ow is accepted in the rejection region

PFAcc =
∞∑

i=nmax

P (i) · qi (8)

� Probability of False rejection, PFRej , is the probability that an arriving
�ow is rejected when it should have been accepted

PFRej =
nmax−1∑

i=1

(1− qi)P (i) (9)

� Blocking probability, PB , is the probability that an arriving �ow is re-
jected.

PB = PFRej + P (N ≥ nmax ∩ rejection) =
∞∑

i=1

(1− qi)P (i) (10)

� Carried useful tra�c, Auseful , is the expected number of �ows in the
acceptance region.

Auseful =
nmax∑
i=0

iP (i) (11)

� Carried useless tra�c, Auseless , is the expected number of �ows in the
rejection region.

Auseless =
∞∑

i=nmax+1

iP (i) (12)
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� Lost Tra�c, Alost , is the tra�c that is blocked from the network

Alost = APB (13)

If there are no measurement errors, the admission controller becomes ideal,
R̂ = R̄ and the distribution of �ows is then as for the Erlang Loss system. This
system only carries useful tra�c and arriving �ows will experience a the blocking

probability given by the Erlang B formula.

4.1 Flow load and window size limitations

Our de�ned framework only considers the �ow load A = λ/µ. When increasing
A, it is indi�erent if this is done by increasing the �ow lifetime 1/µ or increasing
the arrival rate λ. In reality this is not true. Many arrivals within a measurement
window will increase the blocking probability since the MBAC only admits at
most one �ow after a measurement update. Our model neglects this lost traf-
�c and simply assumes that the probability of more than one arrival within a
window is very small.

As explained in Section 3, the accuracy of the measurement itself will de-
crease if �ows leave during the measurement window. Clearly, for a constant A,
a longer measurement window can be used for long lifetimes (infrequent arrivals)
as compared to short lifetimes (frequent arrivals). In addition, what also must
be kept in mind is that a large window size will result in longer setup times as
an arriving �ow must wait for a measurement update before it can be accepted.

When determining a proper window size there are thus three factors to con-
sider: 1) The �ow arrival rate, 2) The �ow lifetime and, 3) The required con-
nection setup time. For the purpose of this study, the window size will not be
considered a design parameter and is the largest window possible while still
conforming to the model assumptions.

5 Provisioning

The QoS provided to the �ows can only be guaranteed as long as the number
of �ows is at or below nmax, thus admitting more than nmax �ows should be
avoided. If the probability of false acceptance is too high, a safeguard in terms
of a slack in bandwidth can be added to make up for the measurement errors.

As in Paper [5], let the safeguard have increments of size size lξ, 0 < l < nmax

and the re�ned admission control algorithm becomes:

R̂ + ξ ≤ ξnmax − lξ (14)

The critical situation arise as soon as the system reaches state nmax, where
accepting a �ow will result in the �rst false admission. With the condition that
the system is in state nmax we de�ne the conditional performance requirement:
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P (FAcc | N = nmax) = P (R̂ + ξ ≤ ξnmax | N = nmax) ≤ ε (15)

where ε is termed the conditional performance target.
For a given quantile and prede�ned window size, P (FAcc | N = nmax) can

be kept below the target if the number of levels is [5]:

l + 1 =
⌈√

nmaxζ(w)zε

ξ

⌉
. (16)

Where zε is the ε- quantile of the standard normal distribution The resulting
l can be used for provisioning the system.

Since the MBAC solely estimates the number of �ows through measurements,
l is independent of the system state and when there are i �ows in the system,
a new arriving �ow will be accepted by the MBAC, with a probability qi =
P (R̂ + ξ ≤ nmax − l | N = i).

The size of l controls the probability of entering the rejection region by forcing
the probability distribution towards left (Fig. 1). Obviously, if the slack is too
large, the MBAC becomes too pessimistic and resources are wasted unnecessarily.
The actual performance can be evaluated by means of the performance measures
de�ned in Section 4. To the customer, the performance measures of interest are
the blocking probability and the probability of false acceptance. The service
provider seeks to balance the carried useless tra�c and carried useful tra�c.

For a given �ow load the network can be provisioned to meet a desired
performance target. But what �ow load should be used?

The network should be dimensioned to ensure a small blocking probability
under normal loads, say PB < 0.01. At such low loads the probability of entering
the rejection region is very small and excellent QoS can be provided to all �ows.
The problem arise in times of excessive demand. With an ideal controller, when
the load increases above what is predicted the blocking probability increases to
unacceptable high values. However, the QoS to the already admitted �ows will
not be harmed. With MBAC on the other hand, also the probability of false
acceptance and useless tra�c increase with increasing loads. Reviewing work in
the MBAC literature, it is common practise to test the performance under heavy
�ow load, resulting in 50% blocking probability(e.g [1]) or in�nite load (e.g.[3]).

We do not attempt to answer, exactly what load to use for provisioning
purposes. The load must be relatively high, since the main task of MBAC is to
preserve QoS to its users when the load exceeds normal values [9]. Obviously at
such loads, the normal blocking probability ( e.g PB = 0.01) can not be met.

6 Case study using MMRP source models

In this section provisioning to ful�ll some prede�ned performance criteria will
be demonstrated with an example.

Let the �ows be modeled by a two-state Markov modulated rate process
(MMRP) which is a simple, yet realistic source model used to model both speech
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sources and video sources [10]. The MMRP process X(t) = rI(t) where I(t)
alternates between states I = 0 and I = 1 and r is the peak rate. The duration
of the 0 and 1 states follows a negative exponential distribution with mean 1/α
and 1/β respectively.

The variance of the time average of such a source is [5]:

ζ2(w) =
2r2αβ

w2(α + β)3

(
w − 1

α + β
(1− e−w(α+β))

)
(17)

In the following, α = β = r = 2, and ξ is then 1. The �ows have a QoS
requirement that can only be guaranteed as long as N ≤ nmax = 50.

First we shall show how the performance measures are impacted by variation
in the o�ered �ow load, A and without a slack in the bandwidth (e.i. l = 0)
Keeping the window size constant at w = 1, Fig. 2(a) shows how the performance
measures PFAcc, PFRej and PB are impacted by increasing loads. Low loads
will result in negligible false acceptance. Instead false rejections cause a slight
increase in blocking probability as compared to the ideal. At a load of about
A = 60, PFAcc = PFrej and then as the load increases PFAcc increases resulting
in a slightly lower blocking probability as compared to the ideal. As the load
increases towards in�nity PFAcc becomes zero. The reason for this is that the
system moves into the rejection region and will eventually only carry useless
tra�c. This is illustrated in Fig. 2(b) which shows that as the load increases the
carried useful tra�c approaches zero. Also shown is that for larger window sizes,
the MBAC approaches the ideal and the carried useful tra�c falls o� slower.
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(a) PFRej and PFAcc vs load
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Fig. 2. Probability of false acceptance as the load increase and the corresponding
Carried Useful Tra�c

Let the system be provisioned to handle a load of A = 100 and let the window
size still be w = 1. We are interested in �nding the required safeguard (number of
levels) needed to maximize the carried useful tra�c while keeping PFAcc < 0.01.

Increasing P (FAcc | N = nmax) translates into a decrease in number of levels
where l = 0 corresponds to the maximum value P (FAcc | N = nmax) = 0.4.
The performance plots shown in Fig. 3(a), 3(b), 3(c), and 3(d) illustrate the
tradeo� between blocking and accepting �ows when P (FAcc | N = nmax) is
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varied. Consider �rst the performance in the light of the customer. To ful�ll the
requirement of PFAcc < 0.01, Fig.3(a), shows that P (FAcc | N = nmax) < 0.17.
At this value the blocking probability is about 5% larger than for the ideal.

For the service provider, the concern is false rejections and useless tra�c.
As P (FAcc | N = nmax) increases, false rejections fall o� ( see Fig. 3(b))
and the useless tra�c increases (see Fig.3(c)). Observe in Fig.3(d) that a value
P (FAcc | N = nmax) = 0.15 maximizes the carried useful tra�c. Reducing
the value and the admission controller becomes too strict due to the increase
in PFRej . Increasing the value passed this point on the other hand and the
admission controller accepts too much useless tra�c. In this case, using P (FAcc |
N = nmax) = 0.15, also ensures that PFAcc < 0.01. The required levels can then
be found using (16) and will thus be l = 4. Using a higher �ow load A and the
value P (FAcc | N = nmax) = ε which maximize the carried tra�c will decrease
resulting in a larger required safeguard. For example, using the extreme load of
A = 1000 results in l = 9. Decreasing the load, will have the opposite e�ect, and
eventually as the load is reduced further, the maximum will be reached for an ε
where no safeguard is needed.
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Fig. 3. The performance measures as P (FAcc | N = nmax) varies for A = 100 and
w = 10 a)Probability of false acceptance, b) Probability of false rejection and overall
blocking probability, c) Carried useless tra�c and d) Carried useful tra�c
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7 Conclusion

This current work gives an in-depth understanding of how measurement uncer-
tainties and �ow dynamics impact the MBAC admission decision. An MBAC
algorithm, no matter how advanced, is of little use if the measurement errors are
not taken into account. These errors translate into uncertainty in the decision
process. The degree of uncertainty abates with the length of the observation
window. Despite the heavy reliance on measurements, there is in the literature
of MBAC, surprisingly very limited work focusing on the impact of the measure-
ment error and how it a�ects the admission decision.

The probability of false admissions can be reduced by adding a slack in
bandwidth. However, if the slack is too large, �ows are blocked unnecessarily.
With some appropriate performance measures, we showed how the system can
be provisioned to meet a prede�ned performance criteria.

In this work, we assumed that the �ows were homogenous, however in a
separate work we have developed the analytical tools needed to extend this
work to the non-homogenous case.
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