
A Framework with Proactive Nodes for Scheduling and

Optimizing Distributed Embedded Systems

Adrián Noguero1, Isidro Calvo2

1 European Software Institute,
Parque Tecnológico de Zamudio, #204, 48170, Zamudio, Spain

adrian.noguero@esi.es

2 DISA (University of the Basque Country),

E.U.I. de Vitoria-Gasteiz, C/Nieves Cano, 12, 01006

isidro.calvo@ehu.es

Abstract. A new generation of distributed embedded systems (DES) is coming

up in which several heterogeneous networked devices execute distributed

applications. Such heterogeneity may apply to size, physical boundaries as well

as functional and non-functional requirements. Typically, these systems are

immersed in changing environments that produce dynamic requirements to

which they must adapt. In this scenario, many complex issues that must be

solved arise, such as remote task preemptions, keeping task precedence

dependencies, etc. This paper presents a framework aimed at DES in which a

central node, the Global Scheduler (GS), orchestrates the execution of all tasks

in a DES. The distributed nodes take a proactive role by notifying the GS when

they are capable of executing new tasks. The proposed approach requires from

the underlying technology support for task migrations and local preemption at

the distributed nodes level.

Keywords: Distributed embedded systems, Framework, Reconfigurable

Architectures, Middleware

1 Introduction

Nowadays, there is a clear trend in the software industry to create distributed

systems from already designed components. This trend, which is especially relevant

in the embedded systems industry, has promoted the use of middleware technologies

such as Java-RMI, CORBA/e, CORBA-RT, ICE, DDS or even SOA architectures.

Indeed, distributed computing has proven its added value especially in some

application domains, such as multimedia telecommunications, manufacturing,

avionics or automotive [1], [2].

Typically, middleware technologies abstract the details of underlying devices

facilitating the creation of distributed applications by providing uniform, standard,

high-level interfaces to developers and integrators. Another objective of middleware

technologies is supplying services that perform general purpose functions in order to

avoid duplicating efforts and facilitating collaboration among applications. This paper

sticks to the second objective. Namely, it presents a middleware framework for DES

aimed to manage the deployment and execution of a set of tasks in a set of distributed

nodes, so the time requirements of the overall system are met and the use of the

resources of the distributed nodes is optimized (e.g. CPU, volatile / non-volatile

memory or battery). The proposed framework allows deploying tasks to the nodes in

run-time for achieving a better overall optimization.

The framework uses a set of entities, namely the Global Scheduler (GS) and the

Remote Servers (RS), which provide the infrastructure to execute the tasks at the

distributed nodes. In particular, the GS orchestrates the execution of all tasks at the

DES according to scheduling and optimization policies implemented as pluggable

components. The RS act as local managers responsible for executing application tasks

at the distributed nodes.

Even though typically DES must be configured at start-time, the framework allows

dynamic reconfigurations of the system at run-time, providing a certain degree of

flexibility and adaptability to changing requirements. These reconfigurations include

modifications of both functional requirements at run-time, such as updating the

executable code of the applications, as well as non-functional requirements, such as

changing QoS parameters or introducing new nodes or removing existing ones

without impacting the functionality of the system. These characteristics, which allow

optimizing the computational load of a distributed system by adding or removing

tasks from the system without changing the underlying hardware, may be applicable

in certain application domains such as distributed multimedia applications or home

automation, in which changing the hardware may become a complex issue.

A centralized scheduling approach has been selected for the sake of flexibility

since concentrating all the information of the system in one single node facilitates the

coordination of the distributed nodes. However, this approach has some drawbacks

since a single GS may become a critical point of failure. In the future the authors

intend to introduce replicated GS in the framework for improving fault tolerance.

The layout of the paper is as follows: section 2 presents a description of some

relevant works on this topic; section 3 describes the proposed software architecture;

and lastly, in section 4 some preliminary conclusions are drawn and the future work

on the topic is described.

2. Related Work

The implementation of DES has been a very important research topic in the last

decades. Examples of early investigations on the field can be found in [3] and [4],

where some of the first solutions applicable to DES were described.

More recent works on the field have explored the implementation of complex

scheduling frameworks for distributed systems on top of popular middleware

architectures, such as CORBA or Java RMI. Their main advantage lies in the

flexibility and the implementation simplicity provided by the middleware layers,

which enables developers to abstract from low level details of the distributed system,

such as communication protocols, operating systems, etc. These works vary in vision

and scope. For example, references [5] and [6] focus on the timing requirements of a

DES, providing a framework able to orchestrate task activations in time and,

therefore, allowing DES designers to easily decouple the execution of periodic tasks

that make use of the same resources. Other works, such as [7] and [8] implement

control loops to change the timing characteristics of the distributed tasks in order to

achieve schedulability and improve the overall performance of a DES. Lastly, some

works focus on specific characteristics of DES, such as the management of aperiodic

tasks, admission control strategies or task migrations strategies [9] [10].

The framework proposed in this paper addresses some of the same objectives as

previous works, but it introduces some innovative aspects. Firstly, the proposed

framework aims at merging scheduling and resource optimization in the same DES

structure. Secondly, it follows a different approach based on proactive distributed

nodes, instead of reactive nodes fully dependent on the decisions of a global

scheduler. Also, the proposed framework allows dynamic reconfigurations in run-time

(e.g. changes on the number of nodes in the DES, software updates in the code of the

tasks or changes in the tasks parameters). Finally, the proposed framework includes

mechanisms to manage some of the complexities of DES, namely, precedence

dependencies between tasks and remote preemptions.

3. Framework description

The proposed framework is composed of two component types: one Global

Scheduler (GS), responsible for deploying and activating the tasks according to a

predefined application graph (see Fig. 1) as well as an optimization criterion and

several Remote Servers (RS), which encapsulate the distributed processors and

execute the tasks. In this work applications are defined as the execution of a set of

tasks following an application graph. As shown in the figure the tasks that compose

an application may be executed in different nodes, being migrated from a node to

another following to the decisions of the GS. Tasks are encapsulated with a special

structure, known as Task Wrapper (TW), which contains not only the executable

code, but also a set of parameters that characterize them.

Fig. 1. Example graph of an application

Due to its characteristics, the nodes hosting the components of this framework

must meet the following requirements:

• Task migration. The target software platform must support task migration

between different nodes of the system. This can be achieved by explicitly

sending the executable code of the application to the nodes of the system (e.g.

by using Java serialization). Sometimes, this restriction can be relaxed,

reducing the flexibility of the framework, by previously deploying the tasks at

the distributed nodes so they are activated by the central node.

• Local schedulers. In order to implement remote preemptions the framework

requires the use of preemptive local schedulers. This role may be assumed

either by a local preemptive OSs, or by dedicated local schedulers which must

be able to preempt local tasks when required by the framework.

Any DES whose nodes meet the latter requirements is candidate for the

implementation of the proposed framework. Task migrations may represent a

considerable overhead when the required execution times of the tasks are similar to

their migration times. Hence, the framework is applicable to applications where the

execution times are much longer than migration times. Possible target applications

may be found in the multimedia applications domain. As a matter of example, a Java

based intelligent surveillance system formed by different types of nodes such as IP

cameras, network video recorders, control centers and video analysis and streaming

nodes, could be candidate for applying this approach since Java technology allows

task migration via object serialization and the distributed nodes are capable of using

local schedulers. Also, this kind of system requires an extensive use of CPU that may

justify task migrations. Moreover, the optimal use of physical resources, such as CPU,

memory or battery, justifies the implementation of optimization policies to improve

the overall performance of the applications.

3.1 Functional overview

Briefly, the proposed architecture works as follows. The GS activates the tasks that

compose the applications and orders them according to the application graphs and the

scheduling and optimization policy. Since the GS is in charge of the activation of the

periodic tasks, it needs a global timing reference for the whole DES, which defines a

minimum granularity of the invocations at the DES. This timing reference unit will be

called the Elementary Cycle (EC) and it will described below.

RS abstract the distributed processors in charge of executing tasks. Whenever an

RS completes the execution of all assigned tasks, it notifies the GS its availability

with a WorkCompleted message as depicted in Fig 2. The GS reacts by selecting the

next task in the queue and deploying it to the free RS.

Deploying a task to an RS typically involves migrating a task from the GS to this

RS; however, since task migrations have a great impact on the overall performance of

the framework each RS is equipped with a sort of cache memory. So, depending on

the status of the cache of the target RS, the GS may carry out three different

deployment types. If (1) the deployed task is not in the cache of the target RS and it

has enough memory for holding the new TW a regular deployment is performed and

the TW object is physically transmitted to the RS. Else, (2) if the deployed TW is

already in the cache of the target RS, the TW object is not sent; instead, the GS only

sends the input parameters to run the task. Lastly, (3) if the deployed task is not in the

cache of the target RS and it has not enough memory to keep it, an overwrite

deployment takes place. In such case, the TW is sent to the RS, and it overwrites an

older TW from the cache of the RS to store the new task.

To implement this functionality the GS keeps a set of ordered task queues,

associated to every RS of a DES, that are updated when changes are produced. After

each update, the task located in the first position of the queue is considered by the GS

as the highest priority task to be deployed to the RS associated with that queue.

Fig. 2. Overview of the proposed architecture

Often, distributed applications are formed by a combination of tasks that are

executed in a concrete sequence. This implies that every task may have one or several

predecessors and successors. Tasks may also require inputs from other tasks to

perform their work. This information is modeled in the GS by an application graph

which is built from the TW. The GS uses it in run-time to compose the applications

and to select the more appropriate nodes for optimizing the use of the resources

according to the selected criteria. The communications between a task and its

successors are centralized by the GS which receives the outputs of the completed

tasks from the RS and hand them over as inputs to the next tasks in the graph.

Predecessor and successor tasks along with input and output elements are included in

the TW structure, as it will be further explained along with the system

characterization.

The proposed framework assumes that tasks can be executed in any RS of the

DES; however there will be cases in which some tasks will only be executable in

certain nodes, e.g., when a specific library or hardware is required. The framework

proposes the use of node bindings for modeling these requirements that will specify

the list of nodes where a task may be executed.

In order to achieve a soft real-time behavior, it is necessary to implement a remote

task preemption mechanism. The proposed framework relies on the local schedulers

of the distributed nodes to implement a simple preemption mechanism. Preemptions

are triggered by the GS when a critical situation is detected, that is, when the laxity of

a task, defined as its time to deadline minus its remaining execution time, becomes

too short. If so happens the GS triggers a special deployment routine called

PreemptionDeployment, which deploys the critical task to a non-free RS. This kind of

deployment stops the running task and executes the newly deployed one.

One of the key benefits of the proposed framework is its high level of dynamism.

The GS provides a reconfiguration interface to dynamically add, remove or change

the tasks in the system. The GS is equipped with an admission control system to

prevent changes that could lead the system to unschedulable situations. This approach

allows changes in the applications ensuring certain QoS parameters.

Certain characteristics of the presented framework have direct implications in its

behavior. For example, the authors have chosen a centralized approach because it

provides more flexibility and higher scalability even though it may reduce fault

tolerance. In future works the authors will introduce replicated GS in order to improve

fault tolerance. Task migrations are also a key challenge since they may affect

negatively the performance of the system. In future works the authors will quantify

the impact of task migrations if different scenarios. Lastly, the presented framework

does not consider shared resources dependencies among tasks as this issue can be

worked around splitting the tasks and using precedence dependencies.

3.2 System characterization

The middleware framework described in the previous section requires keeping in

memory a model of the tasks in the DES. Indeed, both the GS and the RS use a

special structure to abstract the concept of a task, the Task Wrapper (TW). A TW not

only models the task timing characteristics and precedence dependencies but also

contains the logic of the application. Fig. 3 depicts this structure using UML notation

and Java-like types for simplicity.

Fig. 3. Characterization of the Remote Servers and Tasks

The proposed task model requires a unified timing reference to be used in the

entire DES. For the sake of consistency, all time measurements have been referred to

an abstract time unit, the Elementary Cycle (EC), which is defined in a centralized

way in the Global Scheduler as the minimum time between two subsequent task

activations and specifies the time granularity of the system. The EC must be

configured during the start-up phase of the GS and it cannot be modified by any

means in run-time. As a consequence, all the timing parameters of the TW model are

referred to this parameter.

The task model is composed by the following parameters per TW:

• Task identifier. Used to identify univocally a task in the distributed system.

• Timing parameters. This set of parameters characterizes the timing properties

of a TW. They are all defined as integer multiples of the EC. These parameters

include: period, deadline, offset and worst-case execution time (wcet). Note

that the wcet parameter is referred to a node with a unitary speed factor as

detailed in the RS description section below.

• Precedence graph management parameters. This group of parameters

includes information related to the application graph such as predecessors,

successors, input data (inputs) and outcomes (outputs) of one task. The GS

uses these parameters to build the precedence graph in order to activate the

tasks in the graph in order and manage the inputs and outputs involved.

• Bound to nodes. This parameter is used to attach one TW to a specific node or

list of nodes. It may be used when a node owns a specific hardware resource or

software component (e.g. a library) required for the execution of a task.

The framework also requires the GS to keep information about the status of the RS

in the DES, since this information is essential for applying optimization policies.

Therefore, the GS maintains a model in memory that represents the DES using a

RemoteServer data structure per RS (also included in Fig. 3). Regarding the RS

model, the following parameters are considered:

• Node identifier. Integer value that identifies univocally an RS in the

distributed system.

• Physical parameters. Namely speedFactor, maximumTaskWrappers,

deployedTaskList, battery and volatile / non-volatile memory. This group of

parameters models the physical status of an RS. They are used to implement

optimization policies in the GS. Special attention should be given to the

deployedTaskList parameter, since it keeps a record of the current status of the

cache of each RS. Also, the speedFactor parameter models the actual

processing power of a node, compared with a reference node with a unitary

speed factor.

3.3 Structure of the Global Scheduler

As shown in Fig. 4 the GS is a modular entity composed by four active

components; namely (1) Activator, (2) RSInterface, (3) ReconfigurationInterface and

(4) PreemptionManager. Along with these components the GS also uses several data

structures that represent the current status of the DES.

For each connected RS, the TaskQueuesManager (see element #5 of Fig. 4) keeps

an ordered queue with all the tasks that must activated at that node. These tasks are

ordered according to a scheduling policy and then, the ordering is refined according to

an optimization policy. A reordering is committed every time a new task is placed in a

queue. As shown the figure, the framework is open to be used with different

scheduling policies such as RMS, EDF or MUF, which are connected to the queues as

pluggable components. Similarly different optimization policies can be connected to

the queues.

Additionally, the GS maintains a SystemModel (element #6), which is a data

structure updated every EC by the Activator (element #1). This model is used to keep

track of the remaining times for the next activation of each periodic task, the current

laxities of the active tasks and the current status of the connected RS.

Apart from updating the SystemModel, the Activator is in charge of adding the

tasks activated every EC to the queues. Therefore, it also manages the precedence

dependencies between tasks.

All communications between the GS and the RS are handled via the RSInterface

(element #2). Additionally, whenever the RSInterface receives a WorkCompleted

message from any RS, it is the RSInterface itself who deploys the next task in the

queue to the requesting RS and updates the SystemModel accordingly.

Users and applications may interact with the GS to require dynamic

reconfigurations at runtime through the ReconfigurationInterface (element #3). This

interface allows changes in the task parameters (period, deadline, etc.) as well as

adding or removing tasks to the system. All changes are recorded in the SystemModel;

however, before any changes are committed this component executes an admission

control test that checks whether the new configuration is feasible. This functionality is

provided by a pluggable component that may be exchanged to use different admission

policies.

Fig. 4. Structure of the Global Scheduler

Finally, the GS implements a PreemptionManager (element #4) module whose

objective is to prevent tasks from missing their deadline. It uses the tables in the

SystemModel to detect potential deadline misses. Should any problems be detected,

the PreemptionManager would instruct the RSInterface to activate a preemption

deployment routine to one or more RS.

3.4 Structure of the Remote Servers

An RS is an entity that manages only one processor of the DES (see Fig. 5). The

main role of an RS is to execute the tasks deployed by the GS and, when all assigned

tasks are completed, declare its availability to the GS via a WorkCompleted message.

Communications with the GS are handled via the GSInterface component (element

#1). When a new TW is received it is stored in the DeployedTaskList (element #3).

This element plays a similar role to the caches in processors, allowing the GS to

reduce deployment times when a TW is already loaded in an RS, and improving the

overall performance of the framework. TW are executed by the TaskExecutor

component (element #2), which is capable of starting, stopping and resuming the

execution of a TW and sends the WorkCompleted messages to the GS with the results

of each task when they are completed. It also implements a mechanism that allows

preempting a TW in execution with another. When an RS receives a preemption

deployment message the TW in execution is put in the PreemptedTaskList (element

#4) and the TaskExecutor starts the execution of the new task. When the latter task

terminates its execution, the task executor notifies the GS with a special

TaskCompleted message which includes the results of the completed task to the GS to

be handed over to successor tasks, and continues to work until all tasks in the

PreemptedTaskList have been executed.

Fig. 5. Structure of the Remote Server (RS)

4 Conclusions and Future work

This paper presents a middleware framework for DES that supplies a set of

services aimed to manage the deployment and execution of a set of tasks in a set of

distributed nodes, so the time requirements of the overall system are met and the use

of the resources is optimized according to different criteria (e.g. use of CPU, memory

or battery). In particular, it provides a timing reference for the whole DES, support for

executing in order the tasks of a DES, a certain degree of dynamism in run-time to

adapt to changing requirements (e.g. task parameters, code updates) and a

reconfiguration interface to require these changes. This framework is aimed at DES

that allow task migration and that may use local schedulers at the nodes. It uses a

central modular component (known as GS) that orchestrates the system, another

component type (RS) to abstract the individual processors involved in the DES and a

special structure that abstracts the concept of task (TW). The GS is built in a modular

way so the designers of the applications may easily choose from different scheduling

and optimization policies the one that suits best to their applications.

In the future the authors will introduce replicated GS in the framework to improve

fault tolerance and will evaluate the performance of the framework as well as its

behavior using the real-time Java implementation. Special care will be taken

regarding task migration costs and memory consumption issues.

Acknowledgments. This work has been supported by the ARTEMIS JU through the

iLAND project 2008/10026, the Basque Government through the TEReTRANS

project IE08-221 and by the University of the Basque Country (UPV/EHU) through

grant EHU09/29.

References

1. OROCOS, “The OROCOS project – Smarter control in robotics and automation”,

Available at: http://www.orocos.org/

2. Real-Time CORBA with TAO, “ACE and TAO success stories”,

http://www.cs.wustl.edu/~schmidt/ACE-users.html

3. S. Levi, S. K. Tripathi, S. D. Carson, A. K. Agrawala. “The MARUTI Hard Real-Time

Operating System”, SIGOPS Operating Systems Review, Vol. 23, Is. 3, pp. 90-105, 1989.

4. J.A. Stankovic, K. Ramamritham, M. Humphrey, G. Wallace, “The Spring System:

Integrated Support for Complex Real-Time Systems”, International Journal of Time-

Critical Computing Systems, Vol 16, pp. 223-251, 1999.

5. I. Calvo, L. Almeida, A. Noguero. “A Novel Synchronous Scheduling Service for

CORBA-RT Applications”, Proceedings of the 10th IEEE International Symposium on

Object and Component-Oriented Real-Time Distributed Computing, ISORC07, pp 181-

188, 2007

6. P. Basanta-Val, I. Estévez-Ayres, M. García-Valls, L. Almeida. “A synchronous

scheduling service for distributed real-time Java”, IEEE Transactions on Parallel and

Distributed Systems, Accepted for future publication, 2009.

7. X. Wang, C. Lu and C. Gill. “FCS/nORB: A feedback control real-time scheduling

service for embedded ORB middleware”, Microprocessors and Microsystems, June 2008.

8. V. Kalogeraki, P. M. Melliar-Smith, L. E. Moser, Y. Drougas. “Resource management

using multiple feedback loops in soft real-time distributed object systems”, The Journal

of Systems and Software, Vol. 81, pp. 1144-1162, 2008.

9. Y. Zhang, C. Lu, C. Gill, P. Lardieri, G. Thaker. “Middleware Support for Aperiodic

Tasks in Distributed Real-Time Systems”. Proceedings of the 13th IEEE Real Time and

Embedded Technology and Applications Symposium RTAS, pp. 113-122, 2007.

10. Y. Zhang, C. Gill, C. Lu, “Reconfigurable Real-Time Middleware for Distributed Cyber-

Physical Systems with Aperiodic Events”, Proceedings of the 28th International

Conference on Distributed Computing Systems ICDCS08, pp.581-588, 2008.

