
Enhancing Collaborative Intrusion Detection

Methods Using a Kademlia Overlay Network

Zoltán Czirkos and Gábor Hosszú PhD

Department of Electron Devices, Budapest University of Technology and Economics,
Magyar tudósok körútja 2, Building Q, section B, 3rd floor

Budapest, H-1117, Hungary
czirkos, hosszu@eet.bme.hu

Abstract. The two important problems of collaborative intrusion de-
tection are aggregation and correlation of intrusion events. The enormous
amount of data generated by detection probes requires significant net-
work and computational capacity to be processed. In this article we show
that a distributed hash table based approach can reduce both network
and computational load of intrusion detection, while providing almost
the same accuracy of detection as centralized solutions. The efficiency of
data storage can be improved by selecting Kademlia as the underlying
overlay network topology, as its routing can easily adapt to the dynamic
properties of such an application.
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1 Introduction

In the early days of the Internet, all communication was built upon trust among
users. However, with e-commerce emerging and the number of hosts connected to
the network increasing to tens and hundreds of millions, serious security concerns
came into prominence: sensitive information stored on-line makes hosts a target
for a wide range of attacks.

Attacks, being both manually and automatically controlled, have become
ever more sophisticated, originating from multiple entities or targetting multiple
hosts. Various worm programs replicate themselves to spread malicious code
to vulnerable systems, or scan network nodes to find vulnerabilities. Others
compromise hosts of home users to build botnets, to deliver spam e-mail to
addresses collected from the web or other infected users’ mail applications or to
carry out distributed denial of service attacks. These are usually referred to as
large-scale coordinated attacks. Sophisticated attacks are generally problematic
to detect as the pieces of evidence are spread across multiple hosts. In order
to recognize such attacks, one has to aggregate (collect) the evidence as well as
correlate (analyze) the pieces collected from different subnetworks. This poses
various communication related problems.
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In this paper we present a distributed intrusion detection system, which
organizes its participants to a peer-to-peer (P2P) based distributed hash table

(DHT) using the Kademlia topology [5]. This overlay network is used to store
intrusion detection data with balancing the load of storage of intrusion data and
correlation of events amongst its nodes. The network traffic generated by the
system is considered, and the implications of using different DHT topologies are
discussed.

The rest of this paper is organized as follows. In Section 2, we first review
existing research of distributed intrusion detection systems. We present the ar-
chitecture of our distributed intrusion detection system based on the Kademlia
DHT in Section 3. The results of the intrusion detection method and statistics
of detection are highlighted in Section 4. Research is concluded in Section 5.

2 Related Work

Attackers, having different goals, use various approaches for intrusion of com-
puter network systems. These leave different tracks and evidences, called the
manifestation of attacks [11], and require different methods to detect. In the
following, the terms below are used for discussion [6]:

Attacks Real intrusion attempts, which are used to gain access to a host or
disturb its correct functioning.

Events Primary intrusion detection data generated by probes. These events are
not necessarily attacks by themselves, but can be part of a complex attack
scenario.

Several types of large-scale attacks can only be detected by collecting and cor-

relating events from a number of detector probes. The collection of evidence has
to be extended to primary events as well. To achieve this, various collaborative
intrusion detection systems (CIDS) have been proposed, for which an extensive
overview can be found in [21].

2.1 Centralized and Hierarchical Approaches

The earliest collaborative detection systems were centralized. The advantage of
centralization is that a single server receives and processes all data that can be
gathered, e.g. it has all the information necessary to recognize the attack. How-
ever, the approach has two disadvantages: scalability and having a single point of
failure (SPOF). The high amounts of data to be collected and correlated cannot
be handled for large networks by a single server. Moreover, this correlation server
is a possible target for shutting down the entire intrusion detection system.

The Internet Storm Center DShield project collects firewall and intrusion
detection logs, either automatically or by manual upload from users. The log
files are then analyzed centrally. The NSTAT system [10] is more advanced in
the sense that it is automatic and real-time. In this system the detection data
is filtered and preprocessed before being sent to a central server for correlation,
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Fig. 1. Intrusion detection with centralized collection and correlation of data from var-
ious probes. Every piece of information is sent to a server which handles the correlation.

as seen on Figure 1. The order of events are then analyzed using using a state
transition mechanism with predefined scenarios.

Correlation can be carried out by using various methods. SPICE [17] and
CIDS [20] group events by their common attributes. The LAMBDA [3] system
aims to fit detected events, which are described using a common language, into
pre-defined and known scenarios. The JIGSAW system [16] maps prerequisites
and consequences of events in order to find out their purposes.

The DOMINO system can be used to detect worm activity. It is built on
an unstructured P2P network with participants grouped into three levels of
hierarchy [19]. The nodes on the lowest level generate statistics only hourly or
daily, so they induce small network traffic.

The PROMIS protection system (and its precedessor, Netbiotic) uses the
JXTA framework to build a partially decentralized overlay network to share
intrusion detection data [18]. The nodes of this system generate information
for other participants about the number and frequency of detected events. This
information is used to fine-tune the security settings of the operating system
and the web browser of the participants. While this method creates some level
of general protection against worms, it also decreases the usability of the systems.

The Indra system is built on the assumption that attackers will try to com-
promise several hosts by exploiting the same vulnerability [8]. If any of these
attempts get detected by any participant of the Indra network, others can be
alerted. Participants of this system can therefore enhance their protection against
known attackers, rather than developing general protection.

2.2 Intrusion Detection Based on P2P Networks

The scalability and SPOF problems of centralized solutions can be solved by
using structured P2P application level networks [2]. These enable one to reduce
network load compared to the hierarchical networks presented above.

The CIDS system [20] uses the Chord overlay network [15] for implementing
a publish-subscribe style application. Nodes of this system store the attacker
IP addresses in a list, and they subscribe in the network for events of these
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addresses. If the number of subscribers to a given IP address reaches a predefined
threshold, they are alerted of the possible danger. The Chord network ensures
that the messages will be evenly distributed among the participants. However,
the instability of Chord under churn [12], and IP address blacklist being the only
correlation method used in CIDS does not allow its wide deployment.

3 The Komondor System Architecture

In this section we present our novel intrusion detection system named Komon-

dor. The most important notion of this system is that it uses the DHT named
Kademlia [13] to store intrusion data and to disseminate information about de-
tected intrusions. The purpose of the overlay is the efficient detection and quick
dissemination of alerts: when the analyzing of the collected events indicates the
fact of an attack, the Komondor nodes start an alert procedure notifying other
nodes of the possible danger.

3.1 Distributing Load Among Multiple Correlacion Units

The Komondor application level network consists of multiple nodes. All nodes
have the responsibility to collect and correlate intrusion data and to report at-

tacks discovered to other nodes of the network. This means that all participants
of the Komondor network can serve as intrusion detection units and correlation
units as well. When replacing the central correlation server with a number of
correlation units, care must be taken to ensure that:

– pieces of intrusion evidence which are correlated must be sent to the same
correlation unit, so that it can gather all the information about the attack,
and that

– pieces which are part of different ongoing attacks should preferably be sent
to different correlation units.

The latter balances load among the units and improves the overall reliability
of the system. Komondor achieves the above by assigning keys to preprocessed

intrusion data, as seen on Figure 2. Keys are used as storage keys in the DHT. For
different attackers or attack scenarios, a different key is generated, and data is
therefore stored at different nodes. Pieces of evidence which might be correlated
to each other must be assigned the same key, and by that sent to the same
Komondor node for correlation.

The Komondor system has a middle layer inserted into the intrusion detec-
tion data path shown on Figure 1. The nodes of the DHT act as correlation
units, which can implement the same correlation methods as their centralized
versions. However, correlation starts as soon as the preprocessing stage, where
events are tagged with a key in conformance of the correlation method used, and
the key is used for sending the attack report to the correct correlation unit.

The structured overlay therefore has the advantages of distributed and cen-
tralized detection systems as well. Event data collected is generally sent to a
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Fig. 2. Distributed collection and distributed correlation of intrusion evidence from
various probes. The Komondor system assigns keys to pieces of evidence so that data
can be stored efficiently in a distributed hash table. By using these keys, computational
load of correlating can be distributed among several units.

single collector node only (this would not be possible with an unstructured over-
lay, as those cannot have global rule to map a key to a node.) Moreover, when
Komondor nodes are under multiple but independent attacks, the network and
computational load of both aggregation and correlation is distributed among
nodes. The system has no single point of failure, as the overlay will reconfigure
itself when a node quits or becomes unreachable. The structured overlay can
also be used to disseminate other type of information as well, for example the
attack alerts which enable node create protection.

3.2 Selection of Keys in the Komondor System

The accuracy of detection, also network and computational load balancing de-
pends on the proper selection of keys. Detection efficiency can be increased by
assigning more keys, and sending evidence to multiple correlation units, should
an event be suspected to be a candidate for being part of different attacks or
attack scenarios. However, every subsequent key assigned increases network load
as well.

In order to select the correct keys, the inner working of correlation methods
has to be known. For every attack method and scenario, a different key selection
mechanisms are feasible. Consider the network scan types, as categorized in [19]:

Horizontal port scan Different hosts are scanned by a attackers, but the port
number is the same. In this case, a blacklist of attackers can be built using
the collection and correlation of detected attempts. The key for collection of
events should be the identifier of the vulnerability.

Vertical scan A single host is under attack. The attack originates from a single
host, too. If this is the case, the attacker is known and hosts can protect
themselves against it, should it try to attack another host to be protected.
The key is the IP address of the attacker.
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Mixed mode scan Multiple attackers use their network capacity to launch an
attack against a single host or a subnetwork. This is the usual scenario for
the DDoS (distributed denial of service) attacks. The key for the evidence
storage in the DHT in this case is the subnetwork address attacked. By
analyzing the data collected in this scenario, hosts can automatically detect
the fact of the network scale attack, e.g. they can discover that the problem is
not only related to a single host but a complete subnetwork or organization.

3.3 Kademlia as the DHT Topology of Komondor

The nodes of Komondor create a Kademlia based DHT overlay network. This
is the topology, which can adapt its routing tables to the dynamic properties of
traffic generated by the intrustion detection module.

Event data stored in the overlay can generate significant overlay traffic that
may load nodes along the path from the detector to the correlator node as well.
However, if the events are in correlation with the same attack, the key is likely
to be the same. The distribution of keys in store messages is therefore highly
uneven. By using Kademlia, network traffic can be significantly reduced in this
scenario. The reason for this is that any arbitrarily selected node can be inserted
to the routing tables of any other Kademlia node while still conforming the rules
of the Kademlia protocol. Routing tables of other DHT overlays like CAN or
Chord are much more rigid, and therefore the routing algorithm of those cannot
optimize store requests with the same key sent in a short time.

Table 1. Number of messages in structured overlays for intrusion detection

Overlay Chord Kademlia

Node lookup 0 O(log
2
N)

First event stored O(log
2
N) O(1 + log

2
N)

n events with the same key O(n · log
2
N) O(n+ log

2
N)

Number of messages per event O(n · log
2
N)/n O(n+ log

2
N)/n

Messages per event with n → ∞ O(log
2
N) O(1)

Table 1 compares the number of messages generated by the intrusion detec-
tion. In Chord, messages are forwarded by helper nodes in the overlay along the
path from the source to the destination of the message. On the other hand, in
Kademlia the storing of a 〈key; value〉 pair by a node is started by first looking
up the IP address of the destination node by successively querying nodes closer
to the destination. After finding out its address, data is sent directly from the
source and the destination. This also implies that the 〈key; value〉 pair to be



Enhancing Collaborative Intrusion Detection Methods 7

stored (e.g. the payload of the message) is contained in every message of Chord,
and only in the last message of Kademlia.

To store a detection event in Chord, the number of messages generated in
the overlay would be in the order of log

2
N , where N is the size of the overlay.

For Kademlia, the looking up of the address of the destination also takes log
2
N

messages. The payload requires one more message (+1). However, if multiple
events have to be stored which are detected by the same probe, the lookup
procedure can be optimized away, as the key and therefore the collector node is
the same, too. For sending data of n events, the number of messages generated
is only n+ log

2
N for Kademlia and n · log

2
N for Chord, which is worse at the

factor of n for the latter one. The limit of messages per event will drop to 1 for
Kademlia in this scenario.

3.4 Overlay Services Used by Komondor and the Effect of Churn

The Komondor system uses no data lookup in the DHT as other applications do,
only the data store mechanism is used. Stored events are never looked up, rather
the node storing them has to process incoming events to recognize attackers.
The collector nodes have the responsibility to start a broadcast if an attack
is recognized. The topology of the overlay can be used to send the broadcast
message to all nodes in a time frame that is logarithmically proportional to the
size of the overlay network [4].

As with other P2P systems, node churn can degrade the performance of the
application: detection accuracy might decrease in the event of a collector node
disappearing from the overlay network. However, considering the typical key
patterns generated by attacks and used in the intrusion detection, the effect of
churn can be minimized for the case when a node deliberately and gracefully
quits the overlay network, or when a new node appears in the system.

A node intending to quit might store intrusion detection data, which must
be transferred to its neighbors before leaving the overlay. As the unhashed keys
of the events are known by this node, it can recalculate the distance of the keys
to other known nodes in the NodeID address space, and remap them to other
nodes in the system, as described in [9].

The keys remapped might originate from different nodes. Those nodes, hav-
ing looked up the IP address to the node currently quitting, have cached that
information for the lookup request optimization. As the node currently quitting
is the closest node to those keys, the source nodes of these events must be noti-
fied, in order to inform them that the IP address of the quitting node is to be
cleared from the cache. A new lookup request is to be started by them before
sending any further data.

The same procedure can be applied to newly joined nodes. As described
in [13], new nodes are put into the routing tables of their closest neighbors.
These must recalculate the distance of their stored events’ keys to the NodeID
of the new node. If any of those are closer to the new one, the key must be
remapped, and the source node of those events must be notified to send data to
the newly joined node rather than the one previously cached for that key.
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4 Results and Discussion

In this section we present statistics of intrusion attempts detected using the
implemented Komondor system. The statistics are evaluated to show, which
types of attacks this system can be used to detect.

4.1 Network and Computational Load Balancing

The Komondor reference implementation used a similarity based correlation
method, using the source IP address of offending packages as a key. The pri-
mary events were detected by three probes on participating hosts: (I) the open-
source Snort intrusion detection system [1], (II) a built-in module of Komondor
which examined the operating system log files, (III) the packet log of the fire-
walls of the systems. We selected common event types from the Snort database
and also tagged events with a severity level in the interval [0; 10]. Intrusion alert
was triggered when the sum of scores reached the predefined threshold level 10.
(An attack of severity level 10 immediately triggers a response alert.) Receiv-
ing the alert instructed the participant nodes to automatically block the attacker
through their own firewalls, which were configured to log dropped packets as well.
This method enabled us to determine the efficiency and reliability for known at-
tack types presented here, and also to estimate the ratio of attacks, which were
continued by the attackers even after the Komondor system having noticed their
activity.
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Fig. 3. Number of invalid password events detected for various attacks (y axis) plotted
by the duration of the attack (x axis). The left hand side figure shows the attacks
which were only detected by one probe, whereas the attacks shown in right hand side
figure were detected by multiple probes.
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Figure 3 shows invalid passwords detected for SSH login attempts on various
hosts. Every dot on the graph is an individual attack, e.g. it represents one
or more event that originated from a single IP address. The y axis shows the
number of events or the number of invalid passwords detected. The duration
of an attack is the time interval between the first and the last event detected,
and seen on the x axis. Several attackers were detected by multiple Komondor
probes, because the SSH worm that intended to gain access to the subnetwork
tried to login all hosts it found. Attacks which were only detected by one probe
are shown in the left hand side graph, and attacks detected by multiple probes in
the right hand side graph. Attacks detected by multiple probes usually suggest
automatic worm programs using dictionary attacks.

This experience suggests that distributed intrusion detection can benefit from
the advantages of DHTs. As multiple hosts were attacked, by recognizing an
attacker at any node of the Komondor network, several hosts can be protected
at the same time. Moreover, as attack evidence came from multiple probes, one
attack is likely to be associated to thousands or tens of thousands of events,
which must be stored and processed in the distributed detection system. This
type of load can be handled by a DHT fairly well.

4.2 Network Cost of Intrusion Detection

Intrusion attempts issued against a host generate network traffic, regardless their
success or failure. For example, for an SSH login attempt, the victim of the attack
has to answer the request: a TCP connection is negotiated, encryption keys are
exchanged etc. When collaborative intrusion detection is used, sharing intrusion
data will also increase the unnecessary trafic, making legitimate connections
less responsive. Therefore, the network traffic induced by the intrusion detection
system should be kept down to a minimum.

Table 2 shows measured traffic rates for SSH worm attacks, and the response
traffic of Komondor hosts. For the tests, we used SSH-2.0-OpenSSH_5.5 on the
server side, SSH-2.0-OpenSSH_5.8p1 on the client side, and WireShark 1.6.2

packet capture software for packet inspection and statistics generation. The SSH
server software was configured to abort connection on every third invalid login
attempt, which means that attackers must reconnect the server on every third
tested password. As Table 2 shows, every tested password costs the attacker
1518 bytes of traffic on the wire (i.e. including packet headers), and it costs the
victim 1140 bytes.

The traffic generated by Komondor will also load the victim’s network. The
estimations here are calculated for an overlay of 210 = 1024 nodes. The Kademlia
version of Komondor will initiate a node lookup on the first attack event detected.
After the lookup is completed, each stored attempt only cost the overlay 103
bytes of traffic in our measurements. This optimization could not be achieved
using Chord or CAN or other overlay topologies with rigid routing networks.
Our estimation is that storing an attack event would cost the overlay 1030 bytes
(on each event), if we would have used Chord for storage. The optimization
of lookup requests greatly reduces the traffic generated by the overlay. Actual
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packet sizes, of course, would depend on the exact size of the overlay, as well as
the exact type of attack information to be stored.

Table 2. Analysis of network traffic cost of SSH password attacks, for attackers, vic-
tims and the Komondor intrusion detection network. The table includes TCP control
packets, as well as the count of header bytes. The bottom rows show the traffic overhead
generated by intrusion detection, compared to the SSH server responses.

Traffic source Packets Bytes

Attacker 7 1518

Victim 6 1140

Komondor lookup (Kademlia) 20 2020

Komondor data (Kademlia) 1 103

Komondor data (Chord, model based estimation) 10 1200

Overhead (Kademlia) 20% 10%

Estimated overhead (Chord, model based) 166% 90%

4.3 Efficiency of Detection and Protection

Table 3 shows various attack types and the efficiency for the Komondor system
regarding protection. The types listed are as follows:

php-my-admin This shows the activity of a worm scanning for open MYSQL
administration web interfaces.

cyberkit-ping ICMP packets generated by the CyberKit Windows software [7].
sql-overflow Infection attempt by the Slammer worm [14].
sshd-* Various login attempt failures detected by the OpenSSH software: bro-

ken connections (port scans), failed passwords for existing users and login
attempts with invalid user names.

vsftpd-fail-login Invalid login attempts on the FTP servers.

The protection column shows the number of attacks for each type, for which
the attack continued after it was blocked on the firewall, and the activity of
the attacker was detected by another Komondor node of the same subnetwork.
For these attacks, the collaborative intrusion detection can greatly enhance the
protection of hosts.

The usefulness of the collaborative detection provided by the Komondor sys-
tem varies with the approach used by the attackers or worm software in question.
The Slammer worm randomly generates IP addresses to be attacked, and there-
fore it is highly unlikely that the same worm instance will attack two nodes of
a Komondor network in a short timeframe. On the other hand, a port scan can
usually be detected by many hosts on the same subnetwork using this method.
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Table 3. Number of all attacks and attacks for which protection could be built by
Komondor, for each attack types.

Type of attack Attacks Protection Ratio

php-my-admin 107 71 66%

cyberkit-ping 546 515 94%

sql-overflow 4355 15 0%

sshd-conn-lost 490 321 65%

sshd-failed-password 546 219 40%

sshd-invalid-user 51 47 92%

vsftpd-fail-login 46 2 4%

5 Conclusions

Attacks on the Internet are a constantly growing problem. To detect sophis-
ticated attacks promptly and correctly, intrusion data must be collected and
analyzed automatically. In this article we have presented the Komondor intru-
sion detection system, which enables current attack correlation methods to be
upgraded to work in a distributed fashion, thereby improving their efficiency in
case of for large-scale deployment. We achieved this by inserting a middle layer
into the intrusion detection datapath, in which a key is attached to detected
events. This key is then used to send the events for correlating to several corre-
lation units that are organized as a DHT. This mechanism can be used to reduce
network and computational load and increase reliability of the system, while still
retaining the advantages of centralized approaches of intrusion detection.
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