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Abstract. Internet traffic is continuously growing and contributes sub-
stantially to rising costs for network operators. Evaluations have shown
that today multimedia content accounts for a major part of the trans-
ferred bytes in the Internet and that HTTP is the dominant protocol. A
natural solution for reducing these network costs is caching of frequently
requested content. Already in the beginning of the 90s HTTP caches have
been proposed, which were deployed in the domains of the network opera-
tors. These traditional HTTP caches rely on URLs to identify resources
and to avoid transferring the same data twice. Unfortunately today a
specific content might be available under different URLs. Furthermore
many HTTP connections are personalized and therefore caching is often
disabled by content producers. So traditional HTTP caching became in-
efficient for the network operators. In this paper we propose a method to
improve the efficiency of HTTP caching. Our approach is based mainly
on hash keys as additional identifiers in the header of HTTP messages.
By that identification of the transferred content is more precise than with
URLs. Beside this we show how caching can be achieved even in the pres-
ence of personalization in HTTP messages and how content producers
remain full control over their content although it is cached by ISPs.
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1 Introduction

The data traffic in the Internet is continuously growing and challenges the net-
work operators. According to Cisco [1] the traffic in the Internet doubles about
every three years until 2015.

An analysis of several Internet studies [1], [2], [3], [4] shows two main trends:
a) Multimedia content (like videos, photos, music) accounts with a growing ten-
dency already today for a major part of the transferred bytes in the Internet.
b) The dominant protocol wrt. data volume is HTTP and it accounts for more
than 50% of the traffic in the Internet [5], [6].

A natural solution for operators to cope with the Internet traffic growth is
caching of frequently retrieved resources. Indeed, a large part of the content
(especially multimedia content) is static and therefore there is a large potential
for caching. A recent study has shown that nearly 68% of bytes transferred via
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HTTP are cacheable [5]. Thus, operators started to establish HTTP caches (also
known as web caches or proxy caches) in their networks in the beginning of the
90s. More recently Content Delivery Networks (CDNs) were established in the
Internet to perform a replication of specific resources in order to make them
available locally [5], [6].

The efficiency of classical HTTP caches is drastically reduced after CDNs had
been widely established. A main requirement for high efficiency of traditional
HTTP caches is that a resource should be available only under one URL. The
load balancing and the localization of content over several servers within a CDN
leads often to different URLs for one specific resource. Therefore classical HTTP
caches are not able to identify them as a single resource and thus store several
copies of the same resource. Further reasons for the decreased efficiency are the
personalization of HTTP messages (e. g. via cookies) and the explicit suppression
of caching by content producers [6]. In the US network operators are not running
HTTP caches any more because the bandwidth savings are not big enough to
justify the costs of the caches [5].

In this paper we propose a concept for increasing the efficiency of HTTP
caches in the presence of CDNs. Our approach is based on putting additional
information in the header of an HTTP message to uniquely identify the resource
independently of its URL and storage location. Furthermore we present a so-
lution on how personalization of HTTP message exchange can be performed
despite caching.

This paper is organized as follows: In section 2 we provide a short overview on
caching mechanisms in the Internet and where caching is done today. In section
3 it is outlined which problems traditional HTTP caches encounter. Section 4
lists key requirements for new solutions in the field of HTTP caching. After an
overview about related work on caching improvements in section 5, our approach
is presented in section 6. In section 7 we evaluate of our approach. The paper
concludes with a discussion of the advantages of our solution in section 8.

2 Classification of Caching Methods

Caching methods can be classified according to client-side and server-side ap-
proaches [7]. In both cases a copy of the respective identified resource is kept in
the cache. However, in the client-side approach caching is in the responsibility
of the content consumers, whereas in the server-side approach the content pro-
ducers perform the caching and thus have full control over the caching of their
resources [7].

HTTP caches (also denoted as forward caches, web caches or proxy caches)
and web-browser caches belong to the client-side caching schemes. Here caching is
in the responsibility of the ISPs and end-users, respectively. Server-side caching
schemes are better known under the term replication, see [7]. Here identical
copies of a resource are distributed over different servers in the Internet. CDNs
and so called reverse caches belong to this type of caching.
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3 Problem Statement

HTTP caches have a significant potential for reducing Interdomain traffic. Re-
cent investigations show very promising results regarding the cacheability of
HTTP traffic. Erman et al. [5] analyzed Internet traffic traces and found that
92% of all requests and 68% of all transferred bytes can be cached. Similar re-
sults are presented by Ager et al. [6]. They stated that 71% of all requests and
28% of all transferred bytes can be cached.

Despite these promising results most large ISPs in the US do not run HTTP
caches anymore [5]. To understand the reasons, we have to look at the function-
ality of classical HTTP caches and investigate how they are influenced by CDNs
and content producers.

A HTTP cache tries to cache (all cacheable) resources which are requested
by the clients [7]. Important caching criteria are the following:

– The URL serves as an unique identifier for the HTTP cache. With the URL
the cache can identify the resources and all incoming requests are compared
to the URLs of stored objects in the cache. If there is a cache hit, then the
cache sends the right response to the client as a representative of the origin
server. Otherwise (cache miss) the cache forwards the request to the origin
server [7].

– Special information in the header (like Cache-Control, Expires, Last-Modified,
. . . ) of a HTTP message indicate whether this message can be cached or
must not be stored. Every cache must accept these information – if they are
missing caching is not possible [7].

A limitation of HTTP caches is the physical storage volume. Therefore not
all cacheable resources that are requested by the clients can be stored in the
cache. Because of that HTTP caches are running replacement algorithms (like
Least Recently Used or Least Frequently Used) to replace resources by new ones
[7].

In contrast to that, replication mechanisms are storing only specific resources
on different servers in the Internet. Those servers are also working as a large dis-
tributed cache (reverse cache), which is under the control of the content producer
[7]. The copies of a specific resource on the various servers are often available
under different URLs like in CDNs [6], [8].

The actual efficiency of existing HTTP caches in ISP networks is very low.
According to the results of Ager et al. [6], only 16% of all requests and 9% of
all transferred bytes can be delivered by an HTTP cache. In contrast to that,
92% of all requests and 68% of all transferred bytes would be cacheable [5]. The
reasons for the bad performance of HTTP caches are as follows:

– As explained, in CDNs one specific resource might be available under differ-
ent URLs. If one client retrieves this resource under URL1 and another client
in the same network retrieves it under URL2 then from the perspective of a
HTTP cache these requests address two different resources. At the moment
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there is no way for HTTP caches to detect that these different URLs are
related to the same resource and therefore the cache stores several identi-
cal copies. Because of the limited storage volume and the above-mentioned
replacement strategies the cache replaces other resources and the efficiency
drops.

– Many HTTP request (method GET) as well as response messages are per-
sonalized by mechanisms that are related to the header of an HTTP message
(like cookies and parameters in the query string). A cache does not store such
requested resources although the transferred HTTP body of these HTTP re-
sponse messages may be always the same and just the HTTP header differs.
Personalization is a main reason for non-cacheable resources [6].

– Some content producers explicitly prohibit the caching of their content by
putting special information in the header of an HTTP message (Cache-
Control, Pragma, Expires, ) that every cache has to accept. One reason
could be that they want to log all requests belonging to a specific resource
for statistical purposes. Other content providers never consider the advan-
tages of caching and so their default is not to cache at all.

– Sometimes the necessary information (Cache-Control, Expires, ...) are miss-
ing in the HTTP header. Therefore they cannot be cached. According to the
low frequency of such requests, the results in [5] show only a 4% potential
for caching.

– Even if one resource is accessed via one URL by different clients, the status
code in the HTTP response message can differ and therefore caching of
the requested resource is difficult. This may occur when only pieces of a
resource are transferred (Partial Content, Delta Encoding) or the resource
is temporarily available under another URL (Redirection). In most of the
cases an actual cache is not able to detect this [5].

– In some cases identical content is distributed on different websites and differ-
ent webspaces in the Internet. Especially software repositories or ISO images
are available under different URLs. A cache cannot detect this.

Due to the low caching efficiency of current HTTP caches most of the large
ISPs in the US do not operate HTTP caches in their domains as the bandwidth
savings obviously can not justify the costs for the server hardware on which the
cache service is running. According to [4] an operator pays for transit traffic
about 12 $/Mbps in 2008 and 1,20 $/Mbps in 2014. Thus, from an economic
point of view there would be a huge potential in HTTP caching (even in 2014)
if the caching efficiency can be improved.

4 Requirements for Improved Caching

In the following we list the key requirements that have to be fulfilled for increas-
ing the efficiency of HTTP caching.

– Detect duplicate transfers in HTTP. In HTTP resources are identified by
URLs and identical copies of one specific resource can be available under
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different URLs. Moreover one specific resource can exist in different ver-
sions and in different representations which will be transferred to the client
based on the content negotiation mechanism (described in the HTTP/1.1
specification in RFC 2616).

– Come up with both, caching and personalization. A large amount of HTTP
messages are personalized via additional information in the HTTP header.
The bodies of several HTTP messages which are related to one specific re-
source remain mostly unchanged. Caching in this context is often not possible
or is explicitly disabled by the content producers. One reason is that (in case
of a cache hit) the cache does not establish a connection between the server
and the client and so the personalized data in the header of an HTTP mes-
sage can not be transferred between them (and therefore caching is omitted
by the content producers).

– Do not disable caching for obtaining statistical data. Some content producers
disable caching as they want to log every request for their hosted resources
in order to gain statistical data (e.g. on how many requests occur per hour,
or from which region in the world the requests are coming, or which browser
do my customer use, etc) or to measure QoS.

Thus new solutions have to be found to detect duplicate transfers as well as
to allow message personalization and obtaining statistical data. Furthermore the
new solution should be simple and easy to implement.

5 Related Work

Mogul et al. describe in [9] a method to detect and avoid duplicate payloads
in HTTP messages which is mainly based on RFC 3230. They introduce a so
called instance digest which better describes the transferred content. The in-
stance digest is a hash key computed over the resource (or to be more precise
over the concrete representation of the relevant resource in the terminology of
the HTTP/1.1 specification in RFC 2616). This key is added to the header of
the HTTP message and serves as a unique identifier of the transferred content in
the body of the message. Unfortunately the described method is quite complex
and does not deal with personalized HTTP transfers. However it is a base for
our approach, described in section 6.

A similar approach to describe the transferred content in HTTP messages
more precisely is presented by Bahn et al. in [10]. They use the Content-MD5
header field, which was specified in RFC 1864 and was adopted by the HTTP/1.1
specification in RFC 2616. Unfortunately, according to RFC 1864 and 2616, the
Content-MD5 is completely optional and the computation of the MD5 value is
done right before the message is transferred to the client. This requires additional
processing power at web servers. Because of that the Content-MD5 header field
did not succeed in general and the approach of Bahn et al did not become
accepted.
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HTTP request message

GET /videos/PopularVideo.webm HTTP/1.1
Host: example.com

HTTP response message

HTTP/1.1 200 OK
Date: Fri, 11 Nov 2011 11:11:11 GMT
Cache-NT: sha256=7ab53f24d8c96d1cc87452a ...

Fig. 1. Example of how a hash key of the transferred content is added to the header
of an HTTP response message.

6 New Hash Based Caching Method

Our approach is based on two key concepts: a) a special HTTP header field is
introduced to precisely identify the transferred content. This header field acts
as an one-to-one identifier for our smart HTTP cache. b) the cache operation is
modified, e.g. the cache does not abort the connection between client and server.
In the following we explain these concepts in more detail.

6.1 HTTP Header Field Extension

Similar to [9] in our solution a hash key for identifying the HTTP content is
used. The hash function should meet the following requirements: the hash value
should be easily computable for any given HTTP content and for a given hash
value it should be infeasible to generate the resource that fits to this hash value.
Furthermore it should be infeasible to find two different resources with the same
hash value (collision resistance). These requirements are similar to those of cryp-
tographic hash functions. We propose to use the Secure Hash Algorithm with
256 bit length (SHA256), as it is widely used and actually no security flaws have
been identified.

The hash key is computed over the specific representation of a requested
resource and is added to the header of a HTTP message as depicted in figure 1.
The left side of figure 1 shows the request by the client and the right side the
corresponding response by the server. Note, that the hash value not necessarily
needs to be computed over the body of a HTTP message. This has the following
background: in some cases only pieces of the requested resource respectively
representation are transferred (partial content, delta encoding, . . . ) and for that
it is important to identify the resource itself instead of identifying just the partial
content in the body of the HTTP message. With that the HTTP cache can
identify the resource itself and can deliver the requested pieces of the resource.

With the hash key as identifier every bit identical content which is transferred
over HTTP can be identified and delivered by a cache. Even bit identical content
which is unintentionally available under different URLs (like videos and pictures
in social networks or video portals) can be detected, cached and transferred by
the cache.

For precisely identifiying the content it is required, that the hash value is
computed and added to the HTTP message header by the corresponding HTTP
server. Thus the major challenge for a practical realization of our approach is to
convince the content producers to add this piece of information to the HTTP
headers.
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6.2 Modified HTTP Cache Operation

In our solution the HTTP cache operates in a modified way that differs from
classical HTTP caches. The transfer of personalized information is possible even
if the requested content is delivered by the cache.

As shown in figure 2 we assume a transparent cache which accepts the request
of the client (1) and forwards it to the corresponding server (2). The response
is coming from the origin server and passes the cache (3). Assuming the server
has added the above-mentioned SHA256 hash key to the HTTP header, two
situations may arise:

– The HTTP cache does not have a valid cache entry. In this case it simply
forwards the response to the client. Additionally a copy of the transferred
content is stored. For the purpose of consistency the HTTP cache may com-
pute the hash key over the local copy and compare it to the hash value in
the HTTP header.

– The HTTP cache has a valid cache entry. In this case it extracts the header
out of the incoming HTTP response message and aborts the connection to
the origin server (4). Afterwards it concatenates the HTTP header (coming
from the origin server) with the locally stored HTTP body of the requested
content and sends it to the client (5), see figures 2 and 3.

With this modification of HTTP cache operation personalized information in
the HTTP header is always transferred between the origin server and the client
even if the real content is coming from the cache. Content producers keep full
control over their resources (as if there is no resource on the origin server also
no transfer of cached content happens) and can log all requests for statistical
purpose.

This approach also faces some challenges. In case of a cache hit the HTTP
cache server aborts the connection to the origin server and sends a copy of the
requested resource from its local storage to the client. For large-sized content (like
videos) an abort is always reasonable. However for small-sized content the whole
content already might have been transferred from the origin server before the
abort message reaches the origin server. We evaluate this in detail in section 7.
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and data rate.

Moreover further challenges arise in the case of consistent connections (HTTP
header field Connection: keep-alive) and request pipelining. As there is no way
on the level of HTTP to stop the transfer of a requested resource, the HTTP
cache server has to abort the TCP connection. By this all following HTTP
response messages in the pipeline (initiated by the pipelined requests of the
client) will also be aborted. We propose the following solution to cope with this
challenge: the client establishes a TCP connection to the HTTP cache server
and performs request pipelining as usual. For every request in that pipeline the
HTTP cache server then establishes a new TCP connection to the origin server.
All incoming HTTP response messages are rearranged in the right order (as they
were requested by the client) and are sent to the client.

7 Evaluation of the Critical Resource Size

The critical resource size is the content size threshold for which it is worth to
abort the HTTP transfer of the origin server and to send a local copy of the
requested content to the client. In the upper part of figure 4 a scenario without
a HTTP cache server is shown. The client sends the HTTP request message
and receives the HTTP response message directly from the origin HTTP server.
Thus, the transfer time is determined by dividing the size s of the resource by
the average data rate r of the connection.

In the lower part of figure 4 a scenario is shown where a HTTP cache server
is located between origin server and client. Analyzing the header of the receiving
HTTP response message and aborting the HTTP transfer with the origin server
in case of a cache hit consumes some time. During this time the origin HTTP
server still sends the resource. Thus the critical resource size is calculated so
that the response time of the HTTP cache server is less than the time required
for the transfer of the whole resource by the origin HTTP server. According
to equation 1 the response time is composed of two different components: the
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processing time of the HTTP cache server and the time for aborting the HTTP
transfer with the origin HTTP server.

s ≥ r · ( tP
︸︷︷︸

processing speed

of the HTTP

cache server

+ tRTT
︸ ︷︷ ︸

time to abort the TCP connection

between origin server and HTTP cache

server and during data is still on the line

) (1)

The processing time of the HTTP cache server is the time for analyzing the
incoming HTTP response message from the origin server and concatenating the
HTTP header from the origin HTTP server with the HTTP body of the locally
stored copy. The time required for aborting the HTTP transfer with the origin
HTTP server can be approximated by the RTT between HTTP cache server and
origin HTTP server.

For giving a coarse grained estimation about the critical resource size s we
make some assumptions. At first we assume a maximum transfer rate of 2.5
MByte/s – the data rate required by HD videos (H.264, 1080i, main profile).
To obtain an overview of common RTTs in the Internet we measured the RTTs
(seen from our campus network) of popular websites. These websites were taken
from the Alexa top 500 index [11]. The result of our RTT measurement is shown
in figure 6. Most RTTs are in the range up to 200 ms. Regarding the average
response time of an HTTP cache server we take the results obtained by Lee
et al. [13] for the proxy cache server Squid. Lee et al. measured about 100 ms
response time of the proxy cache server for a request rate of about 150 requests
per second.

Figure 5 shows the critical resource size s vs. the RTT and the data rate
a resource is send out from the origin server. It can be seen that the critical
resource size s increases with the data rate and the RTT. Even for an average
data rate of only 100 KByte/s s is at least 11 KByte (for 10 ms RTT) or 35
KByte (for 250 ms RTT). For a high speed connection with a data rate of 2.5
MByte/s s should be at least 282 KByte.
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8 Conclusion and Future Work

The potential for caching of HTTP traffic is very high but remains unused today.
In this paper we present an approach for improved HTTP caching in order to
leverage this potential. The two key concepts for this are a special HTTP header
field for more precisely identifying the contents transferred over HTTP and a
modified cache operation. Both ISPs (via transit traffic and cost reduction) as
well as consumers (via QoE improvement) might profit from our solution. Cur-
rently we are implementing our approach in a demo setup to analyze how it will
scale on real servers. We want to find out how much additional processing power
the HTTP cache server requires to scan incoming HTTP response messages for
the new header field and to organize the cache. As future work we plan to inves-
tigate how such a HTTP cache can be realized as a distributed and cooperative
cache with support of the clients and what are the feasibility constraints for such
a cooperative caching approach.
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