
Interoperability Description of Web Services

Based Application Servers

Pawe l L. Kaczmarek

Faculty of Electronics, Telecommunications and Informatics
Gdańsk University of Technology

Narutowicza 11/12, 80-233 Gdańsk, Poland
pkacz@eti.pg.gda.pl

http://www.eti.pg.gda.pl

Abstract. Web services standards were designed to enable interoper-
ability of heterogeneous application servers in the Service Oriented Ar-
chitecture. Although the standards proved to be highly successful, there
are still difficulties in effective services integration. The paper presents
a methodology that enables description of application servers interoper-
ability in order to improve the service integration process. The method-
ology proposes a systematic classification of Web services standards, ver-
sions and configuration options, and uses the classification for interoper-
ability rating. Concrete integrations are rated by developers that specify
integration scope, configuration complexity and required expertise level.
The methodology was implemented in a web system that enables def-
inition of standards and configuration options as well as rating of in-
tegrations. As a part of the research, interoperability experiments were
executed and registered in the system.

Keywords: Interoperability, Distributed programming, Web services,
System integration and implementation

1 Introduction

Service Oriented Architecture (SOA) assumes that complex systems are devel-
oped by integration of existing services, which improves development cost and
time. The approach, however, requires resolution of interoperability issues, as
services are run in heterogeneous environments and supplying potentially in-
compatible interfaces. Web services (WS) [3] standards were designed to improve
interoperability and were widely adopted in the industry environment. The WS
technology covers now over fifty standards and standard like concepts [9] with
SOAP and WSDL as basic ones. Specialized WS standards (WS-*) have been
published concerning, among others: security, reliability and transactions.

Despite the general success of Web services, there are still difficulties in ef-
fective integration of components. There exist a proliferation of standards, their
version and alternative configuration options anticipated by standards. The op-
tions enable high application configurability, but raise interoperability difficulties

2 Interoperability Description of Web Services Based Application Servers

in case of configuration mismatches. Additionally, software vendors add product
specific extensions [4] as a result of existence of open points in standards or
intent to lock user into a proprietary technology.

Fig. 1. General cooperation model between heterogeneous application servers

The WS Interoperability (WS-I) Organization [16] has been established to
resolve imprecisions in WS-* specifications. The organization has issued addi-
tional interoperability profiles that improve interoperability by giving detailed
guidelines and restrictions for data interchange. Interoperability profiles, how-
ever, cover only selected areas of the wide WS-* technology.

Although significant improvements in WS-* interoperability have been made,
developers are still faced with problems in integration of heterogeneous services:

– Application servers, that host services, may implement a different selection
of standards or vendor-specific extensions, which results in interface incom-
patibilities (see Fig. 1).

– High development skills are required in the field of standards, application
servers and their configuration options to integrate services effectively. A
non-expert developer may fail to integrate services in a concrete case because
of insufficient knowledge, although the integration is objectively possible.

Considering the existing difficulties, it is necessary to design a methodology
that will enable description of application servers interoperability and, addition-
ally, to perform experimental interoperability verification of concrete configura-
tions. The paper presents a methodology that proposes a systematic classifica-
tion of WS-* concepts, and uses the classification in experimental verification of
interoperability.

Using the methodology, concrete integrations of application servers are de-
scribed by specifying used standards, versions and configuration options. Then,
integrations are rated concerning their scope (success rate), complexity and re-
quired development effort. The information is supplied by developers for devel-
opers. The supplying developer has already attempted to integrate servers, either

Interoperability Description of Web Services Based Application Servers 3

successfully or unsuccessfully, and registers the ratings. The consuming devel-
oper uses the information to improve the development process by refraining from
configurations that are known to fail and applying those that are known to be
relatively simple and successful. The benefit of the methodology is simplification
of service integration by supplying information about development simplicity
and interoperability of application servers in different configurations, and con-
sequently components deployed on those servers. This reduces the workload as
developers do not have to perform a detailed verification of various configura-
tions.

The designed methodology was implemented as a web application that is
available for use and loaded with information about servers and standards.

The rest of the paper is organized as follows. The next section presents a
classification of WS-* concepts: standards, their categories, configuration options
and option values. Sect. 3 presents experience-based rating of interoperability
using the classification of WS-* concepts. Sect. 4 presents implementation work.
Sect. 5 overviews existing solutions in WS-* interoperability and methods of
interoperability rating. Finally, Sect. 6 concludes the paper.

2 Classification of WS-* Concepts

A systematic description of existing concepts for the Web services-based technol-
ogy is the first step necessary for interoperability analysis of application servers.
We focus on common entities that are encountered in practice in system devel-
opment and are identified in [1] [9]. We distinguish the following main concepts
to perform the classification:

– Standard represents a technical or de facto standard used in WS application
integration. Each standard is described by a name, version, issuing organi-
zation. Let STD denote the set of considered standards and std ∈ STD

denote a single standard.

– Standard version represents versions of standards. It is assumed that at
least one version is defined for each standard. Let V ER, ver denote the set
of considered versions and a single version, respectively.

– Option describes any alternative in configuration. They may be assigned to
a version of a standard or may be standard independent, in which case are
referred to as of application scope. Let OPT , opt denote the set of options
and a single option, respectively.

– Option value Each option has an associated list of concrete option values.
Values are of an enumerate type and depend on the option. Let V AL, val
denote available values and a single value, respectively.

Definition 1. Versions of standard (STD V ER) is a relation between STD

and V ER: STD V ER ⊂ STD×V ER such that STD V ER(stdi, verj) is stan-
dard stdi in version verj.

4 Interoperability Description of Web Services Based Application Servers

Definition 2. Options of standard version (STD V ER OPT) is a relation be-
tween STD V ER and OPT : STD V ER OPT ⊂ STD V ER×OPT such that
if STD V ER OPT (stdi, verj , optk), then standard stdi in version verj antici-
pates a configuration option optk.

Definition 3. Values for options (OPT V AL) is a relation between OPT and
V AL: OPT V AL ⊂ OPT × V AL such that if OPT V AL(opti, valj), then opti
accepts valj for its value.

It is additionally specified, whether an option is required or not and may
be neglected. Options may be shared between standards. Typically, different
versions of the same standard define similar options. Fig 2 shows as part the
described concepts and their relationships.

Table 1 shows exemplary options and their alternative values. Lists of (un-
categorized) Web services options may be found in [1] [3], while [2] presents
general options of applications. Naturally, some of the defined options may be
insignificant in the context of a particular application.

Table 1. Exemplary options and option values of Web services standards

Configuration
option

Alternative values Description Concerned
standards or
application

Transport
protocol

HTTP, JMS, Jabber,
SMTP/POP3, TCP

Specifies low-level transport pro-
tocol (typically HTTP)

SOAP

Protection
Order

EncryptBeforeSigning,
SignBeforeEncrypting

Indicates the order in which in-
tegrity and confidentiality are
applied to the message

WS-
Security
Policy

Transaction
commit
protocol

Completion, Two-
Phase Commit
(Volatile), Two-Phase
Commit (Durable)

Determines the behavior of coor-
dinators and participants when
presented with protocol mes-
sages or internal events

WS-Atomic
Transaction

Floating
point data

integer, floating point Specifies whether floating point
data is used

Application
scope

Additionally, we use the following concepts that concern the execution envi-
ronment:

– Application server represents a runtime platform that hosts applications.
Let AS, as denote the set of servers and a single server, respectively.

– Related library supplies additional software modules for the server such
as: communication libraries, IDE tools or lower layers runtime platforms. Let
RL, rl denote the set of related libraries and a single library, respectively.

Definition 4. Has related library(HAS RL) is a relation between AS and RL:
HAS RL ⊂ AS ×RL such that if HAS RL(asi, rlj) then asi is integrated with
rlj.

Interoperability Description of Web Services Based Application Servers 5

3 Description of Experience-Based Rating of
Interoperability

Typically, application servers supply necessary communication libraries and run-
time environments that implement WS-* standards, while concrete services are
deployed on the servers and communicate through the WS interface. The rating
is performed for concrete integrations (denoted integr) that are specified by the
following elements:

1. The two application servers that are integrated. They represent runtime
platforms that host applications (in this case WS accessible services). Related
libraries may be specified, which covers additional software such as: WS-*
communication libraries, IDE tools or lower layer runtime platforms.

2. The configuration (denoted config) in which the two application servers
interoperate. The configuration specifies the following elements:
– Standards and standard versions. A configuration typically uses many

standards that supply a compound functionality.
– Configuration options and selection of option values. Analogously to

standards selection, an integration may specify many options and their
values. If an option is not specified, the option is assumed as insignificant.

Different integrations may be defined for two application servers representing
different selection of the concepts.

Definition 5. Configuration CONFIG is a relation between STD V ER and
OPT V AL, such that CONFIG ⊂ STD V ERn ×OPT V ALm.

Definition 6. Integration (INTEGR) is a relation between AS, RL and CONFIG

defined as follows:

– INTEGR ⊂ AS ×RLp ×AS ×RLr × CONFIG, where
– for each inti ∈ INTEGR there is inti = (asi1, RLi1, asi2, RLi2, confi) and

the following conditions are met:
1. asi1 ∈ AS (server − side), asi2 ∈ AS (client− side)
2. RLi1 ⊆ RL and ∀rl ∈ RLi1 : rl ∈ HAS RL(asi1)
3. RLi2 ⊆ RL and ∀rl ∈ RLi2 : rl ∈ HAS RL(asi2)
4. confi ∈ CONFIG

Typically, interoperability rating methods define a single metric that spec-
ifies the level of interoperability [5]. We extend the approach and propose the
following attributes:

– Scope. The developer specifies the level of reached interoperability, whether
the integration is fully or partially functional, or failed.

– Simplicity. The developer specified the level of attempted complexity, which
indicates the type of configuration and development efforts made. It is not
reasonable to assume that an integration is impossible just because a devel-
oper failed to establish it, as she/he may have made a programming mistake
or lacks knowledge regarding the technology.

6 Interoperability Description of Web Services Based Application Servers

– Helper attributes. The attributes may specify other issues such as QoS in-
cluding performance, documentation, reliability.

Table 2 shows some of the proposed attributes and their description.

Table 2. Concerned interoperability attributes

Interoperability attribute /
Description

Value-meaning

Scope 0 - none, no integration
The ability to exchange infor-
mation (on the protocol

1 - uncertain, system is unstable and may fail in some
conditions

compatibility level) 2 - limited, works, but imposes some limitations
Range [0 .. 5] 3 - non-standard, works, but does not conform to spec-

ifications or presents low QoS (e.g. performance)
4 - operational, works, but there are known internal
problems (e.g. a system handles a thrown exception)
5 - complete, works without known problems

Simplicity (¬ Complexity) 0 - low, requiring changes of undocumented
The difficulty of necessary features (high configuration difficulty)
configuration and develop-
ment work to establish the

1 - medium – , custom workarounds required or major
configuration of non-standard features

integration Range [0 .. 5] 2 - medium, minor configuration of non-standard fea-
tures (custom changes)
3 - medium + , major configuration of standard features
4 - high – , minor changes of non-GUI available options
or use of advanced GUI features
5 - high, GUI changes of standard options

Connector / mediator module 0 - yes, required
Range [0, 5] 5 - no, not required

Documentation 0 - no appropriate documentation
The amount of available doc 3 - general documentation
Range [0, 3, 5] 5 - detailed description of integration

Interoperability in each integration is rated by developers that have already
attempted to establish it. The rating is organized analogously to most existing
interoperability rating methods [5], that is, natural numbers are assigned for
different levels. We use the 0 - 5 rates with 0 denoting the worst result (the least
desired situation) and 5 denoting the the best result (the most desired situation)
for an attribute. Fig.2 shows the information structure that describes application
servers, integrations and ratings.

Although user experience seems an appropriate form of rating, it may happen
that unreliable opinions will occur. Therefore, the method implements mecha-
nisms to increase rating reliability: user roles based on reliability level, user
expertise level and multiple opinion gathering. Three user reliability levels are
distinguished [0..2]: guests (0), registered users (1) and trusted users (2). A guest
is an unknown, unregistered person. A registered user may add ratings, define

Interoperability Description of Web Services Based Application Servers 7

Fig. 2. Information structure of integration rating

servers and WS-* concepts. A trusted user is a registered user that has been
verified for its identity. Additionally, all registered users should specify their ex-
pertise level using the following scale [0..3]: novice (0) - have studied a technology
theoretically or worked with manuals, semi-advanced (1) - worked approximately
6 months in a technology, advanced (2) - worked more than 6 months in a tech-
nology, expert (3) - knows undocumented features of a technology.

As a simple example, consider a .NET v 3.5 / Development Serever client
that invokes a Web service running on Glassfish v3 / JavaEE6 / NetBeans IDE
6.8 using WS-ReliableMessaging. Two detailed configurations are analyzed: (i)
without exact ordering of messages and (ii) with the ordering. The ordering
may be specified using the NetBeans GUI ”Deliver Messages In Exact Order”
option. The first configuration works correctly and the invocation is successful.
The interoperability is rated as complete (5) and the simplicity is high (5). The
second configuration (with message ordering), however, results in an error in
a typical case. If the option is enabled, the .NET environment generates error
”Could not find default endpoint element that references contract”. A negative
rating (0) will be given to the integration, the simplicity remains high (5). In a
more advanced scenario, the developer may workaround the problem and modify
manually the web.config file and specifying ordered=”true“ in the reliableSession
node. The procedure is required because of a GUI failure, which is definitely a
non-standard behavior. The configuration is rated as: complete (5) and medium
simplicity (2).

4 Implementation and Evaluation

The designed methodology was implemented in the Application Servers Inter-
operability system that supplies the following functionality:

8 Interoperability Description of Web Services Based Application Servers

– Configuration of information about WS-* concepts: standards, options and
values together with their relations,

– Definition of interoperability attributes and ratings,
– Management of information about experience based rating of application

servers integrations,
– User registration, user data management and role-based functionality access,
– Viewing information about ratings.

The system is available online at:
http://www.as-interoperability.eti.pg.gda.pl
Information management covers typical operations of adding, deleting and

modifying data concerning WS-* standards and application servers. Applica-
tion servers and standards are described giving their name, version, vendor and
descriptive information. The system enables user management including user
registration and role assignment. The system is designed in a typical layered ar-
chitecture, covering the database and data access layers, the web services layer
and the web layer that supplies the end user interface.

The system is implemented in the C# language in .NET Framework 3.5
and uses the MS SQL 2005 database server to store information. The running
system is deployed on Microsoft IIS server. WCF API for Web services was used
to implement communication. The system also uses a few third party packages
including: log4net, AjaxControlToolkit, LinqKit.

4.1 System Usability

AS-Interoperability supplies information that aims at improving the develop-
ment process of new systems, and reduce development cost and time. During
system design, a developer uses interoperability information to verify if consid-
ered application servers are capable of cooperating in concrete cases. The infor-
mation is vital for making design decisions and selection of appropriate servers
to host the system.

Interoperability information may be gathered using both academic, indus-
trial and open community sources. Currently, registered data were collected by
cooperation with students and academics. Community related cooperation is
expected to supply widest range of results. This kind of cooperation has been
successfully applied in many open-source projects. Also, existing results of test
cases are an important source of interoperability information for the system.

Fig. 3 shows an exemplary screenshot of the system.

4.2 Exemplary Test Results

We recorded selected information about standards, servers and interoperabil-
ity ratings that had been performed during our research as presented in [11].
Test results consider, amongst others, the following application servers: JBoss
5.1.0.GA, Apache Geronimo 2.2.0, Apache Axis2 1.5.1 hosted on Jetty or Tom-
cat web containers, IBM WebSphere CE 2.1.1.3 and Microsoft IIS 5.1 with

Interoperability Description of Web Services Based Application Servers 9

Fig. 3. Exemplary screenshot of the system for interoperability description

WCF 4.0. Performed experiments covered selected configurations in the stan-
dards: SOAP, WSDL, WS-Addressing, WS-Reliable Messaging, WS-Policy, WS-
AtomicTransactions and WS-I BasicProfile conformance. Additionally, runtime
environments of the Enterprise Service Bus architecture were tested, including:
Mule ESB, Sun Open ESB and Micosoft WWF.

Generally, application server present high interoperability in basic WS-* stan-
dards, such as SOAP and WSDL. The standards are well established and im-
plemented by virtually all servers in different versions, which gives background
for effective integration. The integration, however, face various difficulties if ex-
tended standards are used.

As a part of the research, we performed experiments of transactional Web
services invocation between the .NET and Java based servers. The experiments
were performed by an experienced developer up to simplicity level 2 and 3 (major
or non-standard configuration changes). Generally, integration of homogeneous
servers was successful. We consider homogeneous servers as two instances of
the same product, such as two IBM WebSphere AS 7.5 installations or two Mi-
crosoft IIS/WCF installations. However, the developer was not able to establish
transactional integration of heterogeneous servers.

Integration of Sun Glassfish and Microsoft WWF failed because of difficulties
in the WS-Coordination protocol in both client-server directions. Experiments
covered major configuration changes (not supported by GUI interfaces) and in-
stallation of additional packages, which gives simplicity level 2. The developer
was not able to successfully repeat interoperability tests that are supplied by

10 Interoperability Description of Web Services Based Application Servers

server vendors. The developer was also not able to establish transactional Web
services integration between Microsoft .NET/WWF and IBM WebSphere AS.
The experiment covered modification of advanced options available in GUI in-
terfaces, which gives simplicity level 3.

Another group of registered results concern Workflow and Enterprise Service
Bus runtime platforms as WS related technologies [12]. The workflow engines
were used to invoke services supplied by the application servers in selected con-
figurations.

Sun Open ESB and Microsoft IIS integration works correctly, although there
exist difficulties in WSDL compatibility during development. The difficulties can
be overcome by minor manual modification of the WSDL file (which gives sim-
plicity level 3). If, however, the service is not compatible with WS-I Basic Pro-
file, there are errors during execution and further adjustments of the WSDL file
are necessary regarding binding and portType (which gives simplicity level 2).
Similar difficulties are encountered during integration of OpenESB and Apache
Axis2 independently from the used SOAP version. The integration is possible,
but requires simplicity level of 2. Integration of OpenESB and Glassfish works
straightforwardly giving simplicity level 5. The case should be considered actu-
ally as an integration of homogeneous environments as both servers are developed
by the same community. Generally, workflow/ESB systems enable integration of
heterogeneous servers, but detailed knowledge is necessary to identify and repair
non-standard failures during development and operation.

5 Related Work

Interoperability has been researched for decades as an essential aspect of in-
formation systems. Although researched thoroughly, there exist open issues in
computer systems interoperability due to changes in communication technology
and design approaches.

Several methods and metrics for interoperability rating have been proposed.
The work [5] presents an overview of approximately fifteen methods of interop-
erability rating and about thirty interoperability definitions. Most rating meth-
ods describe interoperability by defining levels of interoperability that depend
on the scope of integration. General purpose methods include, among others:
SoIM, LISI, LCI. Existing approaches usually address a wide range of issues
including: syntax, semantics, data compatibility or resource sharing. Tools that
simplify interoperability analysis have been proposed for various design levels
ranging from the protocol level [2] to the enterprise architecture level[15]. [2]
describes interoperability attributes of commercial-off-the-shelf (COTS) compo-
nents in software development. The attributes are classified in four categories:
general, interface, internal assumption, and dependency. Authors also present
an assessment tool that performs analysis of potential integration mismatches.
[15] presents a model for enterprise service interoperability analysis. The model
is based on factors and factor dependencies that influence interoperability, such
as service description, orchestration language, or semantic compatibility. Design

Interoperability Description of Web Services Based Application Servers 11

time and runtime interoperability are explicitly distinguished. This work differs
in that it focuses on detailed analysis of service integration using WS, which
concerns classification of WS-* concepts and multi-attribute rating. The anal-
ysis may be located within level 1 (Connected) in the LISI metric or level 2
(Data/Object) in the LCI metric [5].

SOA and WS-* specific issues in interoperability have been researched by
both academic and industrial bodies [10] [16] [13]. Books and tutorials discuss
integration techniques of .NET and Java based systems [14]. Additionally, appli-
cation server vendors supply their interoperability guidelines and specification of
implemented standards [9]. [4] discusses the problem of systems that are incom-
patible despite their standard-compliance. The work focuses on the process of
standard design and implementation, explicitly refraining from interoperability
which has a malevolent background. Despite the proliferation of SOA interop-
erability research, there is no work known to the author that presents a general
methodology of systematic classification of WS-* related concepts and rating of
interoperability attributes.

In some cases, test suits for standards are supplied by the issuing bodies,
for example SOAP 1.2 tests [8] and WS-I standards tests [7]. Typically, the
tests do not present detailed description of the source code used and required
configuration changes, which makes it difficult to reproduce the test, especially
by a non-expert developer. [6] presents a general method of conformance test-
ing of parallel languages. This work does not intend to execute comprehensive
tests of application servers or standards, but rather supplies a methodology for
systematic description of test results, and selection of application servers and
standards.

6 Conclusions and Future Work

The paper presented a methodology for description of application servers inter-
operability in various configurations of WS-* standards. The methodology was
implemented in a web system that enables interchange of information concerning
WS-* interoperability including information about implemented standards and
configuration options by application servers. Developers benefit from the sys-
tem by using the available information to make more effective design decisions
concerning selection of application servers and standards.

The main scope of future work is to load the system with information con-
cerning application servers interoperability. It is planed to engage a community
of software developers and system integrators that will share their experiences.
Using the registered information, general characteristics of interoperability may
be derived on various levels of abstraction. The characteristics may further be
used for assessment of WS-* runtime platforms.

Acknowledgments. This work was supported in part by the Polish Ministry
of Science and Higher Education under research project N N519 172337. The
author thanks students from the Faculty of ETI for their development work on

12 Interoperability Description of Web Services Based Application Servers

the system for WS-* interoperability description and performing various inter-
operability tests.

References

1. Web Services Stack Comparison, Apache. http://wiki.apache.org/ws/StackCompa
rison (2010)

2. Bhuta, J., Boehm, B.: Attribute-based cots product interoperability assessment. In:
Sixth International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based
Software Systems. pp. 163–171 (2007)

3. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris,
C., Orchard, D.: Web Services Architecture, Working Group Note. W3C,
http://www.w3.org/TR/ws-arch/ (2004)

4. Egyedi, T.M.: Standard-compliant, but incompatible?! Computer Standards & In-
terfaces 29(6), 605–613 (2007)

5. Ford, T., Colombi, J., Graham, S., Jacques, D.: A survey on interoperability mea-
surement. In: 12th ICCRTS Adapting C2 to the 21st Century

6. Garstecki, L., Kaczmarek, P., Krawczyk, H., Wiszniewski, B., de Kargommeaux,
J.C.: Testing for conformance of parallel programming pattern languages. Intr.
Conf. on Parallel Processing and Applied Mathematics, LNCS 2328, 323–330
(2006)

7. Greene, S., Lauzon, D., Stobie, K.: Basic Profile 1.1 Test Assertions Version 1.1,
Final Material. Web Services Interoperability Consortium (2005)

8. Hurley, O., Haas, H., Karmarkar, A., Mischkinsky, J., Thompson, L., Martin, R.,
Jones, M.: SOAP Version 1.2 Specification Assertions and Test Collection (Sec-
ond Edition). http://www.w3.org/TR/2007/REC-soap12-testcollection-20070427/
(2007)

9. IBM, http://www.ibm.com/developerworks/webservices/standards/: Standards
and Web services (2010)

10. International Federation for Information Processing (IFIP), Johannes Kepler Uni-
versity Linz: TC5 - Information Technology Applications Work Group 5.8 Enter-
prise Interoperability

11. Kaczmarek, P.L., Nowakowski, M.: A developer’s view of application servers inter-
operability. 9th Intr. Conf. on Parallel Processing and Applied Mathematics, Part
II, LNCS 7204 (in print) (2011)

12. Kaczmarek, P.L., Wierzbowski, P.: Dependable integration of esb and web services
systems (in polish). In: 6. Konferencja Technologie Informacyjne. Poland (2008)

13. Microsoft Corporation, http://www.microsoft.com/interop/: Microsoft Interoper-
ability (2010)

14. Moroney, L., Lai, R., Fisher, M.: Interoperability between java ee technology and
.net applications. In: JavaOne Conference (2006)

15. Ullberg, J., Lagerström, R., Johnson, P.: A framework for service interoperability
analysis using enterprise architecture models. In: IEEE SCC (2). pp. 99–107 (2008)

16. Web Services Interoperability Consortium: Interoperability: Ensuring the Success
of Web Services (2004)

