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Abstract. Reliable link quality prediction is an imperative for the effi-
cient operation of mobile ad-hoc wireless networks (MANETs). In this
paper it is shown that popular link quality prediction algorithms for
802.11 MANETs perform much more poorly when applied in real ur-
ban environments than they do in corresponding simulations. Our mea-
surements show that the best performing prediction algorithm failed to
predict between 18 and 54 percent of the total observed packet loss in
the real urban environments examined. Moreover, with this algorithm be-
tween 12 and 43 percent of transmitted packets were lost due to the erro-
neous prediction of link failure. This contrasts sharply with near-perfect
accuracy in corresponding simulations. To account for this discrepancy
we perform an in-depth examination of the factors that influence link
quality. We conclude that shadowing is an especially significant and hith-
erto underestimated factor in link quality prediction in MANETs.

1 Introduction

With the deployment of MANETs having just begun, practical experience
of wireless protocol performance is limited. A-priori performance analysis of
MANET protocols is difficult due to multi-hop communication with intractable
and environment-specific signal propagation effects. Hence provably reliable
communication is still in its infancy [1] and network performance evaluations are
largely based on simulations. Recent studies however have cast serious doubts on
the reliability of results obtained from such simulations. Discrepancies between
simulated and real-world network performance has been primarily attributed
due to the inappropriate level of detail at which these simulations are performed
including the use of overly-simplified propagation models [2–4].

The propagation models commonly used in such simulations are based on
very ‘benign’ obstacle-free environments. Obstructing static and dynamic ob-
jects (e.g. buildings, people, cars, etc.) as well as important radio propagation
effects (diffraction, scattering and transmission [5]) are not considered. These are
major shortcomings since the primary deployment areas for MANETs are urban
environments where such effects are pronounced. Since the network topology



and environment change rapidly in MANETs, the communication quality varies
considerably with time. Link quality prediction is a key technique to alleviate
link quality degradations by pro-actively adapting the network to the operating
environment.

We now evaluate the performance of some of the more popular link quality
prediction algorithms for MANETs in two real urban environments. Our results
indicate that these algorithms perform poorly in such a setting despite hav-
ing exhibited near-perfect performance in simulations. While some performance
degradation is to be expected when such algorithms are applied in real environ-
ments, the observed discrepancy is much larger than expected. This motivates
us to systematically identify the factors that influence link quality (henceforth
called ‘influencing factors’) and assess their importance for link quality predic-
tion so that these discrepancies can be accounted for.

The remainder of this paper is organized as follows: Section 2 discusses cur-
rent work on link quality prediction and its applications. Section 3 evaluates the
accuracy of current link quality prediction algorithms in a real-world case study
and compares their performance with simulations. Improvements for future algo-
rithms are recommended. Section 4 identifies the factors influencing link quality
and assesses their importance in prediction accuracy. We conclude our work in
Sect. 5.

2 Related Work

It has been shown in numerous simulations that link quality prediction is im-
portant for routing in ad-hoc networks. In wired networks the shortest distance
criterion is often used to select optimal paths for routing. However, as a result
of the significantly higher number of link failures in wireless ad-hoc networks, a
more sophisticated means is required for route optimisation in these networks.
Using link quality prediction methods, the protocols of [6–12] can select routes
with higher lifetimes. To reduce traffic on shared low bandwidth channels on-
demand routing protocols, which only initiate route discovery for active paths,
are used. If a path breaks, high latency is the costly outcome due to multiple
timeouts. Proactive route discovery enabled by link quality prediction is utilized
in [8, 9, 12–14] to alleviate this problem by initiating route discovery before the
path breaks. This approach reduces packet loss and jitter. Link quality predic-
tion may also be used to dynamically cluster the network into groups of stable
nodes. This reduces the update propagation time of changes in network topology
[15]. Another application of pro-active failure detection is enabling consistency
maintenance in group communication [16].

Link quality prediction algorithms can be categorized as follows: determin-
istic approaches [6–10, 12–14] which give a precise value for link quality and
stochastic approaches [11, 17, 18] which give a probabilistic measure. All ap-
proaches (with the exception of [17]) employ a deterministic signal propagation
model either explicitly or implicitly. The signal propagation models in common
usage are the simple Radial Model of [16, 18]; the assumption that the trans-



mitted power and the distance separating the nodes alone determines the signal
strength [6, 7, 10]; the Free Space Propagation Model [19, pg. 107-109] used in [9,
12] and the Two-Ray Ground Model [19, pg. 120-125] used in [8, 13, 14]. At run-
time [6, 7, 10, 13, 14] use signal strength criteria to provide an estimate for link
quality whereas [8, 9, 12, 20] use node location for this purpose. All approaches
are evaluated by simulation with either NS-2 [21] or GloMoSim [22] except for
[8] which is evaluated experimentally.

It should be noted that in the above link quality prediction algorithms the
link quality metric is determined primarily from the distance between nodes.
Though this may hold for very benign open-space environments, it breaks down
in real urban environments where there are substantial signal fading effects due
to manifold signal propagation phenomena. In the above works only simple tech-
niques, if any, have been suggested for dealing with fast signal fading (e.g. ex-
ponential average [6], linear regression [14] or the ping-pong mechanism of [13]).
Consequently these approaches exhibit a significantly poorer performance when
applied in real-world urban scenarios over simulations (see Sect. 3).

In [6] the signal strength is measured and the link is classified simply as being
either strong or weak. An ‘affinity metric’ proposed in [7] and later used in [10]
gives in contrast a continuous measure for the link quality which is determined
primarily from the trend of the most recent samples of the signal strength.

In [13] a pre-emptive threshold is compared with the current signal strength.
If the signal strength is lower than this threshold, the possibility of link failure
is considered. This leads to an exchange of a pre-set number of messages called
ping-pong rounds. If the signal strength of greater than a certain number of these
packets is under the threshold, then a link failure is predicted. This mechanism
aims to reduce the number of link failures which are predicted erroneously due
to fast signal fading. The pre-emptive threshold is calculated using the node
transmission range and the Two-Ray Ground Model so that there is enough
time to establish a potential alternative route before the link fails. Regrettably
an appropriate threshold is difficult to calculate in a real-world environment
since the range of the nodes is environment-specific and unknown.

In [14] the Law of Cosines is used to derive the remaining time to link failure.
This prediction algorithm is based on the last three received signal strength
samples, the Two-Ray Ground Model and assumptions of the Random Waypoint
Mobility Model [23]. Linear regression is suggested to pre-process the signal
strength values in order to counter the effects of fast signal fading. The algorithm
assumes that nodes have a constant velocity and that the signal strength is
affected only by the distance between nodes.

Node location and velocity are used with the Free-Space Propagation Model
in [9, 12] to predict the time to link failure. This propagation model is inap-
propriate even for open-space environments (see [19, pg. 120]) and the need
for location and velocity information makes the algorithm costly to implement.
The prediction method suggested in [8] consists of modules for mobility pre-
diction, signal strength prediction and an environment map. The future sig-
nal strength is determined from the predicted distance between the nodes, an



experimentally-determined site-specific coefficient for shadowing and the Two-
Ray Ground Model. The concept is evaluated experimentally in a parking lot.
Unfortunately the graphs given in the paper use a time scale that precludes
a direct evaluation of the prediction accuracy in the order of seconds. The al-
gorithm is critically dependent on the distance between nodes determined via
the absolute node positions without tolerating missing position data. This is
a shortcoming since the suggest positioning system GPS is often unreliable in
dense urban environments (this is confirmed by our measurements in Sect. 3.1).
Furthermore it is not clear whether memory consuming maps of the environ-
ment with their associated computationally intensive algorithms justify their
cost since unaccounted for moving objects have a strong bearing on link quality
(see Sect. 4.2).

Three stochastic approaches have been proposed. [11, 18] predict link failures
based on the Radial Propagation Model and the mobility pattern of the Random
Ad-hoc Mobility Model [18]. It is unclear how well these approaches work in
practice, especially since very simple propagation models are employed. In [17]
links with an expected higher remaining lifetime are chosen based on previous
link lifetimes. It is unclear weather this concept can be used for link failure
prediction.

The handoff problem (see the survey article [24] for example) in cellular
communication networks is analogous to the link quality prediction problem in
MANETs. Based on the current mobility pattern it is attempted to execute opti-
mal handoff from one cell to another such that potential consequent disruptions
are minimized. While this problem has been well studied, the suggested solu-
tions are only partially transferable to link quality prediction in MANETs. For
a detailed discussion see Sect. 4.2.

Since the literature on link quality prediction focuses on simulations as the
means for the evaluation of algorithms, it is clear that the accuracy of the used
simulators is crucial. [2] compares popular simulators by their physical layer
models, their implementations and a case study. This study revealed that the
evaluation of protocols in different simulators may give different absolute and
even different relative performance measures. In [3] similar results were reported
for a simple broadcast protocol implemented by flooding. Since broadcast proto-
cols are used as basic building blocks for many wireless protocols, [3] concludes
that “finally, beside simulations and according to the feeling of the MANET com-
munity, there is an important lack of real experiments that prove the feasibility
of wireless protocols”.

3 Accuracy of Link Quality Prediction in the Real-World

In this section we evaluate the accuracy of some popular link quality prediction
algorithms experimentally in two typical urban environments. We then compare
the results obtained with those derived by simulations.



3.1 Case Study and Test Bed Description

The urban environments we chose include a variety of static (e.g. buildings, trees,
etc.) and dynamic objects (people, cars). The selected locations in Dublin’s city
centre are fairly typical of European cities. Grafton Street is a long narrow
pedestrian precinct overshadowed by moderately high (three-storey) buildings.
There is no vegetation and it is commonly quite full of people. The second
location, O’Connell Street, is a wide avenue-like street. There are two lanes of
traffic in both directions. These are separated by a verge with some trees. Traffic
is heavy throughout the day. On both sides of the street are sidewalks which are
normally full of pedestrians. We conducted our experiments at busy times. We
will refer to Grafton Street as ‘Street 1’ and O’Connell Street as ‘Street 2’ in
this paper.

Shadowing and propagation effects are the prominent factors bearing on link
quality in urban environments over the occurrence of collisions in the presence
of a moderate number of nodes. Hence, working with two nodes, we consider
the former effects only. In our study the bearers of both nodes moved between
randomly chosen shops, their movement interspersed with pauses of about two
seconds as might be expected of some pedestrians on these streets. This mobility
pattern corresponds to the widely used Random Waypoint Mobility Model with
a maximum speed of 1.5 m/s (walking speed) using pauses of two seconds. The
movement area of the nodes was confined to the main street and its immediate
precinct to ensure a certain level of connectivity.

Both nodes were broadcasting messages of 100 bytes at regular intervals
(heartbeats) directly over the MAC layer without using any higher-level protocol
at a transmission rate of 2 Mbit. The coherence time of 17.63 ms for the speed
of our nodes suggests a sampling rate of greater than 28.36 Hz if multi-path
effects are to be fully captured by the measurements. However, the experience
of the cellular network community shows that the incorporation of multi-path
fading is impractical for prediction algorithms (see [25] for example) and the
prediction algorithms evaluated in this work do not incorporate such information.
Consequently, in order to reduce the amount of data, we use a sample rate of
10 Hz which allows for prediction in convenient 100 ms intervals. We conducted
three trials of 30 minutes duration for each street. All sent and received packets
were recorded together with their associated average signal strength.

Two Dell Latitude C400 notebooks with Lucent Orinoco Gold wireless
802.11b cards acted as nodes. The transmission power was set to the maxi-
mum of 15 dBm with disabled power management. We used Redhat Linux 7.3
together with the GPL orinoco cs driver by David Gibson in version 0.12 [26],
which we extended to send and receive packets directly over the MAC layer.
During the trials it was attempted to record the current node positions with
either a Magellan GPS 315 or a Garmin ETrax receiver. However, the number
of satellites in view was mostly insufficient to obtain a position.

For the simulations NS-2 was configured according to the real world study.
The movements of the two nodes followed the Random Waypoint Mobility Model
with a maximum speed 1.5 m/s, 2 seconds pause and an area of 500 m squared.



The Two-Ray Ground Model and the parameters of a Lucent Wavelan card
with a maximum range of 250 m were employed. Our choice of mobility and
propagation models corresponds to most MANET simulations (see [2, 10, 13, 14]
for examples).

3.2 Algorithm Implementations

We restrict our evaluation to algorithms with the following properties:

1. The algorithm predicts at time t if the link is either available or unavailable at
time t+Tp (Tp is called the prediction horizon). Most pro-active applications
in routing or group communication (see [7, 13, 14, 16] for examples) require
this very weak property (‘weak’ since only a binary value for the link quality
at only one point in time is used).

2. The algorithms must tolerate missing node locations for long time periods
since GPS signal reception can be very unreliable in dense urban environ-
ments.

3. The signal propagation model used must be at least as accurate as the Two-
Ray Ground Model. Even this model does not account for the manifold
propagation phenomena in urban environments.

These criteria that aim to identify the most likely successful algorithms in urban
environments reduce our evaluation to [7, 13, 14].

In order to unify the notation for the algorithms considered, we use the
following symbols: a lower case ‘t’ denotes a point in time, ‘T ’ denotes a time
interval. ‘Pt’ denotes the signal strength of a packet received at time t. ‘Pmaxrange’
denotes the minimum signal strength at which a packet at the maximum distance
maxrange can be received. Threshold values used in the algorithms are denoted
using the symbol ‘δ’. The symbol ‘∆’ is used to denote the difference between
successive values of a variable.

The Affinity Algorithm. The Affinity Algorithm originating in [7] and applied
in [10], associates a link with an affinity metric a. The algorithm assumes that
the mobility pattern remains constant and that the signal strength increases if
and only if the nodes move closer and decreases if the nodes move further apart.
Thus, if the average signal trend ∆P[t−n+1,t] over n samples remains positive,
the nodes are assumed to move closer and the affinity is classified as being ‘high’.
The link is predicted to remain available in this case. However, if the signal trend
is negative, the nodes are assumed to be moving apart and the affinity at time
t for a horizon Tp is calculated via at = Pmaxrange−Pt

∆P[t−n+1,t]
. Under the condition that

all assumptions are true the affinity value is a direct measure of the time to link
failure.

Our implantation predicts a link failure at t for t + Tp if the affinity value
is below a threshold aδ. For best performance in the real world we determine
the parameter values aδ and n using an optimization routine (see Sect. 3.3 for
details). An analytical determination of these parameters based on the original
work gives good performance results in simulations only.



The Law of Cosines (LoC) Algorithm. This algorithms [14] calculates the
time to link failure based on the signal strength values of three consecutive
received packets. The algorithm assumes that the signal strength follows strictly
the Two-Ray Ground Model and that nodes maintain a constant velocity until
the predicted link failure occurs. The algorithm is based on a simple geometric
evaluation using Law of Cosines. A link is predicted to be available if the signal
strength over three consecutive received packets is either constant or increasing.
Otherwise a time to link failure is predicted.

Fast signal fading effects are attempted to be masked using linear regression.
However, the signal strength may still differ greatly with that given by the
Two Ray Ground model even when using an optimum window-size and so the
quadratic equation used to give link failure time occasionally gives an imaginary
solution. This problem was not observed during simulation.

The Pre-emptive Threshold Algorithm. The above algorithms use the
recent signal trend as their link quality metric. In contrast, [13] uses a combina-
tion of the signal strength itself and the recent packet loss. If the current signal
strength is under Pδ, a link failure is suspected. As result packets are exchanged
in n ping-pong rounds between the two nodes. If k ≤ n packets are below the
signal strength threshold Pδ, a link failure is predicted. This method attempts
to overcome erroneous prediction of link failures due to fast signal fading by
tolerating adverse link quality fluctuations over k − 1 packets. The threshold
of the signal strength Pδ is determined from the so called pre-emptive thresh-
old as δ = ( maxnoderange

maxnoderange−maxrelspeed Tp
)4. The threshold attempts to enable a

communication task to be completed even if two nodes move away with the max-
imum speed maxrelspeed. However, this is only achieved if the signal strength
behaves strictly according to the Two-Ray Ground Model and the maximum
transmission range maxrange is known.

If in our implementation the signal strength value associated with one packet
is below Pδ, a node counts how many out of the next n received heartbeat packets
have also a signal strength value below Pδ. If this number is equal or greater
than k, a link failure is predicted. We calculated the threshold values for the
simulation as outlined in the original work and set n = k = 3. However, for
the real-world study these parameters are unknown, especially the environment
specific average maximum transmission range. Consequently we determined all
parameter values by optimization as described in the next section.

3.3 Evaluation Metrics and Results

In current simulators link failures are modelled as being ‘sharp’. This contrasts
with the real world behaviour, where a link typically oscillates between being
available and unavailable over a transitional period before eventually remaining
unavailable. Hence a definition of link stability is necessary. We define a link to
be stable in a system with a constant heartbeat rate, if at least p percent of
packets are received during a time span Ts. Ts should be small enough to reflect



fast changes of the link status but large enough to tolerate fast-fading effects
(i.e., to prevent unnecessary route discoveries in routing protocols). p must be
small enough to meet the minimum link quality requirements of an application
and large enough to tolerate fast signal fading. Our results suggest p = 70% and
Ts = 2 s are reasonable values. Since all algorithms considered here are based on
the implicit assumption that a link fails sharply, we only measure the prediction
accuracy outside the transitional period.

We define our accuracy metrics for link quality prediction in like manner
with those used in handoff algorithms in cellular networks (i.e., service failure
and unnecessary handoffs [25]): the percentage of packets that are lost while
the link was predicted to be available (henceforth called ‘missed packet loss’)
and the percentage of packets that are received while the link was predicted
to be unavailable (henceforth called ‘unnecessary packet loss’). These metrics
capture the fundamental trade-off in link failure prediction: if the prediction is
too pessimistic, the unnecessary packet loss is high but the missed packet loss is
low. If the prediction is too optimistic the reverse is the case. Since both metrics
have an equal bearing on performance, an overall accuracy metric must include
both. We define the degree of prediction inaccuracy i = m2 + u2 + (m− u)2 as
the sum of the squares of missed packet loss m and unnecessary packet loss u
with an additional term that accounts for an imbalance of these two metrics.

As stated earlier, suitable parameter values for the prediction algorithms
must be determined for the environment in question. Clearly the way to do
this is to minimise the inaccuracy i. This is, however, a difficult task since the
inaccuracy function associated with a prediction algorithm and dataset is not
analytically differentiable and also highly non-linear. The parameter space is cleft
so that even classical direct search algorithms perform inadequately since they
get stuck at local minima as a result of the greedy criterion. We resolved these
problems using a robust evolutionary optimization algorithm – The Differential
Evolution Algorithm [27].

Table 1 displays the performance of all the algorithms considered under dif-
ferent criteria. ‘MPL’ stands for the missed packet loss, ‘UPL’ – the unnecessary
packet loss and ‘OI’ – the overall inaccuracy. The table is divided into separate
sections corresponding to real-world experiments and simulation. The experi-
mental section is further partitioned into data sets on which the optimization
of the algorithm parameters was conducted. This distinction is required since
the optimum parameters are environment-specific. Optimization (Opt.) 1 and 2
refers to minimizing the inaccuracy based on either the data set for Street 1 or
2 respectively. Opt. 3 refers to minimization of the inaccuracy on a compound
data set of Street 1 and 2 that aims to find ‘compromise’ parameter values for
both environments. In the simulation study optimization is not required since
the parameters are determined analytically.

The table shows that in our real-world measurements the Pre-Emptive
Threshold Algorithm achieves the best accuracy by far. However 22.85/28.39% of
missed packet loss and 28.07/30.50% of unnecessary packet loss was measured in
Street 1/2 despite optimal parameters having been used for the environment in



Table 1. Prediction accuracy in real-world urban environments and in simulations

Affinity Algorithm LoC Algorithm Pre-Emptive Threshold
Algorithm

Experimental Trial – Street 1 (Grafton Street)

Opt. 1 Opt. 2 Opt. 3 Opt. 1 Opt. 2 Opt. 3 Opt. 1 Opt. 2 Opt. 3

MPL 48.72% 49.63% 49.45% 58.17% 64.48% 58.17% 22.85% 53.71% 31.73%

UPL 34.73% 34.77% 34.77% 27.35% 22.71% 27.35% 28.07% 11.72% 22.62%

OI 3775.53 3892.91 3869.76 5081.64 6418.15 5081.64 1337.30 4785.28 1601.45

Experimental Trial – Street 2 (O’Connell Street)

Opt. 1 Opt. 2 Opt. 3 Opt. 1 Opt. 2 Opt. 3 Opt. 1 Opt. 2 Opt. 3

MPL 55.59% 54.19% 54.19% 61.75% 60.59% 61.75% 17.81% 28.39% 19.43%

UPL 36.89% 35.90% 35.91% 27.40% 24.62% 27.40% 43.40% 30.50% 39.06%

OI 4800.81 4559.89 4560.24 5743.75 5571.13 5743.75 2855.60 1740.69 2288.55

Simulation

Calculated Calculated Calculated

MPL 0.00% 6.67% 0.00%

UPL 0.00% 0.00% 0.00%

OI 0.00 44.44 0.00

question. This performance decreases with the use of non-optimum parameters
that have been obtained in similar environments. For example, the accuracy of
the Pre-Emptive Threshold Algorithm deteriorated in Street 1 from 1337.30 to
4785.28 when the algorithm parameters used were the optimum parameters for
Street 2. These results indicate that an online learning is necessary that adapts
the parameters to the current operating environment.

The Affinity and LoC Algorithms performed much more poorly on all counts
than the Pre-emptive Threshold algorithm. Both algorithms failed to predict
approximately half the packet loss while a quarter to one third of packets was
unnecessarily predicted to be lost. We attribute this poor accuracy to these
algorithms’ reliance on signal trend data which is highly sensitive to fast-fading
effects. The mechanism of linear regression employed in the LoC Algorithm and
the window-size used in the Affinity Algorithm seem both to be ineffective in
dealing with fast signal fading. The Pre-Emptive Threshold algorithm shows a
greater robustness in this regard since it uses the current signal strength values
and not signal trend. This observation demonstrates that signal strength is a
more powerful predictor of packet loss if the path loss in the prediction interval
is insignificant like it is the case for low node speeds.

In the simulation all algorithms show near-perfect accuracy, both in terms
of missed and unnecessary packet loss. Only the LoC Algorithm fails to predict
some lost packets. This occurs in situations where the node speed changed during
the sampling interval of the three consecutive packets used for prediction (as
described in [14]). We would have liked to have compared the results of our
simulations directly with those of the original authors. However [7, 13] assessed
the prediction accuracy indirectly using metrics that show the enhancement of
the routing protocol performance due to link failure prediction. [14], nevertheless,



gives explicit prediction accuracies where it is reported that more than 90 percent
of lost packets were predicted successfully for various mobility patterns. We
observed a value of 93 percent in our simulation.

The near-perfect accuracy in simulations can be attributed to the fact that
the prediction algorithms and simulation programs use the same deterministic
radio propagation model. It is well known that the propagation models used
by such simulators are simple and yield only to real-world approximations (see
[5] for example). Thus simulation accuracy is perceived as being optimistic (see
[14] for example). However, the large discrepancy between link quality predic-
tion accuracy given by simulators and those obtained in real-world trials has
apparently not been appreciated in the literature to date. To the best of our
knowledge, we are unaware of any work in which link quality prediction algo-
rithms for MANETs are specifically designed for and evaluated in real-world
urban environments. Our results emphasize the need for further research in this
area, especially with regard to adaptive prediction models and techniques with
which to deal with fast signal fading.

4 Assessing Influencing Factors On Link Quality

The poor performance of prediction algorithms in urban environments moti-
vated us to examine systematically the factors that influence link quality and its
prediction in 802.11 MANETs. The results are summarised in Table 2.

Table 2. Influence of various factors on link quality

Factor Model of
wireless card

Type of
ground

Height
of nodes

Orientation
without
shadowing body

Orientation
with shadowing
body

Shadowing
by person

Influence High Low High Low High High

Factor Shadowing
by car

Small scale
movements

Large scale
movements at
different speeds

Communication
load without
collisions

Message
length

Payload
pattern

Influence High None None None None None

4.1 Experimental Setup

The manifold signal propagation phenomena observed in urban environments
make the separation of potential and actual ‘influencing factors’ cumbersome
in these environments. Hence we chose a beach on a deserted island as our
‘benign’ obstacle-free environment to conduct our experiments. We used the
same hardware as for the urban environment study. Accurate markings and



GPS receivers determined the distances between the two nodes that were always
facing each other.

Three types of experiments were designed to assess potential and actual
influencing factors on link quality:

Type I One node was motionless while the other node moved away at con-
stant walking speed until returning after 300 m. This type of experi-
ment exhibits path loss and is for example suitable for comparing the
theoretical Two-Ray Ground Model with actual measurements.

Type II Both nodes were placed at a fixed distance. One node was motionless
while the other node oscillated between being in motion (e.g., node
was rotated, shaken, etc.) and motionless. The comparison of the sig-
nal strength between the two different states reveals the influence of
a factor.

Type III Both nodes were placed at a fixed distance and were motionless. An
obstacle was moved in the line of sight between the nodes, paused
and moved out. The difference in signal strength of the two states
measures the influence.

All experiments were conducted three times and the mean was used for evalu-
ation where possible. As described in Sect. 3.1, both nodes transmitted messages
periodically. All diagrams display the signal strength that was measured at one
node along the ordinate. If a packet was lost no value for the signal strength is
given.

4.2 Results

Most simulations for MANETs (see [13, 14] for examples) are based on the Two-
Ray Ground Model with a maximum node transmission radius of 250 m for
a transmission rate of 2 Mbit at maximum transmission power. Nevertheless,
a recent experimental outdoor study from [28] claims that 250 m transmission
range is far too optimistic and that the actual range would be 90 to 100 meters in
an open environment. However, our measurements (Fig. 1, Type I experiment)
confirm the widely accepted view of the literature that the transmission range
is indeed around 250 m. Our measurements confirm further that the Two-Ray
Ground Model is a good approximation for open environments with a measured
average model error of 1.49 dBm (standard deviation 1.53 dBm).

These contradictory results may be attributed to the model of wireless card.
In Fig. 2 (Type I experiment) we compare signal strength measurements of a
Lucent Orinoco card with a card from a different brand. Both comply with
the same 802.11 specification and have the same transmission power but show
different behaviour. The observed performance discrepancy of the cards may be
caused by different chip sets, the design of radio frequency components, different
antennas and the applied signal processing of the cards’ onboard processors.
Unfortunately, no manufacturer provided us with the necessary information to
enable an in-depth analysis. However, it should be noted that our comparison of
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Fig. 1. Theoretical Two-Ray Ground Model and real-world measurements

simulation and real-world performance for different prediction algorithms in Sect.
3.3 is fair, even without detailed knowledge about the applied post-processing
algorithms and hardware designs. As we have shown above, the measurements
obtained using Lucent Orinoco cards correspond in an open environment very
well with those given by the theoretical Two-Ray Ground Model on which the
simulations are based on.
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Fig. 2. Different card brands may show different behaviour

In all our trials we noted the persistent occurrence of a single but substantial
‘dip’ in the signal strength over approximately 10 m at distances ranging from
30 m to 50 m from the source (see for example Fig. 1). This is most likely due
to coupling between the ground and the source (antenna) [29].

The influence of node height was assessed by placing two nodes 50 m apart
while one node was stationary at navel height and the other changed its height as



shown in Fig. 3 (Type II experiment). The signal strength dropped significantly
when one node was placed close to the ground and no relevant difference was
observable between navel and head height. Since we assume that node heights
change infrequently in ubiquitous computing scenarios, we rate the importance
for link quality predictions in these applications to be low. However, link quality
fluctuations caused by varying node heights may pose a problem for military or
disaster recovery applications due to their mobility patterns.
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Fig. 3. Influence of node height on link quality

In personal wireless networks, the orientations of nodes change with the move-
ments of the person (e.g. by turning) that holds the node. If standard hardware
has a truly omni-directional antenna, this does not seem to pose a problem. How-
ever, we identified that the person’s body can shadow the link severely based
on its orientation and the node positions. This effect is illustrated at 150 m
distance in Fig. 4 (Type II experiment). At around 180 degrees the body’s shad-
owing caused a significant drop in the signal strength (a node rotation without
a shadowing body caused no relevant changes in the signal strength). This leads
to a link failure although the node could move 100 m further away at a different
orientation without loosing the connection. Since the orientation changes fre-
quently and suddenly in personal wireless networks, inevitable prediction errors
in even the most benign open-space environment are the consequence.

People and cars are common in urban environments. We evaluate their in-
fluence on link quality by moving a person or car into the line of sight between
two 100 m apart nodes (Type III experiment). Figure 5 and Fig. 6 present the
influence of shadowing at different distances from the sender for a person and
a car. At 20 m distance a person exhibits virtually no influence while a signif-
icant drop of link quality can be noticed 1 m away. A person directly in front
of a node, which is common in crowds, leads even to a link failure at 100 m
node distance. Similar but stronger link quality degradations can be observed
for cars, where the connection was already lost at a shadowing distance of 1 m.
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Fig. 4. Person shadowing a node with the own body while changing the orientation

We noticed that shadowing due to people and cars may degrade link quality by
up to 30 dBm. Since we assume that the number and location of these objects
are unpredictable, shadowing will always cause a significant amount of inevitable
prediction errors. It should be noted that this result is not trivial since shadow-
ing is a very important factor in 802.11 MANETs with more adverse effects on
link quality than in traditional wireless networks (e.g. cellular phone networks).
These traditional networks rely on an infrastructure with single-hop communi-
cation to base stations with antennas high over the ground (e.g. on building
tops). Therefore the number of people in the line of sight is generally less than
in 802.11 MANETs, where the antennas are usually located at either belt or car
height. The infrastructure of cellular networks also provides a well defined cover-
age and well known reference points while in 802.11 MANETs no such reference
points exists due to the mobility of all nodes. Moreover, cell phones can dynami-
cally increase the transmission power to a much higher level for compensation of
shadowing than 802.11 devices. 802.11 devices are restricted in their maximum
transmission power to 15 dBm due to the license free band. Furthermore the
diffracting ability of 802.11 signals is lower due to the much higher operating
frequency.

Other factors that influence signal strength were also examined but found to
be insignificant. These are also listed in Table 2.

5 Conclusions

We have observed that popular link quality prediction algorithms for 802.11
MANETs achieve only a much lower accuracy in real-world urban environments
than in simulations. The best performing algorithm failed to predict 18 to 54
percent of total packet loss while 12 to 43 percent of packets were erroneously
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predicted to be lost. This contrasts sharply with near-perfect accuracy in simu-
lations. The magnitude of this discrepancy has apparently not been appreciated
in the literature to date.

We have observed that link quality prediction is especially difficult due to
shadowing effects caused by user orientation, people and cars. The influence
of such shadowing on link quality is much greater than in traditional cellular
phone networks since in 802.11 MANETs there is no supporting infrastructure,
transmission power is more limited and there is greater signal attenuation and
poorer diffracting ability due to the higher operating frequencies used.

We identified, for low speed mobility scenarios, that algorithms based on
the current received signal strength perform better than their trend-based coun-
terparts. Current techniques to deal with fast signal fading were shown to be
insufficient. Further research in this area is necessary. Moreover, we have de-
termined that algorithm parameters are very specific to the actual operating



environment. The accuracy of future prediction algorithms could be greatly im-
proved by dynamically obtaining these parameters for the current operating
environment.
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