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Abstract. This work identifies the presence of long idle times as the main 
cause for the high performance degradation suffered by TCP over bursty error 
environments. After a comprehensive and fully experimental analysis, 
performed over an IEEE 802.11b real platform, it is derived that the traditional 
computation that TCP uses for the RTO estimation does not behave properly 
over channels prone to suffer from bursty errors. The authors propose a 
modification to that algorithm so as to avoid such an undesirable behavior 

1   Introduction and Objectives 

INTERNET transport protocols were originally designed to work appropriately over 
traditional wired links, where losses of packets were mainly caused by the 
overwhelming of intermediate routers. By contrast, wireless channels are likely to 
damage some packets due to the hostile characteristics of the radio link. The original 
design and implementations of TCP were not targeted to behave well with these 
conditions, and several methods to overcome this drawback have been studied and 
proposed [1], [2]. Most of them focus on the TCP congestion control procedures and 
sometimes they have lead to new TCP versions, as the New Reno case [3], in which 
only a slight change was made to the Fast Recovery algorithm used on the Reno 
version. This work thoroughly analyzes the impact of wireless errors over TCP 
performance, by means of a completely experimental approach. In particular, the 
presence of long idle times at the sender side, originated by the consecutive 
expiration of the TCP retransmission timeout (RTO) when multiple data segments are 
lost within a single window, has been observed. These inactivity periods bring about 
a sharp decrease on the TCP throughput. 

2   Influence of Error Bursts Over TCP Performance 

The results presented on this section have been obtained through an experimental 
measurement campaign over an IEEE 802.11b single-hop, comprising of two hosts 



configured in ad-hoc mode. To generate TCP traffic, a 10 Mbytes file was transferred 
using an FTP application, resulting in around 7500 data segments, as a Maximum 
Segment Size (MSS) of 1448 bytes has been employed. Table I shows the measured 
throughput at a typical office environment with metallic obstacles and people moving 
around the radio channel in which the signal to noise ratio (SNR) was around 10 dB, 
as shown in Fig. 1. 
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Fig. 1. Experimental environment and its SNR distribution 

The IEEE 802.11 standard specifies the use of an idle repeat request (RQ) with 
implicit retransmission scheme at the MAC layer. In this sense, an erroneous frame 
might be retransmitted up to a certain number of times (three in our platform). 
Consequently, the IP loss, which can be defined as the number of datagrams not 
recovered by the IEEE 802.11 retransmission scheme, does not match the Frame 
Error Rate (FER). If this procedure is not enough to recover from errors, the TCP will 
trigger its retransmission mechanisms. All these retransmissions, triggered either by 
the MAC protocol or by the TCP itself may cause a performance degradation. The 
radio channel suffers from a extreme variability and, therefore, both erroneous frame 
and lost IP packet burst statistics obtained for different realizations of the experiment 
vary within a wide range. 

Apart from the throughput, defined as the number of useful bytes received (the size 
of the file) over the transfer time, the following performance metrics have been 
collected, being reported on Table I 
　 Retransmissions: the total number of TCP data segments retransmitted by the TCP 

protocol sender entity. 
　 # Max Retx: maximum number of retransmissions for the same TCP data segment. 
　 RTT: Round Trip Time. 
　 Idle time: period of inactivity at the sender. 
　 FER: the ratio between the number of medium access control (MAC) frames 

received with cyclic redundancy check (CRC) error and the total number of 
received frames. 

　 IP Loss: percentage of datagrams that have not been recovered by the 802.11 
retransmission scheme. 



　 Average Erroneous Frame/Lost IP Packet Burst: average length of erroneous 
frame/lost IP packet bursts. 

　 Maximum Erroneous Frame/Lost IP Packet Burst: maximum length of all the 
erroneous frame/lost IP packet bursts. 
 
TABLE I. TCP PARAMETER REPORT OVER AN IEEE 802.11B LINK (11 MBPS) IN A BURST-ERROR 

ENVIRONMENT 
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The achieved throughput can be roughly categorized into three different levels: 

poor, which is below 1 Mbps (tests #2, #4); medium, around 3 Mbps (test #1); and 
good, close to 5 Mbps (tests #3, #5), which the maximum throughput obtained over 
an error-free channel [4]. 

The dominant factor in the performance reduction for the tests belonging to the 
poor level is the presence of idle times. These are caused by the congestion control 
procedures implemented within TCP. It is worthwhile to perform a deeper analysis of 
these idle times, allowing to identify their specific causes and effects. 

The measurement campaign was performed using Linux operating system (OS). 
The TCP implementation followed the well known Reno type, although some slight 
modifications were also used, as will be further explained [5]. Moreover, the 
Timestamp option was set during all the measurements, allowing us to track the 
variables used by TCP to manage its retransmission procedures. In addition, the 
selective acknowledgment option (SACK), which has proved to be the most effective 
way of dealing with multiple errors within the same window [6], was also activated 
during the experiments. 

It is well-known that a TCP sender adapts its transmission rate to the state of the 
network; in this sense, it can only send a certain number of segments before receiving 
an acknowledgment, being this number indicated by the sender congestion window. 
Afterwards, it stops and if no confirmation is received within a period of time, it 
retransmits the first unacknowledged segment. A thorough analysis of the whole set 
of functions that are used to control the corresponding timers and variables is out of 
the scope of this text, but it is useful to give a brief introduction about how they are 
handled. The variable which is used to set the timeout value for a retransmission is 
the retransmission timeout (rto within the Linux OS), derived from both the mean 
value and standard deviation of the round trip time (srtt and mdev, respectively). 

As the Timestamp option is activated, both srtt and mdev are updated each time 
new data is acknowledged. Furthermore, and following Nagle’s algorithm [7], a TCP 
sender is not allowed to put any more new data on the channel as far as it has 



previously retransmitted some segments (by RTO expiration) and it still has more 
data to be confirmed by the receiver. On the other hand, and provided that the two 
aforementioned conditions are true (i.e. the TCP sender is in the loss state), the RTO 
is updated each time a new ACK is received, being multiplied by a backoff factor, 
whose value is doubled whenever a retransmission is triggered by timeout expiration. 
Fig. 2 shows the interchange of TCP segments between the two hosts, leading to an 
inactivity period on the TCP transmitter of 57 seconds (test #2 in Table I), being this 
the main reason for the throughput degradation within this particular measurement. 

We can roughly follow the variation that the aforementioned variables have during 
this particular segment interchange, to see whether the 57 seconds inactivity period is 
due to the particularities of the TCP implementation. This is summarized on Table II, 
and a more detailed explanation follows. At the beginning of this particular 
connection chunk, the contention window managed by the TCP sender (snd_cwnd) 
was eight. After sending the 8th segment, the TCP sender stops and waits either for 
an ACK or the RTO expiration. On that moment, the RTO was at its minimum 
allowed value (200 ms for this Linux TCP implementation [5]) so, given that no ACK 
is received within 200 ms, the 1st segment is retransmitted. Furthermore, and 
following the slow start procedure, the value of snd_cwnd drops to one. However, as 
can be observed, the TCP sender does not receive confirmation that this segment 
arrived correctly at the receiver, so it has to be retransmitted again up to four times 
(each of them doubling the RTO, as specified in the backoff procedure). 
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Fig. 2 Segment interchange and idle time of 57 seconds on a TCP connection 

TABLE II. EVOLUTION OF THE VARIABLES IN A TCP CONNECTION LEADING TO A 57-SECOND IDLE TIME 
Situatio

n Event srtt 
(ms) mdev (ms) snd_cwn

d Snd_ssthresh retransmits backoff packets_out 

1 Start 30 10 8 ? 0 0 8 
2 Rtx 1 (rto) 30 10 1 4 1 1 8 
3 Rtx 1 (rto) 30 10 1 4 2 2 8 
4 Rtx 1 (rto) 30 10 1 4 3 3 8 
5 Rtx 1 (rto) 30 10 1 4 4 4 8 
6 Rx ack(4) 400 750 2 4 4 4 5 



7 Rx ack(6) 350 660 3 4 4 4 3 
8 Rx ack(8) 310 580 4 4 4 4 1 

 
After the reception of the acknowledgment of that 1st segment (situation #6), the 

TCP sender still has more data to be confirmed by the receiver, and therefore, the 
calculation of the RTO is done using the previous backoff value (which was 4), 
although the segment that caused it to increase has already been confirmed. 

The retransmissions of the 4th, 6th, 7th and 8th segments don’t affect the set of 
variables which are being analyzed, and are triggered upon the reception of a new 
ACK while being retransmitting. These new acknowledgments cause the snd_cwnd to 
increase up to 4. 

When the acknowledgment for the 7th segment is received, RTO’s value is 
updated to 57 seconds, as observed in Fig. 2. This value is derived from the following 
expression, applying the corresponding values (situation #8 in Table II) for all the 
variables: 
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(1) 

This expression is slightly different from the one which is specified in the standard 
(multiplied by a 5/4 and by a factor that depends on the contention window), so that it 
is more suitable for the Linux OS characteristics. 

Unfortunately, the acknowledgment for this retransmission is lost (that is, four 
consecutive 802.11 frames arrived erroneously at the transmitter) and therefore the 
8th segment is retransmitted again 57 seconds after its previous attempt. It is 
important to remark that the TCP sender still stays at the loss state so, despite not 
having filled the congestion window, it is not able to transmit any new segment. 
Moreover, it does not seem reasonable to maintain the backoff factor upon the 
reception of new acknowledgments, even though the segment that brought about this 
high value has already been confirmed. Hence, it is likely that modifying this 
approach, by cleaning the backoff variable upon the acknowledgment of the first lost 
segment, will help to alleviate the low throughput that has been observed. 

3  Conclusion 

In this work a deep analysis of the behavior of TCP over Wireless LAN has been 
performed, with special attention on the impact of wireless error bursts over its 
performance. It goes without saying that a lot of researching effort is being put on the 
enhancement of TCP wireless performance. However, most of the studies lack from 
an experimental approach and assume a TCP acknowledgment error free arrival, 
focusing on the improvement of the Fast Recovery algorithm. In this work we have 
shown that, on a real scenario, TCP acknowledgment losses can not be neglected, as 
they may lead to long idle times, causing a high performance degradation.  

This study can be seen as a contribution towards the identification of new 
modifications to be done to the TCP RTO estimation procedure, adapting it to hostile 



wireless channels. In particular, resetting the backoff variable after the 
acknowledgement of the segment that caused it, might bring substantial 
improvements on the performance. 

Although this work has been carried out over an IEEE 802.11b platform, its results 
can be easily extrapolated to other wireless infrastructures, such as IEEE 802.11g or 
Universal Mobile Telecommunications System (UMTS) 
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