
On the Unsuitability of TCP RTO Estimation over
Bursty Error Channels

Marta García, Ramón Agüero, Luis Muñoz

Departamento de Ingeniería de Comunicaciones – ETSIIT
Universidad de Cantabria

Avda los Castros s/n, 39005 Santader (SPAIN)
{marta, ramon, luis}@tlmat.unican.es

Abstract. This work identifies the presence of long idle times as the main
cause for the high performance degradation suffered by TCP over bursty error
environments. After a comprehensive and fully experimental analysis,
performed over an IEEE 802.11b real platform, it is derived that the traditional
computation that TCP uses for the RTO estimation does not behave properly
over channels prone to suffer from bursty errors. The authors propose a
modification to that algorithm so as to avoid such an undesirable behavior

1 Introduction and Objectives

INTERNET transport protocols were originally designed to work appropriately over
traditional wired links, where losses of packets were mainly caused by the
overwhelming of intermediate routers. By contrast, wireless channels are likely to
damage some packets due to the hostile characteristics of the radio link. The original
design and implementations of TCP were not targeted to behave well with these
conditions, and several methods to overcome this drawback have been studied and
proposed [1], [2]. Most of them focus on the TCP congestion control procedures and
sometimes they have lead to new TCP versions, as the New Reno case [3], in which
only a slight change was made to the Fast Recovery algorithm used on the Reno
version. This work thoroughly analyzes the impact of wireless errors over TCP
performance, by means of a completely experimental approach. In particular, the
presence of long idle times at the sender side, originated by the consecutive
expiration of the TCP retransmission timeout (RTO) when multiple data segments are
lost within a single window, has been observed. These inactivity periods bring about
a sharp decrease on the TCP throughput.

2 Influence of Error Bursts Over TCP Performance

The results presented on this section have been obtained through an experimental
measurement campaign over an IEEE 802.11b single-hop, comprising of two hosts

configured in ad-hoc mode. To generate TCP traffic, a 10 Mbytes file was transferred
using an FTP application, resulting in around 7500 data segments, as a Maximum
Segment Size (MSS) of 1448 bytes has been employed. Table I shows the measured
throughput at a typical office environment with metallic obstacles and people moving
around the radio channel in which the signal to noise ratio (SNR) was around 10 dB,
as shown in Fig. 1.

TCP
Receiver

TCP
Sender

Metallic Obstacles

0 2 4 m

Measured SNR (dB)
2 4 6 8 10 12 14 16 180

15

10

5

0D
is

tr
ib

ut
io

n
of

 r
ec

ei
ve

d
fr

am
es

 (
%

)

Fig. 1. Experimental environment and its SNR distribution

The IEEE 802.11 standard specifies the use of an idle repeat request (RQ) with
implicit retransmission scheme at the MAC layer. In this sense, an erroneous frame
might be retransmitted up to a certain number of times (three in our platform).
Consequently, the IP loss, which can be defined as the number of datagrams not
recovered by the IEEE 802.11 retransmission scheme, does not match the Frame
Error Rate (FER). If this procedure is not enough to recover from errors, the TCP will
trigger its retransmission mechanisms. All these retransmissions, triggered either by
the MAC protocol or by the TCP itself may cause a performance degradation. The
radio channel suffers from a extreme variability and, therefore, both erroneous frame
and lost IP packet burst statistics obtained for different realizations of the experiment
vary within a wide range.

Apart from the throughput, defined as the number of useful bytes received (the size
of the file) over the transfer time, the following performance metrics have been
collected, being reported on Table I
　 Retransmissions: the total number of TCP data segments retransmitted by the TCP

protocol sender entity.
　 # Max Retx: maximum number of retransmissions for the same TCP data segment.
　 RTT: Round Trip Time.
　 Idle time: period of inactivity at the sender.
　 FER: the ratio between the number of medium access control (MAC) frames

received with cyclic redundancy check (CRC) error and the total number of
received frames.

　 IP Loss: percentage of datagrams that have not been recovered by the 802.11
retransmission scheme.

　 Average Erroneous Frame/Lost IP Packet Burst: average length of erroneous
frame/lost IP packet bursts.

　 Maximum Erroneous Frame/Lost IP Packet Burst: maximum length of all the
erroneous frame/lost IP packet bursts.

TABLE I. TCP PARAMETER REPORT OVER AN IEEE 802.11B LINK (11 MBPS) IN A BURST-ERROR

ENVIRONMENT

#Tes
t

Tput
(Mbps

)
FER Avg

EFB

Ma
x

EFB

IP
loss

Avg
LPB

Ma
x

LPB
TCP
Rtx

Ma
x

Rtx

Avg
RTT
(ms)

StdDev
RTT
(ms)

MaxIdl
e

Time
(sec)

TotalIdl
e

Time
(sec)

1 2.91 0.13
5

1.8 29 1.20
%

1.73 7
89 5 42.11 16.95 1.6 10.73

2 0.71 0.15
7

2.4 40 2.30
%

2.27 10
178 8 41.83 35.6 57.4 102.23

3 4.49 0.05
8

1.1 4 0.03
%

1.00 1
2 1 50.05 11.35 0.17 1.15

4 0.50 0.09
7

2.2 50 1.50
%

2.54 12
112 6 45.86 44.74 120 152.83

5 4.59 0.00
4

1.4 4 0.04
%

1.00 1
3 1 47.43 11.09 0.4 1.66

The achieved throughput can be roughly categorized into three different levels:

poor, which is below 1 Mbps (tests #2, #4); medium, around 3 Mbps (test #1); and
good, close to 5 Mbps (tests #3, #5), which the maximum throughput obtained over
an error-free channel [4].

The dominant factor in the performance reduction for the tests belonging to the
poor level is the presence of idle times. These are caused by the congestion control
procedures implemented within TCP. It is worthwhile to perform a deeper analysis of
these idle times, allowing to identify their specific causes and effects.

The measurement campaign was performed using Linux operating system (OS).
The TCP implementation followed the well known Reno type, although some slight
modifications were also used, as will be further explained [5]. Moreover, the
Timestamp option was set during all the measurements, allowing us to track the
variables used by TCP to manage its retransmission procedures. In addition, the
selective acknowledgment option (SACK), which has proved to be the most effective
way of dealing with multiple errors within the same window [6], was also activated
during the experiments.

It is well-known that a TCP sender adapts its transmission rate to the state of the
network; in this sense, it can only send a certain number of segments before receiving
an acknowledgment, being this number indicated by the sender congestion window.
Afterwards, it stops and if no confirmation is received within a period of time, it
retransmits the first unacknowledged segment. A thorough analysis of the whole set
of functions that are used to control the corresponding timers and variables is out of
the scope of this text, but it is useful to give a brief introduction about how they are
handled. The variable which is used to set the timeout value for a retransmission is
the retransmission timeout (rto within the Linux OS), derived from both the mean
value and standard deviation of the round trip time (srtt and mdev, respectively).

As the Timestamp option is activated, both srtt and mdev are updated each time
new data is acknowledged. Furthermore, and following Nagle’s algorithm [7], a TCP
sender is not allowed to put any more new data on the channel as far as it has

previously retransmitted some segments (by RTO expiration) and it still has more
data to be confirmed by the receiver. On the other hand, and provided that the two
aforementioned conditions are true (i.e. the TCP sender is in the loss state), the RTO
is updated each time a new ACK is received, being multiplied by a backoff factor,
whose value is doubled whenever a retransmission is triggered by timeout expiration.
Fig. 2 shows the interchange of TCP segments between the two hosts, leading to an
inactivity period on the TCP transmitter of 57 seconds (test #2 in Table I), being this
the main reason for the throughput degradation within this particular measurement.

We can roughly follow the variation that the aforementioned variables have during
this particular segment interchange, to see whether the 57 seconds inactivity period is
due to the particularities of the TCP implementation. This is summarized on Table II,
and a more detailed explanation follows. At the beginning of this particular
connection chunk, the contention window managed by the TCP sender (snd_cwnd)
was eight. After sending the 8th segment, the TCP sender stops and waits either for
an ACK or the RTO expiration. On that moment, the RTO was at its minimum
allowed value (200 ms for this Linux TCP implementation [5]) so, given that no ACK
is received within 200 ms, the 1st segment is retransmitted. Furthermore, and
following the slow start procedure, the value of snd_cwnd drops to one. However, as
can be observed, the TCP sender does not receive confirmation that this segment
arrived correctly at the receiver, so it has to be retransmitted again up to four times
(each of them doubling the RTO, as specified in the backoff procedure).

1
2
3
4
5
6
7
8

1
2
3

5

ack3

ack4

rtx1

rtx1

rtx1

rtx1

rtx1
ack4

rtx1
ack4 + sack5ack4+sack5

rtx4
rtx6
rtx7
rtx8

ack6

ack8

rtx4
rtx6

rtx7
rtx8

ack9
ack8

ack6

1

6

2

3

4

5

7

8

200 msec

400 msec

800 msec

1600 msec

TX TXRX RX

rtx8

57 sec

1
2
3
4
5
6
7
8

1
2
3

5

ack3

ack4

rtx1

rtx1

rtx1

rtx1

rtx1
ack4

rtx1
ack4 + sack5ack4+sack5

rtx4
rtx6
rtx7
rtx8

ack6

ack8

rtx4
rtx6

rtx7
rtx8

ack9
ack8

ack6

1

6

2

3

4

5

7

8

200 msec

400 msec

800 msec

1600 msec

TX TXRX RX

rtx8

57 sec

0 15 35 55 75 95 115

Time (s)

Sequence Number (B)

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

Time/Sequence Graph

0 15 35 55 75 95 115

Time (s)

Sequence Number (B)

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

Time/Sequence Graph

Fig. 2 Segment interchange and idle time of 57 seconds on a TCP connection

TABLE II. EVOLUTION OF THE VARIABLES IN A TCP CONNECTION LEADING TO A 57-SECOND IDLE TIME
Situatio

n Event srtt
(ms) mdev (ms) snd_cwn

d Snd_ssthresh retransmits backoff packets_out

1 Start 30 10 8 ? 0 0 8
2 Rtx 1 (rto) 30 10 1 4 1 1 8
3 Rtx 1 (rto) 30 10 1 4 2 2 8
4 Rtx 1 (rto) 30 10 1 4 3 3 8
5 Rtx 1 (rto) 30 10 1 4 4 4 8
6 Rx ack(4) 400 750 2 4 4 4 5

7 Rx ack(6) 350 660 3 4 4 4 3
8 Rx ack(8) 310 580 4 4 4 4 1

After the reception of the acknowledgment of that 1st segment (situation #6), the

TCP sender still has more data to be confirmed by the receiver, and therefore, the
calculation of the RTO is done using the previous backoff value (which was 4),
although the segment that caused it to increase has already been confirmed.

The retransmissions of the 4th, 6th, 7th and 8th segments don’t affect the set of
variables which are being analyzed, and are triggered upon the reception of a new
ACK while being retransmitting. These new acknowledgments cause the snd_cwnd to
increase up to 4.

When the acknowledgment for the 7th segment is received, RTO’s value is
updated to 57 seconds, as observed in Fig. 2. This value is derived from the following
expression, applying the corresponding values (situation #8 in Table II) for all the
variables:

() backoff
cwndsndmdevsrttrto 2

2
1

4
114

1_ 





 +++=

−

(1)

This expression is slightly different from the one which is specified in the standard
(multiplied by a 5/4 and by a factor that depends on the contention window), so that it
is more suitable for the Linux OS characteristics.

Unfortunately, the acknowledgment for this retransmission is lost (that is, four
consecutive 802.11 frames arrived erroneously at the transmitter) and therefore the
8th segment is retransmitted again 57 seconds after its previous attempt. It is
important to remark that the TCP sender still stays at the loss state so, despite not
having filled the congestion window, it is not able to transmit any new segment.
Moreover, it does not seem reasonable to maintain the backoff factor upon the
reception of new acknowledgments, even though the segment that brought about this
high value has already been confirmed. Hence, it is likely that modifying this
approach, by cleaning the backoff variable upon the acknowledgment of the first lost
segment, will help to alleviate the low throughput that has been observed.

3 Conclusion

In this work a deep analysis of the behavior of TCP over Wireless LAN has been
performed, with special attention on the impact of wireless error bursts over its
performance. It goes without saying that a lot of researching effort is being put on the
enhancement of TCP wireless performance. However, most of the studies lack from
an experimental approach and assume a TCP acknowledgment error free arrival,
focusing on the improvement of the Fast Recovery algorithm. In this work we have
shown that, on a real scenario, TCP acknowledgment losses can not be neglected, as
they may lead to long idle times, causing a high performance degradation.

This study can be seen as a contribution towards the identification of new
modifications to be done to the TCP RTO estimation procedure, adapting it to hostile

wireless channels. In particular, resetting the backoff variable after the
acknowledgement of the segment that caused it, might bring substantial
improvements on the performance.

Although this work has been carried out over an IEEE 802.11b platform, its results
can be easily extrapolated to other wireless infrastructures, such as IEEE 802.11g or
Universal Mobile Telecommunications System (UMTS)

References

1. A. Chockalingam, M. Zorzi, and R. R. Rao, "Performance of TCP on Wireless Fading Links
with Memory," in Proc. IEEE ICC´98, vol. 2. Atlanta, June 1998, pp. 595-600.

2. Yang, R. Wang, F. Wang, M. Y. Sanadidi, and M. Gerla, "TCPW with Bulk Repeat in Next
Generation Wireless Networks," in Proc. ICC´03. Anchorage, Alaska, May 2003.

3. Floyd and T. Henderson, "The NewReno Modification to TCP´s Fast Recovery Algorithm,
RFC 2582," April 1999.

4. Muñoz, M. García, J. Choque, R. Agüero, and P. Mähönen, "Optimizing Internet Flows over
IEEE 802.11b Wireless Local Area Networks: A Performance Enhancing Proxy Based on
Forward Error Correction," IEEE Communications Magazine, vol. 39, nº 12, pp. 60-67,
December 2001.

5. Sarolahti and A. Kuznetsov, "Congestion Control in Linux TCP," in Proc Usenix 2002.
Monterey, CA, USA, June 2002, pp. 49-62.

6. Fall and S. Floyd, "Simulation-based Comparisons of Tahoe, Reno, and SACK TCP," ACM
Computer Communication Review, vol. 25 nº 3, pp. 5-21, July 1996.

7. Nagle, “Congestion Control in IP / TCP Internetworks, RFC 896,” January 1998.

