
A Key Management Scheme for Large Scale
Distributed Sensor Networks

Yong Ho Kim?, Hwaseong Lee, Dong Hoon Lee, and Jongin Lim

Center for Information Security Technologies (CIST),
Korea University, Seoul, Korea

{optim, hwaseong, donghlee, jilim}@korea.ac.kr

Abstract. To guarantee secure communication in wireless sensor net-
works, secret keys should be securely established between sensor nodes.
Recently, an efficient security mechanism was proposed for large-scale
distributed sensor networks by Zhu, Setia, and Jajodia. In their scheme,
each node uses a single initial key to establish pair-wise keys and erases
the key after key setup. If the key is compromised during key setup,
however, the entire network will be compromised. Therefore, the per-
formance overhead during key setup is very important for the speedy
key establishment. In this paper, we propose a modified scheme which
reduces the performance overhead during key setup and has provable
security after key setup.

Keywords: security, key management, wireless sensor networks

1 Introduction

Wireless sensor networks are well recognized as a new paradigm for future com-
munication. Sensor networks consist of a huge number of battery powered and
low-cost devices, called sensor nodes. Each sensor node is equipped with sensing,
data processing, and communicating components [1, 3].

To provide secure communication within wireless sensor networks, it is essen-
tial that secret keys should be securely established between sensor nodes. The
shared secret key may later be used to achieve some cryptographic goals such
as confidentiality or data integrity. However, due to limited resources of sensor
nodes, the traditional schemes such as public key cryptography are impracti-
cal in sensor networks. Furthermore, the position of sensor nodes (hence, the
neighbors of nodes) cannot be pre-determined since they are randomly deployed
in unattended areas. Due to this restriction, most schemes are based on the
pre-distribution of potential keys.

Another security concern in sensor networks is resilience against node cap-
ture. Sensor nodes are deployed randomly in hostile areas where they are exposed
to the risk of physical attacks. For instance, an attacker can capture sensor nodes
to obtain secret information stored within memory of the nodes. The ultimate
? This work was supported by the Brain Korea 21 Project in 2006

goal may be to acquire perfect resilience [4] which means that even if a node is
captured, it provides no information about links that it is not directly involved in.

Related Works. When we consider the design of key distribution schemes,
the simplest method is to embed a single network-wide key in the memory of all
nodes before nodes are deployed. In this case, however, the entire network can
be compromised if a single node is captured. Another extreme method is that
each node in a network of n nodes shares a unique pair-wise key with every other
node in the network before deployment. This requires memory for n − 1 keys
for each sensor node. Therefore, these two methods are unsuitable for wireless
sensor networks.

Perrig et al. presented SPINS [10], security protocols for sensor networks. In
SPINS, each node shares a secret key with a base station and establishes its pair-
wise keys through the base station. This architecture satisfies the small memory
requirement and offers perfect resilience against node capture. However, because
the base station should participate in every pair-wise key establishment, SPINS
requires significant communication overhead and does not support large-scale
networks.

Zhu et al. presented LEAP [11], an efficient key management method. All the
nodes in LEAP save an initial key before deployment. After deployment, each
node establishes a pair-wise key from the initial key and then erases the initial
key securely. Although LEAP is very efficient, it must assume that it is difficult
for the initial key to be exposed by node capture during initial key setup.

Eschenauer and Gligor presented a random key pre-distribution scheme for
pair-wise key establishment [8] in which a key pool is randomly selected from
the key space and a key ring, a randomly selected subset from the key pool,
is stored in each node before deployment. A common key in two key rings of
a pair of neighbor nodes is used as their pair-wise key. Their scheme has been
subsequently improved by Chan et al. [4], Liu and Ning [9], and Du et al. [6, 7].
However, these schemes require a significant pre-computation phase as well as a
large amount of memory.

Contributions. The main contributions of our approach can be summarized
as follows:

– Reduced time and cost to establish pair-wise keys. The security of LEAP de-
pends on the success of attacks during key setup. For this reason, the per-
formance overhead of key setup is very important for security as well as
efficiency. Our scheme reduces the possibility of being attacked and con-
sumes less energy by cutting down the time and saving the energy during
key establishment.

– Provable security. We prove the security of our scheme after key setup. The
proof is based on one outlined by Bellare et al. [2]. Assuming that a message
authentication code(MAC) is secure against forgery under a chosen-message

attack, our scheme has provable security.

– Scalability. Our scheme is suitable to a large network. We note that other
schemes [4, 10] with perfect resilience against node capture are not scalable.
To be scalable, SPINS [10] requires significant communication overhead be-
cause of the participation of a base station in key setup, and the scheme by
Chan et al. [4] requires a large amount of memory for each node.

Organization. The rest of the paper is organized as follows. Section 2 shows
the notation used in this paper. We give an overview of LEAP in Section 3.
We propose our scheme and analyze its performance and security in Section 4.
Finally, we conclude our paper in Section 5.

2 Notation

We list the notations used in the paper below:

Notation Description
n the expected number of neighbor nodes within communica-

tion radius of a given node
|| concatenation operator

KI the initial key
Ku the master key of u
Kuv the pair-wise key between u and v

E(K, ·) symmetric encryption function using key K
F (K, ·) pseudo-random function using key K

MAC(K, ·) message authentication code using key K

3 LEAP [11]

Unlike previous schemes, LEAP supports four types of keys for each node. The
four types of keys are as follows: an individual key, a pair-wise key, a cluster
key, and a group key. First, an individual key is a shared key between each node
and the base station. Second, a pair-wise key is shared between a node and its
neighbor node which is only one-hop away. Third, a cluster key is a key between
a node and its all neighbor nodes which are also only one-hop away. Last, a
group key is one key shared by all nodes in the network.

We now give a detail of each establishment of four keys. An individual key
is pre-loaded into each node before deployment; the security of this key is not
considered since we assume the base station to be secure. A group key is also
pre-loaded and then updated using cluster keys. A cluster key is established and
updated, using pair-wise keys. Therefore, it is the security of pair-wise keys that
guarantees the security of LEAP.

Now, we will describe the four phases to establish pair-wise keys for sensor
nodes.

Key Pre-distribution. Before nodes are deployed, the same initial key KI is
stored on each node. Each node can derive a master key Ku = F (KI , u), using
the initial key with a pseudo-random function.

Neighbor Discovery. After deployment, each node broadcasts a message con-
sisting of its ID and a nonce it selects randomly. In return, neighbor nodes
retransmit their ID and MAC that is constructed using their master key. The
source is authenticated by verifying the MAC.

u −→ ∗ : u, Nonceu

v −→ u : v,MAC(Kv, Nonceu||v)

Pair-wise Key Establishment. After source authentication, the pair-wise key
in each node is established through information from the neighbor nodes and
a pseudo-random function. Nodes u and v use their pair-wise key as Kuv =
F (Kv, u).

Key Erasure. After key setup, the initial key KI and all the master keys of
neighbor nodes are completely erased.

When a pair-wise key is established in LEAP, there is an assumption that
Tmin > Test. The Tmin is the minimum time that it takes an attacker to obtain
secret information from a sensor node. The Test is the time required for the
deployed nodes to actually detect their neighbor nodes. This assumption shows
that pair-wise keys are established before an attacker captures some nodes and
obtains critical information from them. It is needed to check whether this as-
sumption is practicable or not. The transmission rate is 19.2kbps [5] and the
transmitted message is very short (a total of 12 bytes when the node ID and its
MAC are 4 bytes and 8 bytes respectively). Hence, the assumption is persuasive
in the case where the nodes are initially deployed in the network.

4 Our Scheme

In LEAP, the entire network will suffer a severe loss if an initial key is exposed to
an attacker during key setup. Hence, early key establishment must be completed
quickly in order to strengthen the security of LEAP.

4.1 Initial Key Setup

In LEAP, each node executes communication at O(n) until the initial key is
deleted, whereas in our scheme, the communication required in each node is a
single broadcast in the neighbor discovery phase. In general, more time and more

energy are required in communicating than computing the symmetric functions.
In an example of SPINS [10], the communication cost is about 97% while com-
putation cost is just less than 3%. Therefore, it is much more efficient to reduce
the communication cost than to improve the computation cost. Therefore our
experiment is very meaningful. The four phases to establish a pair-wise key are
as follows:

Key Pre-distribution. In our scheme, like LEAP, a single initial key KI is
pre-loaded in all the nodes before deployment. A sensor node u computes its
master key Ku = MAC(KI , u) that will be used later to establish pair-wise keys
with new nodes.

Neighbor Discovery. The sensor node u selects a nonce Nonceu randomly
and computes a MAC value such as MAC(KI , Nonceu||u). Then, the sensor node
broadcasts a message consisting of its node ID, Nonceu, and MAC(KI , Nonceu||u).
After this phase, all the nodes in the network can obtain the IDs of their neighbor
nodes. As each node verifies the MACs of its neighbor nodes, it can authenticate
the initial key and their IDs. In LEAP, the master key of each node is used as
a MAC key but it is sufficient to use the initial key as the MAC key because
an attacker who cannot derive a master key is also unable to know the initial key.

Pair-wise Key Establishment. Collecting the IDs of its neighbor nodes, node
u can compute Kuv = MAC(KI , u||v) to use as a pair-wise key with its neigh-
bor node v (if u < v). The pair-wise key is directly derived from the initial key
without computing the master key of its neighbor nodes.

Key Erasure. In this phase, each node erases the initial key.

This scheme improves the security and efficiency of LEAP. In the neighbor
discovery phase, our scheme requires a single broadcast so that the amount of
communication is reduced considerably. Also, in LEAP, each node has to derive
the master key of neighbor nodes to verify their MACs while this is not necessary
in our scheme in that we generate the MAC with an initial key. Hence, in our
scheme, both communication and computation costs are reduced.

Now that the broadcast message includes MAC values, the neighbor nodes
can verify whether the party is sound through each other MAC values. In case
that key confirmation is needed between the neighbor nodes, any future messages
encrypted and authenticated with the pair-wise key can implicitly achieve the
same effect.

4.2 Node Addition after Initial Key Setup

For a very large sensor network, node addition must be feasible anytime. In
LEAP, it is difficult for a new node to establish a pair-wise key with old nodes
because old nodes erased the initial key after key setup. However it is possible

to establish a pair-wise key with old nodes using the master key derived from
the initial key and their ID.

w −→ u : w,Noncew

u −→ w : u, MAC(Ku, Noncew||u)

A new node w is deployed with the initial key KI pre-loaded. The new
node w detects its old neighbor node u and can establish the pair-wise key
Kwu = F (Ku, w) from master key Ku = F (KI , u) of u. This method does apply
to our scheme except the pair-wise key Kwu = MAC(Ku, w) between the new
node w and the old node u.

The new node can quickly establish the pair-wise key with working nodes
but not with sleeping nodes without some delay. The reason is that sleeping
nodes cannot respond to the request of the new node until their state changes
from sleeping mode to working one. If working nodes inform a new node of their
neighbor nodes, the new node can establish pair-wise keys in advance through
collecting IDs of sleeping nodes before sleeping nodes change their mode to
working one. In that case, it is needless for new node to save the initial key until
sleeping nodes convert to working mode. Therefore, the new node can establish
pair-wise keys with its neighbor old nodes. In our scheme, the addition method
of LEAP can be used since old nodes have the master key derived from the initial
key and their ID.

4.3 Performance Analysis

Zhu et al presented a technical report about LEAP [12]. In this report, they
implemented LEAP with the following algorithms on the TinyOS platform. First,
the linear-feedback shift register(LFSR) was employed to generate the pseudo-
random numbers. The RC5 block cipher was used for encryption along with
CBC-MAC.

Also, MAC replaced both the pseudo-random functions and the one-way
functions in order to lessen the space of code in the ROM. As a result, RC5 was
used for all the operations - the encryption function, CBC-MAC, the pseudo-
random function, and the one-way function. Our scheme also employs a MAC
function in place of a pseudo-random function for the same reason.

Comparing the computation cost during initial key setup, LEAP needs the 2n
operations for the MAC function and another 2n operations for the F function.
Since the F function in LEAP was replaced with the MAC function, the total
number of operations for the MAC function would eventually be 4n, while the
total number of operations for the MAC function in our scheme is just 2n + 1.
Conclusively, in our scheme, computation overhead is two times more efficient
than in LEAP and the efficiency of communication overhead is also about 0.75n
times better. The table below compares the two schemes when the node ID and
the nonce are each 4 bytes and the MAC is 8 bytes.

Table 1. Comparison of Communication Overhead.

Broadcast Communication Unicast Communication

LEAP 1× (8 byte) n× (12 byte)

Our Scheme 1× (16 byte) 0

4.4 Security Analysis

In both schemes, LEAP and our scheme, the entire network will sustain a serious
loss under the situation of exposing the initial key. However, our scheme has
less probability of exposing the initial key because the performance overhead in
our scheme, including the computation and communication overhead, is more
improved than in LEAP during the key setup.

In our scheme, after key setup, the information in captured sensor nodes can-
not be used to find any information about shared keys between non-captured
sensor nodes. We assume that an attacker captures nodes in which initial key has
been erased after key setup. Hence, she cannot acquire KI , but can obtain MAC
values which were generated using KI . In this scenario, she attempts to acquire
master keys or pair-wise keys of non-captured nodes by computing them either
directly or indirectly. First, if she computes KI from the master key MAC(KI , u

′)
or the pair-wise key MAC(KI , u

′||v′) of a captured node u′, she could acquire
master key MAC(KI , u) or pair-wise key MAC(KI , u||v) of a non-captured node
u, where v′ is a neighbor of u′ and v is a neighbor of u. However, this is impos-
sible due to the one-way property of MAC functions. Second, if there are some
methods for indirectly computing only master key MAC(KI , u) or pair-wise key
MAC(KI , u||v) without using KI , our scheme will be insecure.

To formally prove the security of our scheme, we first review the security
of message authentication codes defined in [2]. A message authentication code
takes as inputs a key K and a message M , and outputs a string σ.

MAC : Key(MAC)×Dom(MAC) −→ {0, 1}k

The key K is shared between a sender and a receiver. When the sender wants to
send a message M it computes σ = MAC(K, M) and transmits the pair (M,σ) to
the receiver. The receiver re-computes MAC(K, M) and verifies that this equals
the value σ. An attacker is allowed to mount a chosen message attack(cma) in
which it can obtain MACs of messages of its choice. If it outputs a valid pair
(M,σ) which was not a query to its MAC oracle, then it will be considered
successful.

Definition 1. Consider the following experiment.

Experiment Forgecma
MAC(A)

K
R← Key(MAC)(k)

(M,σ)← AMAC(K,·)

If MAC(K, M) = σ and M was not a query of A to its oracle
then return 1 else return 0

Now let Succcma
MAC(A)

def
= Pr[Forgecma

MAC(A) = 1]. Then an advantage function of
MAC is defined as follows:

Advcma
MAC(q, t)

def
= max

A
{Succcma

MAC(A)}

where the maximum is taken over all A with execution time t and at most q
queries to the oracle MAC(K, ·). A message authentication code will be secure
against chosen message attack if the advantage is negligible in the security pa-
rameter k.

We define the security of key management schemes against node capture
in sensor networks. An attacker is allowed to mount a chosen node capture at-
tack(cna) in which it can obtain master keys and pair-wise keys of captured
nodes. If it outputs a key of a master key or a pair-wise key of an non-captured
node, then it will be considered successful.

Definition 2. We model wireless sensor networks as a directed graph G =
(N,E) where N = {u1, u2, · · · , u|N |} and E = {〈u, v〉 : u, v are neighbors and
u < v}. Let n be the expected degree of a node in G.

Definition 3. A sensor key management scheme (M) is secure against chosen
node capture attack if the following advantage is negligible in the security pa-
rameter k. An attacker is allowed to use oracle M(G,K, ·) which for an input
query u′ ∈ N , responds str ∈ {0, 1}k(1+n) which contains (u′,MAC(K, u′)) and
(u′, v′, σ′) where σ′ = MAC(K, u′||v′) if 〈u′, v′〉 ∈ E or σ′ = MAC(K, v′||u′) if
〈v′, u′〉 ∈ E.

Experiment Comprocna
M (B)

K
R← Key(M)(k)

Generate G as defined in Definition 2.
G is given to B
(u, σ) ∨ (u, v, σ)← BM(G,K,·)

If (((u, σ) ∧MAC(K, u) = σ) ∨ ((u, v, σ)
∧((MAC(K, u||v) = σ ∧ u < v) ∨ (MAC(K, v||u) = σ ∧ v < u))))
∧(u, v were not a query of B to its oracle)

then return 1 else return 0

Now let Succcna
M (B)

def
= Pr[Comprocna

M (B) = 1]. Then an advantage function of
M is defined as follows:

Advcna
M (q′, t′)

def
= max

B
{Succcna

M (B)}

The maximum is taken over all B with execution time t′ and at most q′ queries
to the oracle.

The following theorem means that she cannot compute MAC values of non-
captured nodes from MAC values of captured nodes if the message authentication
code is secure.

Theorem 1. Let MAC : Key(MAC) × Dom(MAC) −→ {0, 1}k be a family of
functions, and let q, t, q′, t′ ≥ 1 be integers. Let M be the proposed scheme. Then

Advcna
M (q′, t′) ≤ Advcma

MAC(q, t)

where q ≤ q′ · (1 + n) and t = t′ + O(k).

Proof) Let B be an attacker breaking M. We construct an attacker AB breaking
MAC. Consider the following experiment.

Attacker A
MAC(K,·)
B

Generate G = (N,E)
G is given to B
Run attacker B, replying to its oracle queries as follows:
While B asks a query u′ to the oracle do

Generate str ∈ {0, 1}k(1+n) for a expected degree n of a node such that
1. (u′,MAC(K, u′)) is in str,
2. for each 〈u′, v′〉 ∈ E, (u′, v′,MAC(K, u′||v′)) is in str, and
3. for each 〈v′, u′〉 ∈ E, (v′, u′,MAC(K, v′||u′)) is in str.

Return str to B as an answer
EndDo
B stops and outputs (u, σ) or ((u, v, σ) or (v, u, σ))
A returns the output of B

Here AB is running B and provides answers to B’s oracle queries. When B asks
a node capture query u′, attacker AB needs to return str which is the memory
information of node u′. B returns (u, σ) or ((u, v, σ) or (v, u, σ)) which is a valid
forgery of MAC. So, we have

Succcna
M (B) ≤ Succcma

MAC(AB). (1)

Inequality of the theorem is obtained as follows:

Advcna
M (q′, t′) = max

B
{Succcna

M (B)}

≤ max
B
{Succcma

MAC(AB)}

≤ max
A
{Succcma

MAC(A)}

= Advcma
MAC(q, t).

The maximum, in the case of B, is taken over all adversaries whose resources
are q′, t′. In the second line, we apply Inequality (1). �

5 Conclusion

We presented a new key scheme for large-scale distributed sensor networks. Our
scheme has the following properties. First, compared to LEAP, our scheme is sig-
nificantly more efficient and secure. Second, we prove the security of our scheme
after key setup. Finally, our scheme supports large-scale networks because per-
formance overhead in our scheme is independent of network size. Unlike other
scheme [4, 6–9], both our scheme and LEAP have perfect resilience against node
capture after key setup. However, since they are weak during key setup, this
paper was focused on designing an efficient key establishment scheme.

References

1. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on
sensor networks”, In Proceedings of the IEEE Communications Magazine, Vol.
40, No. 8, pp. 102-114, August 2002.

2. M. Bellare, J. Kilian, and P. Rogaway, “The security of the cipher block chain-
ing message authentication code”, Journal of Computer and System Sciences,
Vol. 61, No. 3, pp. 362-399, December 2000.

3. D. W. Carman, P. S. Kruus, and B. J. Matt, “Constraints and approaches
for distributed sensor network security”, NAI Labs Technical Report 00-010,
September 2000.

4. H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes for
sensor networks”, In Proceedings of the 2003 IEEE Symposium on Security
and Privacy, pp. 197-213, May 2003.

5. Crossbow technology inc. URL: http://www.xbow.com.
6. W. Du, J. Deng, Y. S. Han, S. Chen, and P.K. Varshney, “A Key Manage-

ment Scheme for Wireless Sensor Networks Using Deployment Knowledge”, In
Proceedings of the IEEE INFOCOM ‘04, pp. 586-597, March 2004.

7. W. Du, J. Deng, Y. S. Han, P.K. Varshney, J. Katz, and A. Khalili, “A Pairwise
Key Pre-distribution Scheme for Wireless Sensor Networks”, In Proceedings
of the ACM Transactions on Information and System Security, pp. 228-258,
August 2005.

8. L. Eschenauer and V. D. Gligor, “A key-management scheme for distributed
sensor networks”, In Proceedings of the 9th ACM conference on Computer and
communications security, pp. 41-47, November 2002.

9. D. Liu, P. Ning, and R. Li, “Establishing Pairwise Keys in Distributed Sen-
sor Networks”, In Proceedings of the ACM Transactions on Information and
System Security, pp. 41-77, February 2005.

10. A. Perrig, R. Szewczyk, V. Wen, D. Cullar, and J. D. Tygar, “SPINS: Security
protocols for sensor networks”, In Proceedings of the 7th Annual ACM/IEEE
Internation Conference on Mobile Computing and Networking, pp. 189-199,
July 2001.

11. S. Zhu, S. Setia, and S. Jajodia. “LEAP: Efficient Security Mechanisms for
Large-Scale Distributed Sensor Networks”, In Proceedings of the Tenth ACM
conference on Computer and Communications Security, pp. 62-72, October
2003.

12. S. Zhu, S. Setia, and S. Jajodia. The technical report about LEAP, URL:
http://www.cse.psu.edu/ ∼ szhu/research.htm, August 2004.

