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Abstract. This paper addresses the displacement of a base station with 
optimization approach. A genetic algorithm is used as optimization approach. A 
new representation that describes base station placement, transmitted power 
with real numbers and new genetic operators is proposed and introduced. In 
addition, this new representation can describe the number of base stations. For 
the positioning of the base station, both coverage and economy efficiency 
factors were considered. Using the weighted objective function, it is possible to 
specify the location of the base station, the cell coverage and its economy 
efficiency. The economy efficiency indicates a reduction if the number of base 
stations for cost effectiveness. To test the proposed algorithm, the proposed 
algorithm was applied to homogeneous traffic environment. Following this, the 
proposed algorithm was applied to an inhomogeneous traffic density 
environment in order to test it in actual conditions. The simulation results show 
that the algorithm enables the finding of a near optimal solution of base station 
placement and it determines the efficient number of base stations. Moreover, it 
can offer a proper solution by adjusting the weighted objective function. 

1. Introduction 

Base station placement is a highly important issue in achieving high cell planning 
efficiency. It is expected that third generation wireless systems will provide a great 
variety of services. Thus, cell planning should be carried out considering 
inhomogeneous traffic. The placement of base stations depends on the traffic density, 
channel conditions, interference scenario, the number of base stations, and the other 
network planning parameters; as a result, it is a very complex issue. A genetic 
algorithm is useful for solving this type of complex problem. This method represents 
feasible solutions in terms of individuals with genomes, and determines which 
individuals could survive in a certain criterion formulated to maximize (or minimize) 
a given objective function. In several studies, a genetic approach has been used to find 
the best possible base station placement [1, 2]. Binary string representation is applied 
in [1], and a hierarchical approach is considered in [2]. However, those approaches 
have a representation limit, and a lot of trials can not guarantee an optimum result, as 
the possible base station positions are discrete. 



 

In this paper, a new representation describing base station placement is suggested, and 
is one which uses a real number and introduces new genetic operators. The proposed 
representation can determine not only the locations of the base stations but also the 
number of base stations. 
In addition, the transmitted power of base station is considered as a factor of the 
propposed algorithm. To consider both coverage and the economy efficiency, an 
objective function with a weighted factor is established. The proposed algorithm is 
verified by applying it to homogeneous traffic density case as an obvious optimization 
problem. In addition, the approach is tested in an inhomogeneous traffic density 
environment. 

2. Overview of Genetic Algorithm 

Like other computational systems inspired by natural systems, genetic algorithms 
have been used in two ways: as techniques for solving technology problems, and as 
simplified scientific models that can answer questions about nature [3]. Genetic 
algorithms (GA) are evolutionary optimization approaches which are an alternative to 
traditional optimization methods. GA approaches are most appropriate for complex 
non-linear models where location of the global optimum is a difficult task. It may be 
possible to use GA techniques to consider problems which may not be modeled as 
accurately using other approaches. Therefore, GA appears to be a potentially useful 
approach. GA performance will depend very much on details such as the method for 
encoding candidate solutions, the operator, the parameter setting, and the particular 
criterion for success. As for any search, the way in which candidate solutions are 
encoded is very important. Many genetic algorithm applications use fixed-length, 
fixed-order bit strings to encode candidate solution. However the algorithm proposed 
in this paper uses real-valued encoding schema to represent solutions. In GA, feasible 
solutions are modeled as individuals described by genomes. A genome is an 
arrangement of several chromosomes, which symbolize characteristics of the 
individual. Population is the total amount of individuals. Some of them can survive 
and others will die in the next generation by their own fitness and a given selection 
rule. Fitness is evaluated by a given objective function. Genetic operations such as 
crossover and mutation are performed to produce new individuals in subsequent 
generations. The crossover operator defines the procedure of generating a child from 
its parent’s genomes. The mutation is carried out chromosome by chromosome, and 
its exploration and exploitation helps the algorithm to avoid local optimum. If the 
current population accepts the given termination condition, new generation is no 
longer produced. Otherwise, dominant individuals are selected and genetic operators 
reproduce new individuals from them. The best individual of each generation is 
transferred over to the next generation if elitism is adopted.  
The theoretical basis of GA relies on the concept of schema. A schema is defined as 
the similarity of templates describing a subset of genomes with similarities in certain 
chromosomes. Schemata are available to measure the similarity of individuals. John 
Holland’s schema theorem and building-block hypothesis [4] have often been used to 
explain how the GA works. According to the schema theorem, short, low-order, and 



  

above-average schemata receive exponentially increasing trials in subsequent 
generations. This proves that the individuals with high fitness will have a high 
survival probability when a suitable representation is applied. The building-block 
hypothesis suggests that the GA will perform well when it is able to identify above-
average-fitness and low-order schemata and recombine them to produce higher-order 
schemata of higher fitness. In sum, individuals with similar characteristics must be 
represented by a similar genotype. 

 

3. Proposed Algorithm for Base Station Placement 

The processing of the proposed algorithm is implemented in a two-dimensional map; 
therefore representation in binary form is difficult to present for the genome which 
describes the number of base stations and the location of the base stations. For a good 
approximation, it is necessary to have a longer genotype. A real value representation 
is more efficient than the representation of a binary genome in this case. 
Consequently, in this paper the genotypes that have real value representations for the 
optimization algorithm were chosen. Given the allowable transmitted power of a cell 
site in a traffic map, this chapter introduces GA that optimizes the cell site location, 
the number of cell sites and the transmitted power. A GA that works well in terms of 
the base station placement problem is proposed. The main characteristics considered 
for the development of the proposed algorithm are: 
<1> The genome must represent all of the base station locations, and the genotype 

can describe the number of base stations as well as the position of the base 
station. 

<2> A chromosome expresses one base station position. 
<3> The number of possible base station locations must be unlimited; therefore, there 

are infinite candidates of base station locations. 
<4> Similar genotypes represent the genomes of the closely located base stations. 
An algorithm satisfying the above factors is consistent with the building-block 
hypothesis and schema theorem. 
The three things that must be defined in order to solve a problem through genetic 
algorithms are as follows: 
 
• Define a representation 

• Define the genetic operators 

• Define the objective function 

How one defines a representation, genetic operators, and objective function 
determines the algorithm. It is essential to design the genetic algorithm by considering 
<1>~<4>. The following sections explain the proposed algorithm in detail. 

 



 

3.1 Representation 

Fig. 1 illustrates the representation of the genomes. A genome is denoted as a vector 
),,( 1 Kccg L=  where ),,( kkkk pwryxc =  is the chromosome for the k-th base 

station position. This method fulfills <1> and <2>. K is the maximum number of base 
stations, and all of these can be located in the x-range ],[ maxmax XX−  and y-range 

],[ maxmax YY−  with origin )0,0( .  
 

 
 

Figure 1.   Representation of the genome for the placement of the base station  

If the position of a base station is not defined, it is expressed as NULL. This method 
applies for a case in which there are fewer base stations than in K, so that it fulfills 
<1>. )(gn  is defined as the number of EXISTENCE in g . In order to satisfy <3> and 
<4>, kx , ky and 

kpwr  must be real numbers. M is assumed as population size. 

3.2 Genetic Operators (Crossover and Mutation) 

It is necessary to design an initialization and a termination method, a crossover and 
mutation operator, and a selection strategy in order to define the reproduction 
procedure. 
A proper initial population can provide a fast convergence to the optimum point. It is 
desirable for a user to define initial positions of base stations intuitively. The first 



  

individual, ),( 111 kkk yxc =  for Kk ,,1L= , is determined by a user and other 
individuals (for Mm ,,2 L= ) are determined by the following rule: If NULL1 =kc , 

then NULL=mkc  with probability I
nP  or ),( 21 υυ=mkc  with probability I

nP−1 , 
where ),( maxmax1 XXU −=υ and ),( maxmax2 YYU −=υ . If kc1  is defined ( NULL1 ≠kc ), 

then NULL=mkc with probability I
vP−1  or ),( 2111 kkkmk yxc ξξ ++= with 

probability I
vP , where ),0(, 2

21 SN σξξ = . ),( baU  is a uniformly distributed random 
variable between a and b. ),( 2σxN  denotes a Gaussian distributed random variable 

with mean x  and variance 2σ . I
nP  and I

vP  indicate the probability of producing 
NULL from NULL and that of producing EXISTENCE from EXISTENCE, 
respectively. However, it may require further trials in order to determine the global 
optimum if the initial value, as user defined, is close to the local optimum. When the 
user does not define any initial positions, it is decided that NULL=mkc  with I

nP~  or 

),( 21 υυ=mkc  with probability I
nP~1−  for Mm ,,1L= , where I

nP~  denotes the 
probability of producing NULL. 
A termination criterion is used to determine whether or not a GA is finished. 
Generation, convergence, or population convergence can terminate the procedure of 
genetic algorithm. The easiest scheme is termination upon generation. When the 
number of current generations is larger than the specified number of generations, the 
algorithm is finished. Termination upon convergence compares the previous best-of-
generation to the current best-of-generation. If the current convergence is less than the 
requested convergence, the reproduction procedure is ceased. Termination upon 
population convergence compares the population average to the score of the best 
individual in the population.  
In the proposed application, one child crossover operator is used. A single child 

child
kc is born from its father and mother, dad

kc  and mom
kc . Fig. 2 shows the procedure 

of one child crossover operation in the proposed algorithm. If one of the parents is 
NULL, the child receives the other parent’s attributes. Otherwise, the child is 
generated by (1), where Cσ  is the parameter of the crossover operation. 

|| mom
k

dad
k xx −  and || mom

k
dad
k yy −  can be used as a measure of closeness. This 

method is based on the fact that if the attributions of both parents are similar, the 
child’s attributions are also similar to its parents.  
Mutation is performed chromosome by chromosome with probability mutP . Fig. 3 
shows the procedure of the mutation operation in the proposed algorithm. The 
mutation is very close to the initialization scheme with the user-defined base station 
position. If =mkc NULL, redefine =mkc NULL with probability nP  or 

=mkc ),( 21 υυ  with probability nP−1 . If ≠mkc NULL, redefine =mkc  
),( 21 χχ ++ mkmk yx  with probability vP  or =mkc NULL with probability vP−1 , 

where 1χ  and 2χ  are Gaussian distributed random variables with zero mean and 

variance 2
mσ . mutP  and 2

mσ  are the parameters of the mutation operation. 



 

A roulette wheel method is applied for the selection scheme. This selection method 
chooses an individual based on the magnitude of the fitness score relative to the rest 
of the population. The higher the score, the more selective an individual will be. Any 
individual has a probability p of the choice where p is equal to the fitness of the 
individual divided by the sum of the fitness of each individual in the population. 
Therefore, the individual with a high fitness level can survive with high probability. 

 

.
2

)(,0,
2

2
)(,0,

2

2momdad

22

momdad
child

2momdad

11

momdad
child

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=+

+
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=+

+
=

Ckkkk
k

Ckkkk
k

yyNyyy

xxNxxx

σζζ

σζζ

    (1) 

 
 
 

1 2 3 ... K

1 2 3 ... K

Dad

Mom

3 is NULL

3 is NULL

3 3& are NULL

3 3& are not NULL

3

3

NULL

3

child

 

Figure 2.  One child crossover operation 
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Figure 3.   Mutation operation 

 

3.3 Fitness Evaluation 

Fig. 4 illustrates the fitness evaluation procedure composed of an evaluator and an 
objective function. The evaluator calculates the covered traffic by using a propagation 
model, traffic map, and map for a path loss prediction. Cell area covered by the base 



  

stations is evaluated, and the covered traffic is then obtained. Considering coverage, 
power and economy efficiency, the objective function is defined as 
 

)()()()( GfGfGfGf eepptt ⋅+⋅+⋅= ωωω                                                                                     

 

evaluatorIndividual(genome)

traffic map

capacity
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propagation
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objective
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Figure 4.  Fitness evaluation 

where tf , pf and ef  are the objective functions for coverage, power and economy 
respectively, and these are defined as : 

traffictotal
trafficcovered

ratecoveragetrafficGft ==)(

powerBSMaximumAvailable
powerBSUsedpowerBSMaximumAvailablefitnesspowerBSGfp

−
==)(

 

BSsMaximumAvailable
BSsUsedBSsMaximumAvailable

fitnesseconomicGfe
−

==)(
 

As the covered traffic area widens corresponding to the given propagation model, 
)(Gft  increases. Conversely, )(Gfe  increases when fewer base stations are placed. 

Total fitness is calculated with tw , pw  and ew  subject to 1=++ ept www . The 
weights are determined by the user’s preference. If coverage is more important, then 
one may choose a large tw . Otherwise, a large ew  may be chosen to be more 
desirable using fewer base stations. Therefore, the purpose of optimization in this 
paper is to determine the maximum traffic coverage with the minimum number of 
base stations and minimum amount of power.  
This paper uses Hata’s model to obtain the coverage of the base station.  
It is possible for each individual can have K(the maximum number of base stations). 
To achieve the cell coverage, it is necessary to compute the path loss K times. If the 
population is large, the computing power required becomes very large. In this paper, 
to reduce processing time, Hata’s model was used, which is fast for computing the 
path loss with height information.  



 

4. Testify Algorithm 

To test the proposed algorithm, a one-tiered hexagonal cellular environment is 
considered, where traffic is distributed uniformly in each hexagonal cell whose radius 
is 2.5 km. In this case, the optimum position of the base station is in the center of 
hexagon, and the optimum number of base stations is obviously seven. A path loss 
prediction is carried out using the equation ( ) 4

00
−×= ddLL , where =0L 140 dB and 

=0d 2.5 km. As the generation increases, the base stations tend to be placed where 
they are optimum, and the number of base stations is also converged automatically. 
After the 1000th generation, a base station placement that guarantees 99.78% coverage 
can be determined.  

 

Figure 5. Homogenous traffic density for verification 

The maximum number of base stations depends on the width of the target area. 
The wider the target area, the more likely a greater amount of computing time for 
convergence is needed. Population size is the solution set. If the population size is 
large, the convergence of the solution can be quickest. However, in this case the total 
computing time is larger, as a processing of the propagation model will be needed for 
each individual in the population. As the individuals with low fitness values are 
removed, the initial values of base station’s maximum number and location are not 
related to the entire performance. Therefore, a null-to-null probability and Pos-to-Pos 
probability is loosely coupled with the fitness relationship, and the mutation 
probability in a real-value representation is the main factor in speeding the 
convergence.    
Fitness with various mutation probabilities in each generation is shown in Fig. 6.  The 
higher the mutation probability, the better the fitness. However, too high a mutation 
probability has a tendency to downgrade the performance, as it has a frequently 
changing possible solutions set. In the given homogenous traffic in Fig. 5, it is known 
that the best performance is shown when the mutation probability is 0.1. (Fig. 6) 
Fig. 7 shows that a high deviation of mutation will be good for performance.  
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Figure 6.  Fitness in various mutation 
probabilities 

0 100 200 300 400 500 600 700 800 900 1000
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Variable mutation std

Generations
Sc

or
es

99%
95%
90%
70%
60%
80%

 

 

Figure 7.  Fitness in various mutation 
deviations 

Figs. 8 to 12 show the optimization processing of base station displacements. Fig. 8 
shows the initial random location of the base stations, and in this case five base 
stations have covered 69% of the target area. In Fig. 9, seven base stations have 
covered 92% of target area with uniform selection, but it is still not optimized. Fig. 10 
is the result of a Roulette wheel selection, and this is an improvement over the 
uniform selection. It covers 93.85% of the target area. The Rank selection covers 
97.90%; this is a very good result. The Tournament selection offers 99.78% coverage. 
This is approximately at the optimization level. As fitness is sensitive in terms of 
selection schemes, optimization processing needs appropriate selection schemes.  
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Figure 8.  Initial base station location 
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Figure 9.  After the 1000th generation, base 
station location with uniform selection 
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Figure 10.  After the 1000th generation, 

base station location with Roulette wheel 
selection 

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000

-6000

-4000

-2000

0

2000

4000

6000

BS-placement after 1000 generations (Rank), 97.90% coverage

X-coordinates

Y
-c

oo
rd

in
at

es

 
Figure 11.  After the 1000th generation, 

base station location with Rank selection  
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Figure 12.  After the 1000th generation, base station location with Tournament selection  

5. Simulation Results 

To demonstrate if the proposed algorithm determines which positions match 
optimum location, a simulation was conducted on areas similar to that in Figs. 13 and 
14 (inhomogeneous traffic). The actual valued representations in this paper, as 
mentioned above, consist of the candidate location of the base station’s transmit 
power. Fig. 13 shows the altitude map of the target areas, and Fig. 14 shows the 
traffic density map. The traffic density is inhomogeneous and the target area for 
simulation is an urban pattern. The width of the area for simulation is 12Km x 12Km 
and the size of the bin is 120m x 120m. Therefore, the total number of bins is 10,000. 

 



0

50

100

150

200

250

300

350

400

-6000 60000

-6000

6000

0

    
Figure 13.  Altitude Map 
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Figure 14.  Traffic density map 

 
Figs. 15 and 16 show the location of the base station from one generation to 500 
generations, when the weighting condition of their object function 
is )1.0,0.0,9.0(),,( =ept ωωω . The assigned transmit power range of each base station is 
from 22.63 dBm to 39.36dBm, and its mean value is 33.84 dBm. In this case, the 
coverage rate is 82.62% and the fitness value is 0.74258. 
In the case where the condition of object function is )1.0,1.0,8.0(),,( =ept ωωω , the 
results are shown in Figs. 17 and 18. The coverage rate is 77.47%, and the fitness 
value is 0.663181. The assigned transmit power range of each base station is from 
21.1752 dBm to 38.57794dBm, and its mean value is 32.3230 dBm. As the traffic 
capacity is limited, the cell boundaries of the high traffic density are less than those of 
the low traffic density. The coverage rate is decreased according to the changing 
weight of the traffic factor, from 0.9 to 0.8. As the weight of the power factor 
increases, the actual assigned transmit power value decreases. In the results shown in 
Fig. 17,  the overlapped base station is clearly shown. The cause of this is the decrease 
of the weighted economy factor. The traffic map that was used for the simulation 
consisted of high traffic density areas and very low traffic density areas such as 
mountains and rivers. Therefore, traffic is scattered in all directions on the map; 
consequently, the search space becomes larger. To obtain a better coverage rate, the 
population size can be enlarged or the mutation probability can be increased. 
Additionally, it is necessary to process more generations.  
 

.  
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Figure 15.  After 500 generations, the 

location of the base 
stations, )1.0,0.0,9.0(),,( =ept ωωω  
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Figure 16.  Fitness Value, 

)1.0,0.0,9.0(),,( =ept ωωω
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Figure 17.  After 500 generations, the 

location of the base stations, 
)1.0,1.0,8.0(),,( =ept ωωω  
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Figure 18.  Fitness values, 

)1.0,1.0,8.0(),,( =ept ωωω  

6. Conclusion 

In this paper, given inhomogeneous traffic information and the map for the 
propagation model, a new algorithm was proposed that enables the optimization of the 
locations and transmitted power of a base station. In addition, this algorithm includes 
an economic factor (the number of base stations). Good use was made of the genetic 
algorithm and it was excellent for obtaining a solution of complex problems. Genetic 
operators using the real valued representation are also suggested, and the objective 



  

function is defined in consideration of the coverage, the transmitted power of base 
station and the economy efficiency through an adjustment of crossover and mutation. 
The selection, input parameters and scaling are shown to be tightly coupled with the 
algorithm performance. Therefore, there is a need for these to be harmonized. From a 
simulation, the proposed algorithm was verified. 
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